n-Queens

This paper contains references to the well-known n-queens problem. It is available through:
http://www.liacs.nl/home/kosters/nqueens.html
Walter Kosters, kosters@liacs.nl
Leiden, April 8, 2002

References

[Ahr10] W. Ahrens. Mathematische Unterhaltungen und Spiele. B.G. Teubner, 1910. [Nau50]
[Ano48] Anonymous. Unknown. Berliner Schachgesellschaft, 3:363, 1848.
The 8 -by- 8 case is posed here as an anonymous problem. Nevertheless it is the oldest reference we found.
[AY89] Bruce Abramson and Moti Yung. Divide and conquer under global constraints: A solution to the N-queens problem. Journal of Parallel and Distributed Computing, 6:649-662, 1989.
[HL83], [Pól18], [WG84]
[Bal26] W.W. Rouse Ball. Mathematical Recreations and Essays, page 113. MacMillan and Co., 1926.
The 8 queens problem is given here, along with a mathematical solution [Ahr10], [Gün74]
[BCM97] A.P. Burger, Ernest J. Cockayne, and C.M. Mynhardt. Domination and irredundance in the queens' graph. Discrete Mathematics, 163:47-66, 1997.
[BD75] A. Bruen and R. Dixon. The n-queens problem. Discrete Mathematics, 12:393395, 1975.
[HV73]
[Ber91] B. Bernhardsson. Explicit solution to the n-queens problems for all n. ACM SIGART Bulletin, 2:7, 1991.
[BP67] B.T. Bennett and R.B. Potts. Arrays and brooks. Journal for the Australian Mathematical Society, pages 23-31, 1967.
Combinatorial problems concerning rooks, queens, bishops and knights on a chess board.
[BR75] J.R. Bitner and E.M. Reingold. Backtrack programming techniques. Communications of the ACM, 18:651-656, 1975.
This article deals with the basics of backtracking.
[Bra90] Ivan Bratko. Prolog Programming for Artificial Intelligence. Addison-Wesley, 2nd edition, 1990.

A Prolog program for the solution of our problem is presented.
[Cai01] Grant Cairns. Queens on non-square tori. The Electronic Journal of Combinatorics, 8:N6, 2001.
[Cam77] P.J. Campbell. Gauss and the eight queens problem, A study in miniature of the propagation. Historia Mathematica, 4:397-404, 1977.
[CH86] Ernest J. Cockayne and Stephen T. Hedetniemi. On the diagonal queens domination problem. Journal of Combinatorial Theory, A42:137-139, 1986.
[Cha74] A.K. Chandra. Independent permutations, as related to a problem of Moser and a theorem of Pólya. Journal of Combinatorial Theory, A16:111-120, 1974. [Pól18]
[CMV86] R.M. Clapp, T.N. Mudge, and R.A. Volz. Solutions to the n queens problem using tasking in Ada. SIGPLAN Notices, 21:99-110, 1986.
[CP94] Paul Cull and Rajeev Pandy. Isomorphism and the N-Queens Problem. SIGCSE Bulletin, 26:29-36, 1994.
[AY89], [BR75], [BD75], [CMV86], [Cha74], [CH86], [FS86], [Gol87], [Gra93], [HV73], [HLM69], [Kal90], [Kla67], [MM92], [Pól18], [Rei87]
[Cra92] K.D. Crawford. Solving the n-queens problem using genetic algorithms. In Proceedings ACM/SIGAPP Syposium on Applied Computing, Kansas City, pages 1039-1047, 1992.
[DRT92] Onur Demiroers, Nader Rafraf, and Murat M. Tanik. Obtaining N-queens solutions from magic squares and constructing magic squares from N-queens solutions. Journal of Recreational Mathematics, 24:272-280, 1992.
[Dud17] Henry Ernest Dudeney. Amusements in Mathematics, chapter Chessboard Problems, pages 89,215. Dover Publications, 1917.
[ERR94] A.E. Eiben, P.-E. Raué, and Zs. Ruttkay. Solving constraint satisfaction problems using genetic algorithms. In Proceedings of the 1st IEEE World Conference on Computational Intelligence, pages 542-547. IEEE Service Center, 1994.
[ERR95] A.E. Eiben, P.-E. Raué, and Zs. Ruttkay. GA-easy and GA-hard constraint satisfaction problems. In Proceedings of the ECAI-94 workshop on Constraint Processing, number 923 in Lecture Notes in Computer Science. SpringerVerlag, 1995.
[EST92] C. Erbas, S. Sarkeshik, and M.M. Tanik. Different perspectives of the n-queens problem. In Proceedings of the ACM 1992 Computer Science Conference, 1992.
[ET92] C. Erbas and M.M. Tanik. Storage schemes for parallel memory systems and the n-queens problem. In Proceedings of the 15 th Anniversary of the ASME ETCE Confererence, Computer Applications Symposium, 1992.
[ET95] Cengiz Erbas and Murat M. Tanik. Generating solutions to the N-queens problem using 2-circulants. Mathematics Magazine, 68:343-356, 1995.
[ETA92] C. Erbas, M.M. Tanik, and Z. Aliyazicioglu. Linear congruence equations for the solutions of the n-queens problem. Information Processing Letters, 41:301-306, 1992.
[AY89], [Ahr10], [EST92], [ET92], [FS86], [FJ84], [Gin39], [Gün74] [HLM69], [Nad90], [Pól18], [Rei87], [Roh83], [SG90], [SS87], [Wir71]
[FJ84] L.R. Foulds and D.G. Johnson. An application of graph theory and integer programming: Chessboard nonattacking puzzles. Mathematical Magazine, 57:95-104, 1984.
[Fol87] John Foley. Manchester Dataflow Machine: Preliminary benchmark test evaluation. Technical Report UMCS-87-11-2, University of Manchester, Computer Science Department, November 1987.
[FS86] Bernd-Jürgen Falkowski and Lothar Schmitz. A note on the queens' problem. Information Processing Letters, 23:39-46, 1986.
[Gin39]
[FW74] J.P. Fillmore and S.G. Williamson. On backtracking: A combinatorial description of the algorithm. SIAM Journal on Computing, 3:41-55, 1974.
[Gin39]
[Gar72] Martin Gardner. Mathematical games. Scientific American, 227:176-182, 1972.
[GB65] Solomon W. Golomb and L. Baumert. Backtrack programming. Journal of the $A C M, 12: 516-524,1965$.
[Gin39] J. Ginsburg. Gauss's arithmetization of the problem of 8 queens. Scripta Mathematica, 5:63-66, 1939.
[Gol70] Solomon W. Golomb. Sphere packing, coding metrics and chess puzzles. In R.C. Rose, editor, Chapel Hill Conference on Combinatorial Mathematics and its Applications, pages 176-189, 1970.
[Gol87] M.E. Goldsby. Solving the " $\mathrm{n} \leq 8$ queens" problem with CSP and Modula-2. SIGPLAN Notices, 22:43-52, 1987.
[Gra93] J.S. Gray. Is eight enough? - The eight queens problem re-examined. SIGCSE Bulletin, 25:39-44,51, 1993.
[SG90]
[Gün74] S. Günther. (Unknown). Archiv der Mathematik und Physik, 56:281-292, 1874. Is this joint work with James Whitbread Lee Glaisher on determinants?
[Hay92] Peter Hayes. A problem of chess queens. Journal of Recreational Mathematics, 24:264-271, 1992.
[Hed92] Olof Heden. On the modular n-queen problem. Discrete Mathematics, 102:155161, 1992.
[Hed93] Olof Heden. Maximal partial spreads and the modular n-queen problem. Discrete Mathematics, 120:75-91, 1993.
[HHR98] Sandra M. Hedetniemi, Stephen T. Hedetniemi, and R. Reynolds. Teresa W. Haynes, Stephen T. Hedetniemi and Peter J. Slater, Eds. - Domination in Graphs: Advanced Topics, chapter 6: Combinatorial Problems on Chessboards: II, pages 133-162. Marcel Dekker, New York, 1998.
[HL83] F.K. Hwang and Ko-Wei Lih. Latin squares and superqueens. Journal of Combinatorial Theory, A35:110-114, 1983.
[Cha74], [Pól18]
[HLL98] Jiawei Han, Ling Liu, and Tong Lu. Evaluation of declarative n-queens recursion: A deductive database approach. Information Sciences, 105:69-100, 1998.
[HLM69] E.J. Hoffman, J.C. Loessi, and R.C. Moore. Constructions for the solution of the m queens problem. National Mathematics Magazine, March-April:66-72, 1969.
[HMP98] Stephen T. Hedetniemi, A. A. McRae, and D.A. Parks. Teresa W. Haynes, Stephen T. Hedetniemi and Peter J. Slater, Eds. - Domination in Graphs: Advanced Topics, chapter 9: Complexity results, pages 233-269. Marcel Dekker, New York, 1998.
[HTA92] Abdollah Homaifar, Joseph Turner, and Samia Ali. The n-queens problem and genetic algorithms. In Proceedings IEEE Southeast Conference, Volume 1, pages 262-267, 1992.
[HV73] B. Hansche and W. Vucenic. On the n-queens problem. Notices of the American Mathematical Society, 20:568, 1973.
[Kal90] Laxmikant V. Kalé. An almost perfect heuristic for the n nonattacking queens problem. Information Processing Letters, 34:173-178, 1990.
[BR75], [Rei87], [SS87]
[Kea93] J.G. Keating. Hopfield networks, neural data structures and the nine flies problem: Neural network programming projects for undergraduates. SIGCSE Bulletin, 25:33-37,40,60, 1993.
[Kla67] D.A. Klarner. The problem of reflecting queens. American Mathematical Monthly, 74:953-955, 1967.
[Klø77] Torleiv Kløve. The modular n-queen problem. Discrete Mathematics, 19:289291, 1977.
[Klø81] Torleiv Kløve. The modular n-queen problem II. Discrete Mathematics, 36:3348, 1981.
[Knu00] D.E. Knuth. Dancing links. In Bill Roscoe Jim Davies and Jim Woodcock, editors, Millennial Perspectives in Computer Science, pages 187-214. Palgrave, 2000.
[Küc97] F.C. Küchmann. Solving the eight queens problem. MacTech Magazine: For Macintosh Programmers E Developers, 13:20-27, 1997.
[Mań95] J. Mańdziuk. Solving the N-queens problem with a binary Hopfield-type network. synchronous and asynchronous model. Biological Cybernetics, 72:439446, 1995.
[MJPL92] Steven Minton, Mark D. Johnston, Andrew B. Philips, and Philip Laird. Minimizing conflicts: A heuristic repair method for constraint satisfaction and scheduling problems. Artificial Intelligence, 58:161-205, 1992.
[AY89], [BR75], [Kal90], [Mor92], [SG90], [SS87]
[MM92] J. Mańdziuk and B. Macukow. A neural network designed to solve the n-queens problem. Biological Cybernetics, 66:375-379, 1992.
[Mor92] P. Morris. On the density of solutions in equilibrium points for the queens problem. In Proceedings AAAI-92, 1992.
[Nad90] B.A. Nadel. Representation selection for constraint satisfaction: A case study using n-queens. IEEE Expert, June:16-23, 1990.
[Nau50] Franz Nauck. Schach. Illustrierter Zeitung, 361:352, 1850. This article is our oldest reference with detailed information.
[Nau72] P. Naur. An experiment on program development. BIT, 12:347-365, 1972. [Wir71]
[Net01] E. Netto. Lehrbuch der Combinatorik. B.G. Teubner, Leipzig, 1901.
[Nud95] Scott P. Nudelman. The modular n-queens problem in higher dimensions. Discrete Mathematics, 146:159-167, 1995.
[Oh93] Sang Bong Oh. An analytical evidence for Kale's heuristic for the n queens problem. Information Processing Letters, 46:51-54, 1993.
[Kal90]
[Ols93] Alton T. Olson. The eight queens problem. Journal of Computers in Mathematics and Science Teaching, 12:93, 1993.
[Pól18] G. Pólya. Mathematische Unterhaltungen und Spiele, chapter Über die "doppelt-periodischen" Lösungen des n-Damen-Problems. B.G. Teubner, 1918.

Basic article.
[Rei87] Matthias Reichling. A simplified solution of the N queens' problem. Information Processing Letters, 25:253-255, 1987.
[FS86]
[Roh83] J.S. Rohl. A faster lexicographical n-queens algorithm. Information Processing Letters, 17:231-233, 1983.
[RVZ94] I. Rivin, I. Vardi, and P. Zimmermann. The n-queens problem. The American Mathematical Monthly, 101:629-639, 1994.
[RZ92] I. Rivin and R. Zabih. A dynamic programming solution to the n-queens problem. Information Processing Letters, 41:253-256, 1992.

This article refers to a preprint of [RVZ94] published in 1990.
[Ahr10], [Ano48], [Pól18], [RVZ94]
[SDDS86] J.T. Schwartz, R.B.K. Dewar, E. Dubinsky, and E. Schonberg. Programming with Sets, An Introduction to SETL, chapter 7, pages 312-314. SpringerVerlag, 1986.

The n-queens problem is solved using the programming language SETL.
[SG88a] Rok Sosič and Jun Gu. Fast N-queen search on VAX and Bobcat machines. AI Project Report, February, 1988.
[SG88b] Rok Sosič and Jun Gu. How to search for million queens. Technical Report UUCS-TR-88-008, Department of Computer Science, University of Utah, 1988.
[SG90] Rok Sosič and Jun Gu. A polynomial time algorithm for the N-queens problem. SIGART Bulletin, 1:7-11, 1990.
[Pól18], [Nad90], [SG88a], [SG88b], [SS87]
[SG91a] Rok Sosič and Jun Gu. 3,000,000 queens in less than one minute. SIGART Bulletin, 2:22-24, 1991.
[SG88a], [SG88b], [SG90], [SS87]
[SG91b] Rok Sosič and Jun Gu. Fast search algorithms for the n-queens problem. IEEE TRansactions on Systems, Man and Cybernetics, 21:1572-1576, 1991.
[SG94] Rok Sosič and Jun Gu. Efficient local search with conflict minimization: A case study of the n-queens problem. IEEE Transactions on Knowledge and Data Engineering, 6:661-668, 1994.
[AY89], [Ahr10], [BR75], [FS86], [HLM69], [Kal90], [Rei87], [SG88b], [SS87], [Ber91], [SG91a]
[Sha92] Oron Shagrir. A neural net with self-inhibiting units for the n-queens problem. International Journal of Neural Systems, 3:249-252, 1992.
[Sos94] Rok Sosič. A parallel search algoritm for the n-queens problem. In Parallel Computing and Transputer Conference, Wollongong, pages 162-172. IOS Press, 1994.
[SS87] H.S. Stone and J.M. Stone. Efficient search techniques - An empirical study of the N-queens problem. IBM Journal of Research and Development, 31:464474, 1987.
[Tam97] T. Tambouratzis. A simulated annealing artificial neural network implementation of the N-queens problem. International Journal of Intelligent Systems, 12:739-752, 1997.
[TG98] W.F.D. Theron and G. Geldenhuys. Domination by queens on a square beehive. Discrete Mathematics, 178:213-220, 1998.
[Tol96] Alexey Tolpygo. Follow-up: Queens on a cylinder. Quantum: The Student Magazine of Math and Science, 6:38-42, 1996.
A treatment of nonstandard chessboards and chess pieces that builds on earlier Quantum articles ("Torangles and Torboards" [March/April 1994] and "Signals, Graphs, and Kings on a Torus" [November/December 1995]).
[WG84] Robert A. Wagner and Robert H. Geist. The crippled queen placement problem. Technical report, Duke University, 1984.
[Wir71] Niklaus Wirth. Program development by stepwise refinement. Communications of the ACM, 14:221-227, 1971.
[YBFN97] Hiroaki Yoshio, Takayuki Baba, Nobuo Funabiki, and Seishi Nishikawa. Proposal of an N-parallel computation method for a neural network for the N queens problem. Electronics and Communications in Japan, 80:12-20, 1997.
[YF94] C.K. Yuen and M.D. Feng. Breadth-first search in the eight queens problem. SIGPLAN Notices: Special Interest Group on Programming Languages, 29:5155, 1994.
[YY64] A.M. Yaglom and I.M. Yaglom. Challenging Mathematical Problems with Elementary Solutions. Holden-Day, 1964.

