Social Network Analysis for Computer Scientists

Frank Takes

LIACS, Leiden University https://liacs.leidenuniv.nl/~takesfw/SNACS

Lecture 1 — Introduction and small world phenomenon

## Context: Data

- Data: facts, measurements or text collected for reference or analysis (Oxford dictionary)
  - Unstructured data: data that does not fit a certain data structure (text, images, audio, video, a list of numeric measurements)
  - Structured data: data that fits a certain data structure (table, graph/network, tree, etc.)

## Data evolution



Census data (60s)

Transaction data (80s)

- Micro event data (00s)
- Social data (10s)

Figure: Census data

## Moore's law & Transistors



Source http://visual.ly

## Moore's law & Data



#### Figure: Zettabytes produced per year

Source: http://www1.unece.org/stats/platform/display/msis/Big+Data

## Context: Big data



Source: W. van der Aalst, Process Mining, 2nd edition, 2016.

## Context: Data science



 $Source: \ https://ion.icaew.com/itcounts/b/weblog/posts/theaccountinganddatascienceworldsmeet \\$ 

## Context: Social media



Source: https://freepik.com

## Social media mining

- Social media platforms: Facebook, Twitter, LinkedIn, Reddit, YouTube, Blogger, ...
- Platforms generate enormous amounts of (un)structured data
- **Social media mining & analytics**: analyzing this data in order to get insight in user(s), trends, usage patterns, the platform itself, ...
  - Text mining
  - Trend analysis
  - Sentiment mining
  - Topic modelling
  - Social network analysis

#### Data

- Data analysis
- Data mining
- Data science
- Big data

### Data

- Data analysis
- Data mining
- Data science
- Big data

### Network/graph data

### Data

- Data analysis
- Data mining
- Data science
- Big data

### Network/graph data

- Graph mining
- Network science
- Complex network analysis
- Social network analysis

## Networks

## What is a network?



Figure: Visualization of a network with 15 nodes and 21 edges.

## What is a network?

Networks, also called graphs, consist of:

- Nodes, also called objects, vertices, actors or entities, denoting the unit of analysis, and
- Links, also called relationships, edges, ties, arcs or connections that connect the aforementioned nodes in a particular meaningful way.

In a **social network**, the nodes represent people and the links may, e.g., indicate friendship, acquaintance, frequent proximity or communication.

This course also considers many other types of real-world networks.

## Real-world networks

| Network category              | Examples                                                                                                                    |
|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| technological networks        | webgraphs, information networks (Wikipedia), peer-to-peer                                                                   |
|                               | networks, software design networks, internet router networks,<br>digital circuit networks, cellular networks, WiFi networks |
| networks in nature            | brain networks, protein interaction networks, neural networks,                                                              |
|                               | gene regulatory networks, metabolic networks, drug interac-                                                                 |
|                               | tion networks, food webs, ecological networks                                                                               |
| social networks               | online social networks, human contact networks, playground                                                                  |
|                               | interaction networks, sexual contact networks                                                                               |
| communication networks        | telephone call graphs, Twitter mention networks, WhatsApp                                                                   |
|                               | and text messaging networks, e-mail networks                                                                                |
| scientific networks           | paper citation networks, co-authorship networks, patent ci-                                                                 |
|                               | tation networks, legal citation networks                                                                                    |
| financial & economic networks | money market networks, trade networks, financial transac-                                                                   |
|                               | tion networks, cryptocurrency networks, ownership networks,                                                                 |
|                               | corporate board interlock networks, intra-organizational net-                                                               |
|                               | works                                                                                                                       |
| infrastructure networks       | road networks, aiport networks, public transport networks,                                                                  |
|                               | water transport networks, water distribution grid networks,                                                                 |
|                               | transport, electricity/power grid networks                                                                                  |



- Network science: understanding data by investigating interactions and relationships between individual data objects as a network
- Networks are the central model of computation

## Network science

- Network science: understanding data by investigating interactions and relationships between individual data objects as a network
- Networks are the central model of computation
- Branch of data science focusing on network data
- Method in complexity research
- Complex systems approach: the behavior emerging from the network reveals patterns not visible when studying the individuals
- For now assume: network science = social network analysis

### Representation and notation

# Notation

ConceptSymbol• Network (graph)G = (V, E)• Nodes (objects, vertices, ...)V• Links (ties, relationships, ...)E• Directed  $-E \subseteq V \times V -$  "links"• Undirected - "edges"• Number of nodes - |V|• Number of edges - |E|• We assume no self-edges (u, u) and no parallel edges

## Notation example

- Directed graph G = (V, E)
- Nodes  $V = \{u, v, w, x, y, z\}$
- Edges E = {(u, v), (w, v), (v, w) (v, x), (x, v), (x, w), (y, v), (v, z)}
- Node count n = 6
- Link count m = 8



## Notation example

- Undirected graph G = (V, E)
- Nodes  $V = \{u, v, w, x, y, z\}$
- Edges E = {{u, v}, {w, v}, {v, v}, {v, x}, {x, w}, {y, v}, {v, z}}
- Node count n = 6
- Edge count m = 6 (counting undirected edges)



## Types of networks

- Directed vs. undirected networks
- Weighted vs. unweighted (binary) networks
- Signed networks with positive and negative links
- Networks with attributed/annotated nodes and/or edges (metadata)
- One-mode (homogenic) vs. multi-mode (heteregenic) networks with different node types. Two-mode networks (bipartite graphs).
- Multiplex or multilayer networks with different edge types
- Static vs. dynamic (temporal/evolving) networks with timestamps on nodes and/or edges
- For now we stick to unweighted static one-mode networks.

## One-mode labeled network



Source: http://web.stanford.edu/class/cs224w

## Two-mode weighted network



Source: http://toreopsahl.com

#### Directed Adjacency Matrix

- 4 0 0 1 0 0 0
- 5001000
- 6 0 1 1 0 0 0
- Directed:  $O(n^2)$  memory
- Weighted graphs: integers in cells



Figure: n = 6 and m = 12

### Undirected Adjacency Matrix

1 2 3 4 5

- 2 0
- 311
- 4 0 0 1
- 50010
- 6 0 1 1 0 0
- Undirected:  $O(\frac{1}{2}n(n-1))$  memory
- Better, but still many zeros



Figure: n = 6 and m = 6

### Adjacency List

- 1: **3**
- 2: 36
- 3: 12456
- 4: **3**
- 5: **3**
- 6: **2** 3
- *O*(*n*+2*m*) memory



Figure: n = 6 and m = 6

### Undirected Adjacency List

- 1: **3**
- 2: **3**6
- 3: 456
- 4:
- 5:
- 6:
- O(n+m) memory



Figure: n = 6 and m = 6

- (Undirected) Edge List
  - 1 3
  - 23
  - 26
  - 34

  - 35
  - 36
- Commonly used as an input format
- *O*(2*m*) memory



Figure: n = 6 and m = 6

## Toy graph: 6 nodes



### Collaboration network: $\sim 100$ nodes



## Social network: $\sim$ 1,500 nodes



## Corporate network: $\sim$ 20,000 nodes



## Webgraph: $\sim$ 500,000 nodes


## Webgraph: $\sim$ 500,000 nodes



Opte, Internet visualization (2005)

## Hyves: $\sim$ 8,000,000 nodes



- Online Social Network
- Dutch & pre-Facebook
- Full snapshot
- *n* = 8,000,000 (8 million)
- $\blacksquare$  m = 1,000,000,000 (1 billion)

## Facebook: 1,000,000,000 nodes



## Representing large networks

- HYVES online social network
  - *n* = 8,000,000 nodes
  - m = 1,000,000,000 links
- Assume 4 bytes per int (integer)



- Adjacency Matrix:  $n^2 = 8,000,000^2 = 64 \cdot 10^{12}$  bits =  $\sim 8$ TB
- Adjacency List: n + m = 1,008,000,000 ints  $= \sim 4$ GB
- Edge List: 2*m* = 2,000,000,000 ints = ~ 8GB
- But "smart" graph compression uses only a few bits(!) per edge

## Measuring networks

• We have seen:

- From 6 to 1,000,000,000 (1 billion) nodes
- From 8 to 120,000,000,000 (120 billion) edges

Measuring only number of nodes and edges is too simple



## Measuring networks

We have seen:

- From 6 to 1,000,000,000 (1 billion) nodes
- From 8 to 120,000,000,000 (120 billion) edges

Measuring only number of nodes and edges is too simple



## Real-world network properties

- Measuring only number of nodes and edges is too simple
- Real-world networks are far from random
- Five interesting metrics:
  - Density
  - 2 Degree
  - 3 Components
  - 4 Distance
  - 5 Clustering coefficient

## Density

Maximum number of edges m<sub>max</sub>

• 
$$m_{\max} = n(n-1)$$
 for directed graphs

•  $m_{\max} = \frac{1}{2}n(n-1)$  for undirected graphs

**Density**: 
$$\frac{m}{m_{\text{max}}}$$
, so  $\frac{m}{n(n-1)}$  or  $\frac{m}{\frac{1}{2}n(n-1)}$ 

- HYVES: 8 · 10<sup>6</sup> nodes, at most 64 · 10<sup>12</sup> edges.
  But network has "only" 1 · 10<sup>9</sup> edges, so density 0.0000156.
- Sparse graph if  $m \ll m_{max}$ , so low density
- Real-world networks are typically sparse
- Density is particularly relevant when comparing networks

## Bitcoin network

- Bitcoin: digital currency
- Peer-to-peer: no central authority
- Blockchain containing all transactions
- Bitcoin network: nodes are addresses (parts of wallets) and directed links are transactions between addresses
- Sparse: *n* = 13,086,528 nodes and *m* = 44,032,115 links



#### Bitcoin transaction network



Source: quantabytes.com/articles/a-network-analyst-s-view-of-the-block-chain

## Silk Road Bitcoin seizure



Source: reddit.com/r/Bitcoin/comments/1prqpu/what\_the\_silk\_road\_bitcoin\_seizure\_transaction

## Degree



Figure: Undirected graph

Undirected graphs: degree



Figure: Directed graph

deg(v) = 5

## Degree



Figure: Undirected graph

- Undirected graphs: degree
- Directed graphs
  - Indegree
  - Outdegree



Figure: Directed graph

deg(v) = 5

indeg(v) = 4outdeg(v) = 3

# Degree



Figure: Undirected graph

- Undirected graphs: degree
- Directed graphs
  - Indegree
  - Outdegree
- Degree distribution: frequency of each degree value. Typically lognormal or power law distribution with "fat tail"



Figure: Directed graph

deg(v) = 5

indeg(v) = 4outdeg(v) = 3

## Degree distribution





## Degree distribution



Figure: Degree distribution of Citeseer citation network.

Source: http://konect.cc/networks/citeseer/

## $\operatorname{Hyves}$ degree distribution



#### Bitcoin network distribution



#### Figure: Scale-free degree distributions

Kondor et al., Do the Rich Get Richer? An Empirical Analysis of the Bitcoin..., PLOS ONE 9(2): e86197, 2014

#### Paths



#### Concept

- Path
- Path length
- Simple path: no repeated vertices
- Shortest path: path of minimal length
- **Distance**: length of shortest path

Example

$$p = (u, v, z, v, w, x)$$
$$|p| - 1 = 5$$
$$p' = (u, v, w, x)$$
$$sp = (u, v, x)$$
$$d(u, x) = |sp| - 1 = 2$$

## Components in undirected networks

■ What if d(a, c) = ∞? (so, no path between nodes a and c)

## Components in undirected networks

- What if d(a, c) = ∞? (so, no path between nodes a and c)
- Connected component: subset of nodes (maximal in size) in which each node can form a path to each other node in the subset
- Giant component: component containing the largest number of nodes
- Real-world networks typically have one dominant giant component



Connected components Image source: D. Easley and J. Kleinberg, "Networks, Crowds, and Markets", 2010

## Giant component



## Components in directed networks

- Weakly connected component: subgraph in which there is a path between any pair of nodes, ignoring link direction
- Strongly connected component: subgraph in which there is a directed path between any pair of nodes



Figure: Directed network with 3 strongly connected components

Source: https://commons.wikimedia.org/wiki/File:Scc.png

## Component size distribution



Figure: Component size distribution of  $\rm Hyves$  network, excluding the giant component of  $\sim$  8 million nodes.

## Small world experiment

- Stanley Milgram
- Starts with 96 random people in Omaha
- Ask them to get a letter to a stock-broker in Boston by passing it through to a closer acquaintance.
- How many steps did it take?

# Small world experiment

- Stanley Milgram
- Starts with 96 random people in Omaha
- Ask them to get a letter to a stock-broker in Boston by passing it through to a closer acquaintance.
- How many steps did it take?
- Letters arrived after on average 5.9 steps
- Total of 18 chains completed



J. Travers and S. Milgram, "An Experimental Study of the Small World Problem", Sociometry 32(4): 425-443, 1969

## Yahoo small world experiment



#### Select Friend > Your Info > Friend's Info > Send Message

#### Your objective:

Get a message to this person in as few steps as possible.

On the next page, you will be asked to select one of your Facebook friends, to whom you will forward the message

You may only select one friend, so choose carefully.



#### Here is your assigned Target Person:



32 male Berlin

State Region

Germany Berlin, Germany

Spouse's Name 100

#### Education

| School<br>Name  | Grundschule St.Wolfgang<br>Landshut  |  |
|-----------------|--------------------------------------|--|
| School<br>Name  | University of Newcastle upon<br>Tyne |  |
| Time<br>Period: | 1999 - 2002                          |  |

## Core/periphery structure

- Dense core containing many hubs
- Periphery with many nodes with a small distance to the core



Barabasi, Scientific American, May 2003

## Distance

• Average distance 
$$\overline{d} = \frac{1}{n(n-1)} \sum_{v,w \in V} d(v,w)$$

 Distance distribution: how often each distance value occurs (computed over all node pairs).

| Dataset     | Nodes     | Links | Average degree | Average distance |
|-------------|-----------|-------|----------------|------------------|
| AstroPhys   | 17,903    | 396K  | 21             | 4.15             |
| Enron       | 33,696    | 362K  | 10             | 4.07             |
| Web         | 855,802   | 8.64M | 10             | 6.30             |
| YouTube     | 1,134,890 | 5.98M | 5.3            | 5.32             |
| SKITTER     | 1,696,415 | 22.2M | 13             | 5.08             |
| WIKIPEDIA   | 2,213,236 | 23.5M | 11             | 4.81             |
| Orkut       | 3,072,441 | 234M  | 76             | 4.16             |
| LIVEJOURNAL | 5,189,809 | 97.4M | 19             | 5.48             |
| Hyves       | 8,057,981 | 871M  | 112            | 4.75             |

F.W. Takes and W.A. Kosters, Determining the Diameter of Small World Networks, In CIKM, pp. 1191-1196, 2011.

## Distance distribution



Figure: Distance distribution of the HYVES network (sampled over node pairs)

## Erdős number

- Scientific collaboration network
- Edges between scientists who wrote a paper together
- Erdős number: the distance of a scientist (node) to Erdős
- https://mathscinet.ams.org/mathscinet/ collaborationDistance.html



Figure: Paul Erdős (1913-1996)

#### Erdős number



#### Movie actor network



Source: http://web.stanford.edu/class/cs224w

# Six degrees of Kevin Bacon

- Actor collaboration network based on co-starring actors
- Variant of "Six degrees of Separation"
- Edges between actors indicate they played in a movie together
- Try finding a path of length longer than six at https://oracleofbacon.org



#### Figure: Kevin Bacon (1958)

## The Wiki Game



## Triangles



**Triangle**: for nodes  $u, v, w \in V$  we have  $(u, v), (v, w), (w, u) \in E$


Triangle: for nodes u, v, w ∈ V we have (u, v), (v, w), (w, u) ∈ E
Sets of three nodes that might be a triangle: <sup>n</sup><sub>3</sub> ≈ n<sup>3</sup>/6



- **Triangle**: for nodes  $u, v, w \in V$  we have  $(u, v), (v, w), (w, u) \in E$
- Sets of three nodes that might be a triangle:  $\binom{n}{3} \approx n^3/6$
- Probability of an edge in a a random graph is  $m/\binom{n}{2} \approx 2m/n^2$



- **Triangle**: for nodes  $u, v, w \in V$  we have  $(u, v), (v, w), (w, u) \in E$
- Sets of three nodes that might be a triangle:  $\binom{n}{3} \approx n^3/6$
- Probability of an edge in a a random graph is  $m/\binom{n}{2} \approx 2m/n^2$
- Probability of one triangle is  $(2m/n^2)^3 = 8m^3/n^6$



- **Triangle**: for nodes  $u, v, w \in V$  we have  $(u, v), (v, w), (w, u) \in E$
- Sets of three nodes that might be a triangle:  $\binom{n}{3} \approx n^3/6$
- Probability of an edge in a a random graph is  $m/\binom{n}{2} \approx 2m/n^2$
- Probability of one triangle is  $(2m/n^2)^3 = 8m^3/n^6$
- Expected triangles:  $(8m^3/n^6)(n^3/6) = \frac{4}{3}(m/n)^3$



- **Triangle**: for nodes  $u, v, w \in V$  we have  $(u, v), (v, w), (w, u) \in E$
- Sets of three nodes that might be a triangle:  $\binom{n}{3} \approx n^3/6$
- Probability of an edge in a a random graph is  $m/\binom{n}{2} \approx 2m/n^2$
- Probability of one triangle is  $(2m/n^2)^3 = 8m^3/n^6$
- Expected triangles:  $(8m^3/n^6)(n^3/6) = \frac{4}{3}(m/n)^3$
- For n = 1000 and m = 8000, we would expect 683 triangles.

| Network           | Nodes      | Edges         | Expected | Real           | Difference       |
|-------------------|------------|---------------|----------|----------------|------------------|
| Facebook (WOSN)   | 63,731     | 817,035       | 2,809    | 3,500,542      | $1,246 \times$   |
| Epinions          | 75,879     | 508,837       | 402      | 162,448        | 404×             |
| Amazon (TWEB)     | 403,394    | 3,387,388     | 789      | 398,6507       | $5,049 \times$   |
| Baidu             | 415,641    | 3,284,387     | 658      | 14,287,651     | $21,718 \times$  |
| Youtube links     | 1,138,499  | 4,942,297     | 109      | 3,049,419      | $27,957 \times$  |
| Flickr            | 2,302,925  | 33,140,017    | 3,973    | 837,605,842    | $210,806 \times$ |
| LiveJournal links | 5,204,176  | 49,174,464    | 1,125    | 310,876,909    | $276,367 \times$ |
| Twitter (MPI)     | 52,579,682 | 1,963,263,821 | 69,410   | 55,428,217,664 | 798,565 $	imes$  |

Table: Expected vs. real triangle counts in real-world networks.

### Node clustering coefficient

- Node clustering coefficient: extent to which a node v forms triangles with its neighbors
- Measure of transitivity
- Node clustering coefficient for a node  $v \in V$ :

$$C(v) = \frac{2 \cdot |\{(u, w) \in E : (u, v) \in E \land (v, w) \in E\}|}{deg(v) \cdot (deg(v) - 1)}$$

(where deg(v) > 1 is the degree of node v)

### Node clustering coefficient

- Node clustering coefficient: extent to which a node v forms triangles with its neighbors
- Measure of transitivity
- Node clustering coefficient for a node  $v \in V$ :

$$C(v) = \frac{2 \cdot |\{(u, w) \in E : (u, v) \in E \land (v, w) \in E\}|}{deg(v) \cdot (deg(v) - 1)}$$

(where deg(v) > 1 is the degree of node v)

$$C(v) = \frac{2 \cdot \text{edges between neighbors of } v}{\text{maximum number of such edges}}$$

#### Node clustering coefficient



Situation A: v has a clustering coefficient of 0
Situation B: v has a clustering coefficient of <sup>14</sup>/<sub>20</sub> = <sup>7</sup>/<sub>10</sub> = 0.7

Image: G.A. Pavlopoulos et al., "Using graph theory to analyze biological networks", in BioData Mining 4(1), 2011.

### Graph clustering coefficient

**1** Average node clustering coefficient for a graph G:

$$C(G) = \frac{1}{n} \cdot \sum_{v \in V} C(v)$$

### Graph clustering coefficient

**1** Average node clustering coefficient for a graph G:

$$C(G) = \frac{1}{n} \cdot \sum_{v \in V} C(v)$$

**2** Graph clustering coefficient for a graph G:

$$C'(G) = \frac{3 \cdot \text{number of triangles}}{\text{number of connected triplets of nodes}}$$

Small world networks: high clustering coefficients compared to a random graph with the same number of nodes

# Real-world networks

| 1 | Sparse networks                          | density                |
|---|------------------------------------------|------------------------|
| 2 | Fat-tailed power-law degree distribution | degree                 |
| 3 | Giant component                          | components             |
| 4 | Low pairwise node-to-node distances      | distance               |
| 5 | Many triangles                           | clustering coefficient |

# Real-world networks

| 1 | Sparse networks                                                                                                                                                                                                                | density                |  |  |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--|--|
| 2 | Fat-tailed power-law degree distribution                                                                                                                                                                                       | degree                 |  |  |
| 3 | Giant component                                                                                                                                                                                                                | components             |  |  |
| 4 | Low pairwise node-to-node distances                                                                                                                                                                                            | distance               |  |  |
| 5 | Many triangles                                                                                                                                                                                                                 | clustering coefficient |  |  |
|   | <ul> <li>Many examples: social networks, communication networks, citation<br/>networks, collaboration networks (Erdős, Kevin Bacon), protein<br/>interaction networks, information networks (Wikipedia), webgraphs,</li> </ul> |                        |  |  |

financial networks (Bitcoin) . . .

# Other topics

- Centrality, PageRank
- Community detection
- Network motifs
- Graph representation and compression
- Distance approximation
- Graph evolution, link prediction
- Spidering and sampling
- Visualization algorithms
- Virality and influence maximization
- Epidemic spread
- Privacy, anonymity and ethics
- Anomalies in networks
- Resilience and fault tolerance

# Upcoming lab session

- From 9:00 to 10:45 in Snellius rooms 302/304 etc.
- Instructions on course website
- Hands-on introduction to Gephi
- Get to know the university's (remote) Linux environment (again)
- Start working on Assignment 1

### Homework for next week

- Mandatory (de)registration via uSis/Brightspace; see Lecture 0
- Watch the "The Emergence of Network Science" movie at https://www.cornell.edu/video/emergence-of-network-science or https://youtu.be/cf-6qdPerlI?t=1s
- Ensure you have access to the ULCN Linux environment in, the Snellius computer rooms and/or remotely via sshgw.leidenuniv.nl
- Check if you have read access to the files in this folder: /vol/share/groups/liacs/scratch/SNACS/
- Solve any IT problems; 8888 or helpdesk@issc.leidenuniv.nl or https://liacs.leidenuniv.nl/ict (redirect to ISSC portal)