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Context: Data

Data: facts, measurements or text collected for reference or analysis
(Oxford dictionary)

Unstructured data: data that does not fit a certain data structure
(text, images, audio, video, a list of numeric measurements)
Structured data: data that fits a certain data structure
(table, graph/network, tree, etc.)
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Data evolution

Census data (60s)

Transaction data (80s)

Micro event data (00s)

Social data (10s)

Figure: Census data
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Moore’s law & Transistors

Source http://visual.ly
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Moore’s law & Data

Figure: Zettabytes produced per year

Source: http://www1.unece.org/stats/platform/display/msis/Big+Data
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Context: Big data

Source: W. van der Aalst, Process Mining, 2nd edition, 2016.
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Context: Data science

Source: https://ion.icaew.com/itcounts/b/weblog/posts/theaccountinganddatascienceworldsmeet

Frank Takes — SNACS — Lecture 1 — Introduction and small world phenomenon 8 / 73



Context: Social media

Source: https://freepik.com

Frank Takes — SNACS — Lecture 1 — Introduction and small world phenomenon 9 / 73



Social media mining

Social media platforms: Facebook, Twitter, LinkedIn, Reddit,
YouTube, Blogger, . . .

Platforms generate enormous amounts of (un)structured data

Social media mining & analytics: analyzing this data in order to
get insight in user(s), trends, usage patterns, the platform itself, . . .

Text mining
Trend analysis
Sentiment mining
Topic modelling
Social network analysis
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Context

Data
Data analysis
Data mining
Data science
Big data

Network/graph data
Graph mining
Network science
Complex network analysis
Social network analysis
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Networks
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What is a network?
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Figure: Visualization of a network with 15 nodes and 21 edges.
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What is a network?

Networks, also called graphs, consist of:

Nodes, also called objects, vertices, actors or entities, denoting the
unit of analysis, and

Links, also called relationships, edges, ties, arcs or connections that
connect the aforementioned nodes in a particular meaningful way.

In a social network, the nodes represent people and the links may, e.g.,
indicate friendship, acquaintance, frequent proximity or communication.

This course also considers many other types of real-world networks.
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Real-world networks

Network category Examples
technological networks webgraphs, information networks (Wikipedia), peer-to-peer

networks, software design networks, internet router networks,
digital circuit networks, cellular networks, WiFi networks

networks in nature brain networks, protein interaction networks, neural networks,
gene regulatory networks, metabolic networks, drug interac-
tion networks, food webs, ecological networks

social networks online social networks, human contact networks, playground
interaction networks, sexual contact networks

communication networks telephone call graphs, Twitter mention networks, WhatsApp
and text messaging networks, e-mail networks

scientific networks paper citation networks, co-authorship networks, patent ci-
tation networks, legal citation networks

financial & economic networks money market networks, trade networks, financial transac-
tion networks, cryptocurrency networks, ownership networks,
corporate board interlock networks, intra-organizational net-
works

infrastructure networks road networks, aiport networks, public transport networks,
water transport networks, water distribution grid networks,
transport, electricity/power grid networks
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Network science

Network science: understanding data by investigating interactions
and relationships between individual data objects as a network

Networks are the central model of computation

Branch of data science focusing on network data

Method in complexity research

Complex systems approach: the behavior emerging from the network
reveals patterns not visible when studying the individuals

For now assume: network science = social network analysis
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Representation and notation
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Notation

Concept Symbol

Network (graph) G = (V ,E )

Nodes (objects, vertices, . . . ) V

Links (ties, relationships, . . . ) E

Directed — E ⊆ V × V — ”links”
Undirected — ”edges”

Number of nodes — |V | n

Number of edges — |E | m

We assume no self-edges (u, u) and no parallel edges

Frank Takes — SNACS — Lecture 1 — Introduction and small world phenomenon 18 / 73



Notation example

Directed graph G = (V ,E )

Nodes V = {u, v ,w , x , y , z}
Edges E = {(u, v), (w , v), (v ,w)
(v , x), (x , v), (x ,w), (y , v), (v , z)}
Node count n = 6

Link count m = 8

v

u w

y z

x
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Notation example

Undirected graph G = (V ,E )

Nodes V = {u, v ,w , x , y , z}
Edges E = {{u, v}, {w , v},
{v , x}, {x ,w}, {y , v}, {v , z}}
Node count n = 6

Edge count m = 6 (counting
undirected edges)

v

u w

y z

x
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Types of networks

Directed vs. undirected networks

Weighted vs. unweighted (binary) networks

Signed networks with positive and negative links

Networks with attributed/annotated nodes and/or edges (metadata)

One-mode (homogenic) vs. multi-mode (heteregenic) networks with
different node types. Two-mode networks (bipartite graphs).

Multiplex or multilayer networks with different edge types

Static vs. dynamic (temporal/evolving) networks with timestamps on
nodes and/or edges

For now we stick to unweighted static one-mode networks.
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One-mode labeled network

Source: http://web.stanford.edu/class/cs224w
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Two-mode weighted network

Source: http://toreopsahl.com
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Representation

Directed Adjacency Matrix
1 2 3 4 5 6

1 0 0 1 0 0 0

2 0 0 1 0 0 1

3 1 1 0 1 1 1

4 0 0 1 0 0 0

5 0 0 1 0 0 0

6 0 1 1 0 0 0

Directed: O(n2) memory

Weighted graphs: integers in cells

3

1 2

4 5

6

Figure: n = 6 and m = 12
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Representation

Undirected Adjacency Matrix
1 2 3 4 5

2 0

3 1 1

4 0 0 1

5 0 0 1 0

6 0 1 1 0 0

Undirected: O(12n(n − 1)) memory

Better, but still many zeros

3

1 2

4 5

6

Figure: n = 6 and m = 6
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Representation

Adjacency List
1: 3

2: 3 6

3: 1 2 4 5 6

4: 3

5: 3

6: 2 3

O(n+2m) memory

3

1 2

4 5

6

Figure: n = 6 and m = 6
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Representation

Undirected Adjacency List
1: 3

2: 3 6

3: 4 5 6

4:

5:

6:

O(n+m) memory

3

1 2

4 5

6

Figure: n = 6 and m = 6
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Representation

(Undirected) Edge List
1 3

2 3

2 6

3 4

3 5

3 6

Commonly used as an input format

O(2m) memory

3

1 2

4 5

6

Figure: n = 6 and m = 6
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Toy graph: 6 nodes

3

1 2

4 5

6
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Collaboration network: ∼100 nodes
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Social network: ∼1,500 nodes
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Corporate network: ∼20,000 nodes
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Webgraph: ∼500,000 nodes

Source: Young Hyun, CAIDA, visualized using Walrus
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Webgraph: ∼500,000 nodes

Opte, Internet visualization (2005)
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Hyves: ∼8,000,000 nodes

Online Social Network

Dutch & pre-Facebook

Full snapshot

n = 8, 000, 000 (8 million)

m = 1, 000, 000, 000 (1 billion)

Frank Takes — SNACS — Lecture 1 — Introduction and small world phenomenon 35 / 73



Facebook: 1,000,000,000 nodes
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Representing large networks

Hyves online social network

n = 8, 000, 000 nodes
m = 1, 000, 000, 000 links

Assume 4 bytes per int (integer)

Adjacency Matrix: n2 = 8, 000, 0002 = 64 · 1012 bits = ∼ 8TB

Adjacency List: n +m = 1, 008, 000, 000 ints = ∼ 4GB

Edge List: 2m = 2, 000, 000, 000 ints = ∼ 8GB

But “smart” graph compression uses only a few bits(!) per edge
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Measuring networks

We have seen:

From 6 to 1, 000, 000, 000 (1 billion) nodes
From 8 to 120, 000, 000, 000 (120 billion) edges

Measuring only number of nodes and edges is too simple
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Real-world network properties

Measuring only number of nodes and edges is too simple

Real-world networks are far from random

Five interesting metrics:

1 Density
2 Degree
3 Components
4 Distance
5 Clustering coefficient
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Density

Maximum number of edges mmax

mmax = n(n − 1) for directed graphs
mmax =

1
2n(n − 1) for undirected graphs

Density: m
mmax

, so m
n(n−1) or m

1
2
n(n−1)

Hyves: 8 · 106 nodes, at most 64 · 1012 edges.
But network has “only” 1 · 109 edges, so density 0.0000156.

Sparse graph if m ≪ mmax, so low density

Real-world networks are typically sparse

Density is particularly relevant when comparing networks
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Bitcoin network

Bitcoin: digital currency

Peer-to-peer: no central authority

Blockchain containing all transactions

Bitcoin network: nodes are addresses (parts of wallets) and directed
links are transactions between addresses

Sparse: n = 13, 086, 528 nodes and m = 44, 032, 115 links
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Bitcoin transaction network

Source: quantabytes.com/articles/a-network-analyst-s-view-of-the-block-chain
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Silk Road Bitcoin seizure

Source: reddit.com/r/Bitcoin/comments/1prqpu/what_the_silk_road_bitcoin_seizure_transaction
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Degree

v

u w

y z

x

Figure: Undirected graph

v

u w

y z

x

Figure: Directed graph

Undirected graphs: degree deg(v) = 5

Directed graphs

Indegree indeg(v) = 4
Outdegree outdeg(v) = 3

Degree distribution: frequency of each degree value.
Typically lognormal or power law distribution with “fat tail”
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Degree distribution
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Degree distribution

Figure: Degree distribution of Citeseer citation network.

Source: http://konect.cc/networks/citeseer/
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Hyves degree distribution
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Bitcoin network distribution

Figure: Scale-free degree distributions

Kondor et al., Do the Rich Get Richer? An Empirical Analysis of the Bitcoin. . . , PLOS ONE 9(2): e86197, 2014
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Paths

v

u w

y z

x

Concept Example

Path p = (u, v , z , v ,w , x)

Path length |p| − 1 = 5

Simple path: no repeated vertices p′ = (u, v ,w , x)

Shortest path: path of minimal length sp = (u, v , x)

Distance: length of shortest path d(u, x) = |sp| − 1 = 2
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Components in undirected networks

What if d(a, c) = ∞? (so, no path
between nodes a and c)

Connected component: subset of
nodes (maximal in size) in which each
node can form a path to each other
node in the subset

Giant component: component
containing the largest number of nodes

Real-world networks typically have one
dominant giant component

Connected components
Image source: D. Easley and J. Kleinberg,
“Networks, Crowds, and Markets”, 2010
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Giant component
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Components in directed networks

Weakly connected component: subgraph in which there is a path
between any pair of nodes, ignoring link direction

Strongly connected component: subgraph in which there is a
directed path between any pair of nodes

Figure: Directed network with 3 strongly connected components

Source: https://commons.wikimedia.org/wiki/File:Scc.png
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Component size distribution
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Figure: Component size distribution of Hyves network, excluding the giant
component of ∼ 8 million nodes.
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Small world experiment

Stanley Milgram

Starts with 96 random people in
Omaha

Ask them to get a letter to a
stock-broker in Boston by passing it
through to a closer acquaintance.

How many steps did it take?

Letters arrived after on average 5.9
steps

Total of 18 chains completed

J. Travers and S. Milgram, ”An Experimental Study of the Small World Problem”, Sociometry 32(4): 425-443, 1969
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Yahoo small world experiment
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Core/periphery structure

Dense core containing many hubs

Periphery with many nodes with a small distance to the core

Barabasi, Scientific American, May 2003
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Distance

Average distance d = 1
n(n−1)

∑
v ,w∈V d(v ,w)

Distance distribution: how often each distance value occurs
(computed over all node pairs).

Dataset Nodes Links Average degree Average distance
AstroPhys 17,903 396K 21 4.15

Enron 33,696 362K 10 4.07
Web 855,802 8.64M 10 6.30

YouTube 1,134,890 5.98M 5.3 5.32
Skitter 1,696,415 22.2M 13 5.08

Wikipedia 2,213,236 23.5M 11 4.81
Orkut 3,072,441 234M 76 4.16

LiveJournal 5,189,809 97.4M 19 5.48
Hyves 8,057,981 871M 112 4.75

F.W. Takes and W.A. Kosters, Determining the Diameter of Small World Networks, In CIKM, pp. 1191-1196, 2011.
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Distance distribution
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Figure: Distance distribution of the Hyves network (sampled over node pairs)
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Erdős number

Scientific collaboration network

Edges between scientists who wrote a paper
together

Erdős number: the distance of a scientist
(node) to Erdős

https://mathscinet.ams.org/mathscinet/

collaborationDistance.html Figure: Paul Erdős
(1913-1996)
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Erdős number
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Movie actor network

Source: http://web.stanford.edu/class/cs224w
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Six degrees of Kevin Bacon

Actor collaboration network based on
co-starring actors

Variant of “Six degrees of Separation”

Edges between actors indicate they
played in a movie together

Try finding a path of length longer than
six at https://oracleofbacon.org

Figure: Kevin Bacon (1958)
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The Wiki Game
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Triangles

v

u

w

Triangle: for nodes u, v ,w ∈ V we have (u, v), (v ,w), (w , u) ∈ E

Sets of three nodes that might be a triangle:
(n
3

)
≈ n3/6

Probability of an edge in a a random graph is m/
(n
2

)
≈ 2m/n2

Probability of one triangle is (2m/n2)3 = 8m3/n6

Expected triangles: (8m3/n6)(n3/6) = 4
3(m/n)3

For n = 1000 and m = 8000, we would expect 683 triangles.
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Triangles

Network Nodes Edges Expected Real Difference
Facebook (WOSN) 63,731 817,035 2,809 3,500,542 1,246×
Epinions 75,879 508,837 402 162,448 404×
Amazon (TWEB) 403,394 3,387,388 789 398,6507 5,049×
Baidu 415,641 3,284,387 658 14,287,651 21,718×
Youtube links 1,138,499 4,942,297 109 3,049,419 27,957×
Flickr 2,302,925 33,140,017 3,973 837,605,842 210,806×
LiveJournal links 5,204,176 49,174,464 1,125 310,876,909 276,367×
Twitter (MPI) 52,579,682 1,963,263,821 69,410 55,428,217,664 798,565×

Table: Expected vs. real triangle counts in real-world networks.
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Node clustering coefficient

Node clustering coefficient: extent to which a node v forms
triangles with its neighbors

Measure of transitivity

Node clustering coefficient for a node v ∈ V :

C (v) =
2 · |{(u,w) ∈ E : (u, v) ∈ E ∧ (v ,w) ∈ E}|

deg(v) · (deg(v)− 1)

(where deg(v) > 1 is the degree of node v)

C (v) =
2 · edges between neighbors of v

maximum number of such edges
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Node clustering coefficient

Situation A: v has a clustering coefficient of 0

Situation B: v has a clustering coefficient of 14
20 = 7

10 = 0.7

Image: G.A. Pavlopoulos et al., ”Using graph theory to analyze biological networks”, in BioData Mining 4(1), 2011.
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Graph clustering coefficient

1 Average node clustering coefficient for a graph G :

C (G ) =
1

n
·
∑
v∈V

C (v)

2 Graph clustering coefficient for a graph G :

C ′(G ) =
3 · number of triangles

number of connected triplets of nodes

Small world networks: high clustering coefficients compared to a
random graph with the same number of nodes

Frank Takes — SNACS — Lecture 1 — Introduction and small world phenomenon 69 / 73



Graph clustering coefficient

1 Average node clustering coefficient for a graph G :

C (G ) =
1

n
·
∑
v∈V

C (v)

2 Graph clustering coefficient for a graph G :

C ′(G ) =
3 · number of triangles

number of connected triplets of nodes

Small world networks: high clustering coefficients compared to a
random graph with the same number of nodes

Frank Takes — SNACS — Lecture 1 — Introduction and small world phenomenon 69 / 73



Real-world networks

1 Sparse networks density

2 Fat-tailed power-law degree distribution degree

3 Giant component components

4 Low pairwise node-to-node distances distance

5 Many triangles clustering coefficient

Many examples: social networks, communication networks, citation
networks, collaboration networks (Erdős, Kevin Bacon), protein
interaction networks, information networks (Wikipedia), webgraphs,
financial networks (Bitcoin) . . .
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Other topics

Centrality, PageRank

Community detection

Network motifs

Graph representation and compression

Distance approximation

Graph evolution, link prediction

Spidering and sampling

Visualization algorithms

Virality and influence maximization

Epidemic spread

Privacy, anonymity and ethics

Anomalies in networks

Resilience and fault tolerance
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Upcoming lab session

From 9:00 to 10:45 in Snellius rooms 302/304 etc.

Instructions on course website

Hands-on introduction to Gephi

Get to know the university’s (remote) Linux environment (again)

Start working on Assignment 1
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Homework for next week

Mandatory (de)registration via uSis/Brightspace; see Lecture 0

Watch the “The Emergence of Network Science” movie at
https://www.cornell.edu/video/emergence-of-network-science

or https://youtu.be/cf-6qdPerlI?t=1s

Ensure you have access to the ULCN Linux environment in, the
Snellius computer rooms and/or remotely via sshgw.leidenuniv.nl

Check if you have read access to the files in this folder:
/vol/share/groups/liacs/scratch/SNACS/

Solve any IT problems; 8888 or helpdesk@issc.leidenuniv.nl or
https://liacs.leidenuniv.nl/ict (redirect to ISSC portal)
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