Social Network Analysis for Computer Scientists
Fall 2023 — Assignment 1

https://liacs.leidenuniv.nl/~takesfw/SNACS

Deadline: October 2, 2023

This document contains two exercises that each consist of various numbered questions that to-
gether form Assignment 1 of the Social Network Analysis for Computer Scientists course taught
at Leiden University.

For each question, the number of points awarded for a 100% correct answer is listed between
parentheses. In total, you can obtain 100 points and 10 bonus points. Your assignment grade is
computed by dividing your number of points by 10. Please do not be late with handing in your
work. You have to hand in the solutions to these exercises individually. Discussing the harder
questions with fellow students is allowed, but writing down identical solutions is not.

Clearly and concisely describe how you obtained each answer. Write down any
nontrivial assumptions that you make. For the exercises that require programming, you can use
any programming language, scripting language or toolkit; a trivial option is to use GEPHI and
NETWORKX that were covered in the course. In any case, always clearly describe which tools and
languages you used and how you obtained your answer using these tools. Recall that omission of
a reference to source material is considered plagiarism. When asked for an algorithm, use simple
and consistent pseudo-code. Include relevant source code, for example, in an Appendix that you
reference in your answers. Please use the 1listings package for including source code. If you used
an interative notebook, use nbconvert to convert the notebook to regular source code.

Submission. Hand in your solutions via Brightspace, in one .pdf file, typeset using KETEX.
Remember to specify your name and student ID (ULCN number) on top of your assignment.
Do not copy the full text of each question into your document (if you do, you may be
asked to resubmit). Just stating the question number and then your answer, is sufficient. If you
really need to submit multiple files, please attach them all in one submission. If you want to make
a new submission, replacing your previous submission, make sure to again include all the files in
that submission. Thank you for taking this into consideration.

Questions or remarks? Ask your questions during one of the weekly lectures or lab sessions,
or send an e-mail. Good luck!

Exercise 1: Neighborhoods (40p)

A directed network G = (V, E) consists of a set of nodes V and a set of directed links E. For
the number of nodes |V| we use n, and the number of links |F| will be denoted by m. The
neighborhood N (v) of a node v € V is defined as the set of nodes to which v links:

Nw)={weV:(v,w) € E}
Similarly, the reverse neighborhood N’(v) can be defined as the set of nodes that link to node v:

N'()={ueV: (uv) € E}
The notion of a neighborhood can be extended by defining it for a set of nodes W as:

NW)={weV:veWA(v,w) € E}
For convenience, for a node v € V we say that N(v) = N({v}). Next, we say that the k-

neighborhood Ny (W) is defined as all nodes that are between 0 and k steps away from nodes in
W. For the case k = 0 we have No(W) = W. Then for k > 0 we have:

Ni(W) = N(Ni—1(W)) U N1 (W)

Essentially, the k-neighborhood allows us to apply the neighborhood function to a set of nodes k
times. Using these notions, it is possible to define other measures, procedures and algorithms.

(2p) Question 1.1 In a directed network, the combined degree of a node is the number of
neighbors connected to that node through either an incoming or an outgoing link. Give a
formal definition of the combined degree using the notion of a (reversed) neighborhood.

(3p) Question 1.2 Give an equation that makes use of the neighborhood function and holds
true only if the graph is complete.

(3p) Question 1.3 Logically combine the notions of a k-neighborhood and reversed neighbor-
hood to that of a reversed k-neighborhood, and briefly explain what it measures.

(3p) Question 1.4 Define the reciprocity of a directed network using the notion of a (reversed)
neighborhood.

(4p) Question 1.5 Give an equation (or algorithm) that holds (or returns) true if two given
nodes u,v € V are in the same strongly connected component of a given network.

(6p) Question 1.6 Give an algorithm that uses the notion of a (reversed) neighborhood and
counts the number of triangles (cycles of length 3, regardless of link direction) in a given
network, using the notion of a (k-)neighborhood. What is your algorithm’s time complexity?

Assume from now on that the network has a symmetric edge set, modeling that it is undi-
rected. Also assume there is one connected component.

(7p) Question 1.7 The friendship paradoz says that most people have fewer friends than their
friends have, on average. Give an algorithm to compute the number of nodes for which this
paradox does not hold. What is the time complexity of your algorithm?

(6p) Question 1.8 Assume that as part of some state space exploration algorithm, for each
node v we indicate its state as (n/,m’), i.e., by its number of nodes n’ and the number
of edges m’ in the ego network of v. Use the notion of a (k-)neighborhood to determine
precisely which nodes will see their state change given that we
a) delete an edge {v,w} € E,

b) add an edge {v,w} ¢ E.

(6p) Question 1.9 Give a formal definition of (or algorithm to compute) the network radius
using the notion of a (k-)neighborhood. Hint: the radius is the minimal eccentricity value
over all nodes.

Exercise 2: Mining An Online Social Network (60p + 10p bonus)

This is a practical exercise. Two social network datasets can be found at
https://liacs.leidenuniv.nl/~takesfw/SNACS/medium.tsv and
https://liacs.leidenuniv.nl/~takesfw/SNACS/large.tsv.
Each file contains a list of social network friendships in edge list format, so of the form
userA[tabluserB[newline]
A line thus represents one directed link from a person identified by userA to a person identified
by userB. Assume that these identifiers are integers that fit a 4-byte signed int in C++.
Questions about visualization can likely best be done using GEPHI, whereas computing mea-
sures and distributions requires the use of programming and packages such as NETWORKX.
Answer each of the following six questions for medium.tsv and large.tsv (hence, up to
Question 2.7, points are also given 2x). Remember to write down what assumptions and choices
you made in obtaining your answer. It should be clear how you obtained your answer, for example
through pointers to relevant Appendix source code. Display your referenced diagrams with neat,
properly scaled, readable, labelled axes and captions; the latter also holds for tables. Plots can
for example be generated using GNUPLOT or MATPLOTLIB.

(2x2p) Question 2.1 How many directed links does this network have?

(2%x2p) Question 2.2 How many users (nodes) does this social network have? Hint: a node
counts as a node if it is a source or a target of a link.

(2x4p) Question 2.3 Give the indegree and outdegree distributions of this network using a
proper diagram.

(2x3p) Question 2.4 How many weakly connected components and strongly connected com-
ponents are there? How many nodes and links do the largest strongly and largest weakly
connected component have? (6 answers per network)

(2x3p) Question 2.5 Give the (exact or approximated) average clustering coefficient of this
network. Explain how you account for directionality.

(2x6p) Question 2.6 Give the (exact or approximated) distance distribution of the largest
weakly connected component of this network as a diagram.

(2x2p) Question 2.7 What is the (exact or approximated) average distance between any two
node pairs in the largest weakly connected component of this network?

(16p) Question 2.8 Visualize the social network in medium. tsv, for example using GEPHI. Give
the size and the color of a node a sensible meaning based on node centrality, and elaborate
on your choices. State which visualization algorithm you used and how you have chosen its
parameters. Include your visualization as full-page vector graphic figure in your report.

(10p, bonus) Question 2.8 This dataset contains over 5 million nodes and over 800 million
edges: /vol/share/groups/liacs/scratch/SNACS/huge.tsv
/data/SNACS/huge.tsv
The files are identical, where the first is in the university-provided (remote) Linux envi-
ronment and the second in the LIACS data science lab environment (see https://liacs.
leidenuniv.nl/ict or https://rel.liacs.nl, respectively, for access instructions).
Answer Questions 2.1 through 2.7 above for this dataset. You may need to make more use of
approximation and/or a more advanced software package and environment (e.g., you should
investigate GRAPH-TOOL, IGRAPH or SNAP), or write efficient code yourself.

