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Chapter 1
Introduction

Nowadays, modern embedded applications are becoming complex. Such complex embedded
applications lead to a single processor embedded system architecture can no longer meet the
performance requirements of these applications. Therefore, in order to meet the performance
requirements of the complex applications, the emerging embedded system platforms are in-
creasingly becoming multiprocessor architectures. Fortunately, the Moore’s law predictsexpo-
nential growthover time of the number of transistors that can be integrated in an IC. It predicts
that chips in 2010 will count over 4 billion transistors, operating in the multi-GHz range [1].
Thus, the modern embedded System-on-Chip platforms have enough resources to support to
map the modern complex applications onto multiprocessor architectures.

Because of the fact which has been discussed above, several challenges emerge. The first
challenge is how to specify an application. The suitable specification format of applications
which makes the mapping of these applications onto multiprocessor architectures easy is paral-
lel model of computation. But at present, applications that need to execute on embedded system
architectures are typically specified using a sequential model of computation, such as sequen-
tial programs written in C or Matlab. What is needed is a methodology or tool that can exploit
inherent parallelism available in the applications and convert the sequential specifications into
parallel specifications.

The second challenge is how to design multiprocessor embedded systems. There are several
issues in this challenge. The first issue is most of the current design methodologies and tools
are based on Register Transfer Level (RTL) and most of the designers create such level by
hand. Because complexity of multiprocessor embedded system architectures, the RTL level is
too low to design such system and these methodologies for creating multiprocessor embedded
system architectures are error-prone and time consuming. Therefore, a methodology and tech-
niques which can systematically and automatically design multiprocessor embedded systems
are needed. The second issue is the modern application always include several processes. If
we map the processes of an application onto the homogeneous architecture which means we
map the processes of an application onto the same type of components, maybe some of the
processes can not meet the performance requirements. We need to map the processes onto the
suitable components which are the different types. Therefore, in order to meet the performance
requirements of the processes of an application, an embedded system should be heterogeneous
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architecture. The third issue is some of the processes of an application maybe very complex.
If we map a complex process onto a single component, the process may not meet the required
performance. In such case, we need to map the complex process onto several components in
order to meet the required performance. These several components form a sub-network on an
embedded system platform. Therefore we call the system hierarchical architecture. Therefore,
an embedded system also should be hierarchical architecture.

The third challenge is the applications which are mapped onto embedded system platforms
always need to communicate with the outside world. The challenge is how to make an efficient
interface of an embedded system with the outside world.

This thesis focuses on the second, third challenges discussed above. The efficient solutions to
these two challenges are presented. We propose a methodology implemented in a tool called
ESPAM for systematic and automated multiprocessor embedded system design. Also, we prove
that it is possible to implement an embedded system as heterogeneous and hierarchical architec-
ture systematically and automatically using theESPAM technology. We implement an efficient
interface of an embedded system with the outside world.

In Section 1.1, detailed problem description is given. In Section 1.2, the methodology and
techniques which are used to solve the problems described in Section 1.1 are presented. In
Section 1.3, related work is discussed. The contributions of this thesis are stated in Section 1.4.
Finally, in Section 1.5, the organization of this thesis are described.

1.1 Problem Description

Due to the complexity of modern applications, such as high throughput multimedia, imaging
and digital signal processing which usually include complicated algorithms, a single proces-
sor embedded system architecture on an embedded system platform is inadequate. In order to
meet the required performance for such complex applications, multiprocessor embedded sys-
tem architectures have to be implemented on embedded system platforms. Therefore, exploit-
ing parallelism available in such applications is important for current embedded system design.
However, most of the applications are usually specified using the sequential model of computa-
tion, such as sequential programs written in C or Matlab. The sequential model of computation
makes an application be easy to reason about a program, as only a single memory and a sin-
gle thread of control need to be considered. But such sequential model of computation can
not exploit the internal parallelism which is available in an application. This means mapping
such application onto a multiprocessor embedded system architecture is difficult because the
way the application is specified does not match the way the multiprocessor embedded system
architecture operates. Thus, the suitable specification format of the applications which makes
the mapping of the applications onto the multiprocessor embedded system architectures easy is
the parallel model of computation.

Currently, the task of mapping the complex applications which are specified in sequential model
of computation onto the multiprocessor embedded system platforms is usually done by hand.
This means this mapping task depends much on the expertise of the designers and it is error-
prone and time consuming. Therefore, a methodology and tool that can exploit inherent par-
allelism available in the complex applications and convert the sequential specifications into
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parallel specifications is needed. For example, theCOMPAAN tool [2] can automatically trans-
forms an application which is specified in sequential model of computation into the abstract
concurrent model which consists of several concurrent tasks making the task-level parallelism
available in an application explicit.

Now another problem emerges which is how to efficiently and effectively map the concurrent
model of the applications onto the multiprocessor embedded system platforms in a systematic
and automated way. In the realm of modern embedded system, most of the design and imple-
mentation methodology are still based on Register Transfer Level (RTL) platform/application
descriptions which are created manually, such as very high speed integrated circuit hardware
description language (VHDL) and C language. Such methodologies were effective in the past.
Due to the complexity of the modern applications and platforms which are used in many of to-
day’s new system designs, the traditional design methodology is inadequate now. Creating such
RTL descriptions of the complex multiprocessor platforms is error-prone and time-consuming.
Moreover, the complexity of high-end, computationally intensive applications in the realm of
high throughput multimedia, imaging, and digital signal processing enlarges the difficulties
associated with the traditional hand-coded RTL design. Furthermore, using traditional logic
simulation to verify a large design represented in RTL is computationally expensive and ex-
tremely slow. From what have been discussed above, we can conclude that using the RTL
system specification as a starting point of multiprocessor embedded system design methodol-
ogy is the bottleneck. Although the RTL system specification has the advantage that the state
of the art synthesis tools can use it as an input to automatically implement a system, we believe
that a system should be specified at a higher level of abstraction called System-level. However,
the embedded system design methodology which moves up from the detailed RTL specification
to a more abstract System-level specification opens a gap which we callImplementation Gap.
Indeed, on the one hand the RTL system specification is very detailed and close to an imple-
mentation, thereby allowing an automated system synthesis path from RTL system specification
to implementation. This is obvious if we consider the current commercial synthesis tools where
the RTL-to-netlist synthesis is very well developed and efficient. On the other hand, the com-
plexity of today’s embedded systems forces us to move to higher levels of abstraction when
designing a embedded system, but currently we do not have mature methodologies, techniques,
and tools to go back from the high-level specification to an implementation. Therefore, the
Implementation Gaphas to be closed by devising a systematic and automated way to convert
effectively and efficiently a System-level specification to a RTL-level specification.

From what have been discussed above, it is clear that in order to map a complex application
onto a multiprocessor embedded system platform, the application has to be transformed into
an abstract concurrent model which consists of several concurrent processes. At present, mul-
tiprocessor embedded systems as homogeneous architectures can no longer meet the appli-
cations’ requirements. An embedded system as homogeneous architecture means all of the
concurrent processes of an application are executed by the same type of components on an
embedded system platform. For example, all the processes of an application are executed by
the same type of processor cores. The problem is that different types of processes are suit-
able for being executed by different types of components on an embedded system platform.
For example, it is better to use the types of processor cores which are good at floating point
computation to execute the processes which contain the floating point computation. And the
other example is that it is better to use the dedicated hardware IP cores to execute the most
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complicated processes of the applications in order to reach the good performance of execution
time. Therefore, an embedded system as heterogeneous architecture has to be implemented in
order to meet the requirement performances of various applications. The problem is how to im-
plement an embedded system as heterogeneous architecture systematically and automatically.
What’s more, an application always consists of several processes and some of the processes of
an application maybe very complex. If we map a complex process onto a single component,
the process may not meet the required performance. In such case, we need to map the com-
plex process onto several components in order to meet the required performance. These several
components form a sub-network on an embedded system platform. Therefore we call the sys-
tem hierarchical architecture. Thus, such an embedded system as hierarchical architecture also
has to be implemented. The problem is how to implement an embedded system as hierarchical
architecture systematically and automatically.

The applications of modern embedded systems in the realm of high throughput multimedia,
imaging, and digital signal processing, always need to exchange the data with the outside
world. Thus modern embedded systems need an interface of an embedded system with the
outside world. If the interface of an embedded system with the outside world is not efficient,
that will intensely restrict embedded systems to reach the high performances. Due to this rea-
son, an efficient interface of an embedded system with the outside world must be implemented
to let the applications which are mapped onto the embedded system platforms can efficiently
communicate with the outside world. The problem is how to construct an efficient interface of
an embedded system with the outside world.

1.2 Solution Approach

Based on the problems which have been described above, the general description of the solution
approaches for these problems is given in this section.

1.2.1 Closing the Implementation Gap

First in order to successfully close theImplementation Gapbetween theSystem-levelspecifica-
tion of multiprocessor systems and theRTL-levelspecification of multiprocessor systems, we
have developed a tool calledESPAM (Embedded System-level Platform synthesis and Applica-
tion Mapping). This tool can systematically and automatically convert theSystem-levelspecifi-
cation to theRTL-levelspecification.ESPAM allows the designers to specify a multiprocessor
embedded system at a high level of abstraction (System-level), then it refines such specifica-
tion and systematically and automatically convert this specification to aRTL-levelspecification.
Figure 1.1 shows our system design flow which includes theESPAM tool.

In Figure 1.1, we see that there are three levels of specifications in our system design flow. They
areSystem-levelspecification,RTL-levelspecification andGate-levelspecification.

TheSystem-levelspecification consists of three parts which arePlatform Specification, Appli-
cation SpecificationandMapping Specification. Platform Specificationspecifies the topology
of a platform using our system level platform model which includes generic parameterized sys-
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Figure 1.1: System design flow.

tem components.Application Specificationspecifies an application as a Kahn Process Network
(KPN) which is a network of concurrent processes communicating via FIFO channels. Such
KPN specification reveals the task-level parallelism available in an application. In order to mi-
grate from a sequential specification of an application to an equivalent KPN specification, we
use theCOMPAAN compiler [2] [3] [4] which automates the transformation of Matlab code
into KPN specification. The applications thatCOMPAAN can handle as the input have to be
specified as parameterized static affine nested loop programs, which is a subset of the Matlab
language.Mapping Specificationspecifies the relation between all processes and FIFO channels
in Application Specificationand all components inPlatform Specification.

In Figure 1.1, theSystem-levelspecification is the input to theESPAM tool. In our case, be-
sides one-to-one mapping [5],ESPAM also supports many-to-one mapping. That means the
number of processor components inPlatform Specificationcan be less or equal to the number
of processes inApplication Specification. In other words, one or more than one processes in
Application Specificationcan be mapped onto one processor inPlatform Specification. For the
channels inApplication Specificationand the FIFO components inPlatform Specification, we
still consider one-to-one mapping. This means that one channel inApplication Specificationis



6 Introduction

mapped onto one FIFO component inPlatform Specificationand one FIFO component has only
one channel mapped onto it. Therefore, in our case we need all of three specification –Platform
Specification, Application SpecificationandMapping Specificationas the input ofESPAM tool.

Our ESPAM tool systematically and automatically converts aSystem-levelspecification to a
RTL-levelspecification thereby closing theImplementation Gapdescribed in Section 1.1. First,
ESPAM constructs a platform instance according toPlatform Specificationand runs a consis-
tency check on this instance. This platform instance is an abstract model and at this step no
information about the target physical platform is taken into account. Such platform instance
consists of generic parameterized system components. Second,ESPAM refines the abstract
platform model to an elaborate parameterized RTL model which is ready for an implementation
on a target physical platform. Finally,ESPAM generates program code for each processor on the
multiprocessor embedded system platform according toApplication SpecificationandMapping
Specification. OurESPAM tool will be described in detail in Chapter 2.

The output ofESPAM is a RTL-levelspecification of an embedded system which consists of
four parts –Platform topology description, Hardware description of IP cores, Program code
for processorsandAuxiliary information. Platform topology descriptiongives in great detail
description of a multiprocessor platform.Hardware description of IP coresincludes all pre-
defined IP cores and reconfigurable IP cores which are used inPlatform topology description.
Program code for processorscontains the program source code for each processor component
on a multiprocessor platform.ESPAM can generate the program source code in C/C++ language
for each processor component according to the behavior of the corresponding process inAppli-
cation Specification. Auxiliary information includes supply files which give tight control of
the overall specifications, such as defining precise timing requirements and prioritizing signal
constrains.

A commercial synthesizer can be used to convert theRTL-levelspecification of an embedded
system to theGate-levelspecification of an embedded system. In the bottom part of Figure 1.1,
we see that such commercial synthesizer can be used to generate the target platform gate-level
netlist which is actually the system implementation.

1.2.2 Heterogeneous and Hierarchical Architecture Implementation

In order to meet the requirement performances of various applications an embedded system as
heterogeneous and hierarchical architecture has to be implemented systematically and automat-
ically. In this thesis, we give the procedure which explains how to implement systematically
and automatically an embedded system as heterogeneous and hierarchical architecture which
contains processor components and a dedicated hardware IP core. In our case, the processor
components use FIFOs to communicate with each other. In order to make the dedicated hard-
ware IP core can communicate with the processor components, the dedicated hardware IP core
should has the FIFO input and output interfaces. The dedicated hardware IP core can be de-
signed by hand. But this method is error-prone and time consuming. In our case, we use the
LAURA tool [6] which has been developed at the Leiden Embedded Research Center (LERC) to
generate the dedicated hardware IP core which contains the FIFO input and output interfaces.
In this heterogeneous and hierarchical architecture, we use the dedicated hardware IP core to
execute the most complicated process of an application repetitively and use the processor com-
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ponents to execute the other processes of an application in order to reach the good performance
of execution time. In this way, we can prove that it is possible to implement systematically
and automatically an embedded system as heterogenous and hierarchical architecture using the
ESPAM technology.

1.2.3 Interface of an Embedded System with the Outside World Con-
struction

As we have presented in Section 1.1, we need to construct an efficient interface of an embedded
system which can make the applications which are mapped onto the embedded system platforms
can communicate with the outside world efficiently. In our case, we have constructed an efficient
interface to make embedded systems can communicate with the outside world by using several
memories. Our interface uses the memories as the buffers to exchange data between embedded
systems and the outside world. First embedded systems or the outside world writes data to the
memories, then the outside world or embedded systems read data from the memories. Because
embedded systems and the outside world may have different data transfer speeds, by using the
memories as the buffers to exchange data embedded systems and the outside world do not need
to wait for each other. In this way, we can speed up data transfer between embedded systems
and the outside world. As we have discussed before, the embedded systems are becoming
multiprocessor architecture. If we just use one memory as buffer to exchange data between an
embedded system and the outside world, the processors of an embedded system cannot access
to the memory concurrently. This means that every time just one processor can exchange data
with the outside world. This is not efficient. Thus we use several memories as the buffers to
exchange data between embedded systems and the outside world. In this way, each processor
of an embedded system can access to one of the memories. This means the processors of
an embedded system can exchange data with the outside world concurrently. By using several
memories, we also can speed up data transfer between embedded systems and the outside world.

1.3 Related Work

Mapping application to architecture systematically and automatically has been widely studied
in the research community. The closest work to our work is theLAURA tool [6] which has
been developed at the Leiden Embedded Research Center (LERC). TheLAURA tool accepts
the Kahn Process Network (KPN) specification and transforms the KPN specification together
with predefined non-programmable IP cores into design implementations described as synthe-
sizable VHDL. The KPN specification is automatically generated byCOMPAAN from the Mat-
lab code. The IP cores are needed preemptively as they implement the functionality of the
functions used in the initial Matlab code. However, ourESPAM tool map the KPN Specification
together with Platform Specification and Mapping Specification onto multiprocessor platforms.
The functions used in the initial Matlab code can be mapped to programmable processor cores
and run on top of them as software, which gives much more flexibility in the system imple-
mentation. An automatic logic synthesis method targeted for high-performance asynchronous
FPGA (AFPGA) architectures has been described in [7]. This method transforms sequential
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programs as well as high-level descriptions of asynchronous circuits into fine-grain asynchro-
nous process netlists suitable for an AFPGA. The resulting circuits are inherently pipelined,
and can be physically mapped onto an AFPGA with standard partitioning and place-and-route
algorithms. The input to the synthesis is a sequential program written in CHP notation which
is a hardware description language. Their automated synthesis of asynchronous computations
is limited onto an pipelined AFPGA architecture. In contrast, in our design methodology, more
abstract programming languages are supported, e.g., C and Matlab. Besides the pipelined ar-
chitecture, more flexible parallel system architectures can be mapped to the target platform. In
Philips Research Laboratory, a top-down design methodology with various abstraction levels
called C-HEAP [8] is introduced which starts with a high-level executable specification and
converges towards a silicon implementation. A major task in the design process is to ensure
that all components (hardware and software) communicate with each other correctly. In their
design methodology, seven abstraction levels that are traversed throughout the design process
have been identified. They propose a heterogenous multi-processor architecture template based
on distributed shared memory and present an efficient and transparent protocol for communi-
cation and (re)configuration. Our design methodology is similar to this. There are four levels
in our design flow, e.g., application level, system level, RTL level and Gate level. We traverse
them from application level to system level usingCOMPAAN tool, from system level to RTL
level using ourESPAM tool then to Gate level using a commercial synthesis tool. Another ma-
jor difference is that our platform model uses distributed memory instead of a shared memory.
Another similar work which is focus on synthesis of application specific multiprocessor System-
on-Chip architectures for process networks of streaming applications has been presented in [9].
In their methodology, they map the channels of the KPN model onto shared memories. There-
fore, possible data communication conflicts need to be estimated and taken into account in the
mapping process. On the contrary, in our methodology, the communication is distributed over
hardware FIFO buffers. There is no notion of a shared memory that has to be accessed by
multiple processors. Therefore, resource contention does not occur.

Many research works have been done for architecture development for embedded system in or-
der to meet the required performance. A microcode-based microarchitecture has been described
in [10]. They propose a microarchitecture based on reconfigurable hardware emulation to allow
high-speed reconfiguration and execution. They implement a microarchitecture on the Virtex
II Pro with the embedded PowerPC 405 serving as the core processor. On the contrary, in our
case we implement systematically and automatically the embedded system as heterogeneous
and hierarchical architecture which contains different types of components in the embedded
system, such as processors and dedicated hardware IP cores. A next generation architecture
for heterogeneous embedded systems has been presented in [11]. In their methodology, the
Software Communications Architecture (SCA), a mandatory specification for Software Radio
implementations by the Joint Tactical Radio System (JTRS), defines a Common Object Request
Broker Architecture (CORBA) based component model for building portable applications in a
heterogeneous environment. They use the SCA revisions to address the key scalable embedded
processing issue – interchangeability of software and heterogeneous hardware components. In
our case, the heterogeneous and hierarchical architecture contains the programmable proces-
sors, which are used to execute the software programs, and dedicated hardware IP cores. This
heterogeneous and hierarchical architecture is able to meet the required performance of vari-
ous applications. A heterogeneous evolutional architecture has been described in [12]. In they
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methodology, heterogeneous architecture means the architecture involves some combination of
several single styles. They believe that the heterogenous architecture they need is that one group
of components can be aggregated to form a subsystem in a particular architectural style, while
another group of components can form a second subsystem in a completely different architec-
tural style. Our heterogeneous and hierarchical architecture is similar to this. The difference
is that our heterogeneous and hierarchical architecture means the components which form a
subsystem also can be completely different types.

1.4 Research Contributions

The main research contributions of this thesis are:

• The gap between theSystem-levelspecification of multiprocessor systems and theRTL-
level specification of multiprocessor systems has been successfully closed. In this the-
sis, we present our design methods and techniques for mapping applications onto multi-
processor platforms. We also introduce ourESPAM tool which allows the system design-
ers to specify a multiprocessor system at a high level of abstraction –System-levelspec-
ification in a short amount of time and it can systematically and automatically convert a
System-levelspecification to aRTL-levelspecification for a multiprocessor platform.

• We have proved that it is possible to implement systematically and automatically an em-
bedded system as heterogeneous and hierarchical multiprocessor architecture using the
ESPAM technology. We give the procedure which explains how to implement system-
atically and automatically an embedded system as heterogeneous and hierarchical ar-
chitecture which contains processor components and dedicated hardware IP core. With
the heterogeneous architecture, different processes of an application can be executed by
different types of components on an embedded system platform. With the hierarchical
architecture, the complex process of an application can be mapped onto several compo-
nents which compose a sub-network on an embedded system platform. By systematically
and automatically implementing an embedded system as heterogeneous and hierarchical
architecture, it is easy to meet the requirement performances of various applications.

• We have developed an efficient interface of an embedded system with the outside world
using several memories. With this interface, the applications which are mapped onto
the embedded system platforms can efficiently exchange data with the outside world via
several memories.

1.5 Thesis Organization

The organization of the following part of this thesis is described as follows. Chapter 2 intro-
duces our system design methodology and gives a detailed description ofESPAM tool we have
developed. In this chapter, first the application model is introduced. Second, the platform model
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and platform synthesis is presented. Third, the mapping techniques are described. Fourth, pro-
gramming multiprocessor platforms is explained. Finally, project generation for Xilinx Platform
Studio (XPS) [13] is introduced.

Chapter 3 proves that it is possible to implement an embedded system as heterogeneous and
hierarchical architecture systematically and automatically. First, we give a brief introduction to
what we mean as heterogeneous and hierarchical architecture. Second, we give the procedure
which explains how to implement an embedded system as heterogeneous and hierarchical archi-
tecture thereby proving that it is possible to implement an embedded system as heterogeneous
and hierarchical architecture systematically and automatically.

Chapter 4 introduces the implementation of an efficient interface of an embedded system with
the outside world. First, we describe the target FPGA platform. Second, the components includ-
ing in the interface are introduced. Third, the steps about how to make theESPAM automatically
generate our interface when it maps applications onto multiprocessor platforms are presented.

In Chapter 5 two case studies are presented. The first one is mapping the M-JPEG encoder
application onto a multiprocessor embedded system platform with homogeneous architecture.
The second one is mapping the M-JPEG encoder application onto a multiprocessor embedded
system platform with heterogenous and hierarchical architecture. The analysis of the results
obtained from the experiments is also given in these case studies.

In Chapter 6 a tutorial on how to map the M-JPEG encoder application onto an embedded
system platform with heterogenous and hierarchical architecture using theCOMPAAN/ESPAM

tools and the commercial synthesis tool – Xilinx Platform Studio (XPS) is presented.

In the last chapter, the summary and conclusions are given. The suggestions for the future work
are also presented in this chapter.



Chapter 2
Embedded System-level Platform Synthesis
and Application Mapping

In this chapter, a detailed description of our system design methodology which is implemented
in our ESPAM tool – Embedded System-level Platform Synthesis and Application Mapping is
presented. The structure of our system design flow has already been shown in Figure 1.1. In
Figure 1.1, we can see that the input of ourESPAM tool is theSystem-levelspecification:Ap-
plication Specification, Platform SpecificationandMapping Specification. The output of our
ESPAM tool is theRTL-levelspecification:Platform topology description, Hardware descrip-
tion of IP cores, Program code for processorsandAuxiliary information. By describing our
system design methodology we explain how theESPAM tool bridges theImplementation Gap
between theSystem-levelspecification of an embedded system and theRTL-levelspecification
of this embedded system.

In Section 2.1, we introduce the Kahn Process Networks (KPN) model of computation which
is used for theApplication Specification. We also explain theCOMPAAN tool that converts a
sequential specification of an application to an equivalent KPN specification. In Section 2.2,
the platform model is described first and an example of aPlatform Specificationis given. Then
the synthesis of a platform is explained in detail. In Section 2.3, the mapping procedure which
is used to bind the application and platform models together is described. Also, an example is
given to explain clearly this procedure. Section 2.4 explains how to generate program code for
each processor on a platform. Section 2.5 describes the mechanism of project generation for
Xilinx Platform Studio (XPS).

2.1 Application Model

As discussed in Chapter 1, the suitable specification format for applications which makes the
mapping of the applications onto multiprocessor embedded system architectures easy is the par-
allel model of computation. Therefore, exploiting parallelism available in such applications is
important in embedded system design. In ourESPAM design methodology, we use the Kahn
Process Network [14] (KPN) model of computation forApplication Specification. We use the
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COMPAAN tool [2] to automatically transform an application which is specified in sequential
model of computation into KPN model of computation making the task-level parallelism avail-
able in an application explicit.

2.1.1 Kahn Process Networks

We believe that the Kahn Process Network model is an appropriate parallel model of computa-
tion for Application Specification. The reason is that in order to use parallel resources available
in a multiprocessor platform, we need to program them in a way that we exploit distributed con-
trol and distributed memory. Kahn Process Networks inherently express applications in terms
of distributed control and memory.

The KPN model of computation [14] assumes a network of concurrent autonomous processes
that communicate in a point-to-point fashion over unbounded FIFO channels, using ablocking-
readsynchronization primitive. Each process in the network is specified as a sequential program
that executes concurrently with other processes. A simple example of the KPN model is shown
in Figure 2.1. There are three processes in this KPN model. They are processes P1, P2, and P3.
These three processes are connected by the FIFO channels CH1, CH2, and CH3. In Figure 2.1
we see that process P1 first reads data from its input port, executes some computations and then
writes the resulting data to processes P2 and P3 via CH1 and CH2 respectively. Process P2 first
reads data from CH1, executes some computations and then writes the resulting data to process
P3 via CH3. Process P3 first reads data from CH2 and CH3, executes some computations and
then writes the resulting data to its output port. 
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Figure 2.1: A simple KPN model.

The KPN has the following favorable characteristics [15]:

• The KPN model is deterministic, which means that irrespective of the schedule chosen to
evaluate the network, always the same input/output relation exists. This gives us a lot of
scheduling freedom that we can exploit when mapping processes to hardware or software.
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• The inter-process synchronization is done by a blocking read. This is a very simple syn-
chronization protocol that can be realized easily and efficiently in hardware and software.

• Processes run autonomously and synchronize via the blocking read. When mapping
processes on hardware like an FPGA, you get autonomous islands on the FPGA that
are only synchronized via blocking read.

• As control is completely distributed to the individual processes, there is no global sched-
uler present. As a consequence, partitioning a KPN over a number of reconfigurable
components such as microprocessors is a simple task.

• As the exchange of data has been distributed over the FIFOs, there is no notion of a global
memory that has to be accessed by multiple processes. Therefore, resource contention
does not occur.

Due to the characteristics of the KPN described above, we believe that the KPN parallel process-
ing model matches our system design methodology very well and the mapping of KPN specifi-
cations onto our multiprocessor platforms can be done in a systematic and automated way using
our ESPAM tool.

2.1.2 TheCOMPAAN tool

Nowadays, most of the applications are written using a sequential model of computation. The
sequential model of computation makes it easy to reason about an application, as only a single
memory and a single thread of control need to be considered. But such sequential model of
computation can not exploit the inherent parallelism available in an application. In order to
automatically transform the application which is specified in sequential model of computation
into KPN model of computation making the task-level parallelism available in an application
explicit, we use theCOMPAAN tool chain [2] [3] [4].

COMPAAN fully automates the transformation of Matlab code into Kahn Process Network
(KPN). The applications,COMPAAN can handle, have to be specified as parameterized sta-
tic affine nested loop programs, which is a subset of the Matlab language. TheCOMPAAN tool
consists of three tools. The first tool transforms the initial Matlab code into single assignment
code (SAC), which resembles the dependence graph (DG) of the initial nested loop program.
The second tool converts the SAC into a Polyhedral Reduced Dependence Graph (PRDG) data
structure, which is a compact mathematical representation of the DG in terms of polyhedra.
The third tool converts the PRDG into a process network by associating a process with each
node of the PRDG. The parallel processes communicate with each other according to the data-
dependency given in the DG.

2.2 Platform Model and Synthesis

Here we introduce the platform model and synthesis in our system design methodology. In our
ESPAM tool, the platform model is an abstract model of a multiprocessor platform onto which
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we map a KPN specification. Such abstract model is constructed by using a set of generic
parameterized components. In theESPAM tool there are four groups of generic parameterized
components which are listed below. These components are generic parameterized modules that
can specify a large number of concrete components.

• Processing Components: Currently, our system level platform model supports only one
type of processing component, namely a programmable processor. It has several parame-
ters such astype, number of I/O ports, speed, etc.

• Memory Components: Two types of memory components are defined and supported. One
is used for specifying the processors’ local program and data memories and the other is
so called ”Communication Memory”. It is used to specify data communication storage
(buffer) between processors. Important memory component parameters aretype, size,
number of I/O ports.

• Communication Components: They are a point-to-point network, a crossbar switch, and a
shared bus. These components specify the network topology of a multiprocessor platform.

• Auxiliary Components: This group consists of two components, namely a controller and
a link. The controller component is used to specify an interface between processing,
memory, and communication components (if necessary). The link component is used to
connect any two components in our system level platform model.

Using our platform model, the embedded system designer can easily construct many alterna-
tive multiprocessor platforms by instantiating generic parameterized components from the plat-
form model and interconnecting these components. Each component in the platform model has
several parameters which need to be set when such component has to be instantiated. Each
parameter of generic component in the platform model has a range of values and the range is
determined by resource limitations of the physical platform technology onto which our multi-
processor platforms are implemented. For example, if we use the Xilinx VirtexII-Pro FPGA
as the physical platform technology onto which our multiprocessor platforms are implemented,
the parametertypeof theProcessing Componentscan be set toMicroBlazeandPowerPCwhich
are the two types of processor supported by Xilinx. Moreover, each platform specification can
have manyMicroBlaze Processing Componentsbut it cannot have more than fourPowerPC
Processing Componentsaccording to the resource limitations of the Xilinx VirtexII-Pro FPGA.
In order to guarantee correct-by-construction automated platform synthesis and implementa-
tion, ESPAM tool runs a consistency check on the platform specification which is specified by
the designer. The consistency check includes checking whether the connections between plat-
form components are correct and whether the parameter values of the platform components are
set correctly. Moreover, the designer can leave parameter values undefined and let theESPAM

tool to set them automatically in the model refinement and synthesis procedure.

In the ESPAM tool, we use XML format for a platform specification because it is an easy way
to specify a platform instance using the platform model. Figure 2.2 shows an example of a
platform specification. In Figure 2.2 we see that there are three processors –MB 1, MB 2 and
MB 3 in this platform specification and the types of these three processors are allMicroBlaze.
We also set the size of the data memory and program memory for each processor. In this plat-
form specification, we do not have to specify the memory structures, interface controllers, and
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<platform name="myPlatform">

<processor name="MB_1" type="MB" data_memory="16384" program_memory="8192">
</processor>

<processor name="MB_2" type="MB" data_memory="16384" program_memory="8192">
</processor>

<processor name="MB_3" type="MB" data_memory="16384" program_memory="8192">
</processor>

</platform>

Figure 2.2: An example of the platform specification.

communication and synchronization protocols. OurESPAM tool automatically specifies these
in the platform synthesis which is described as follows. First, our tool instantiate the processing
and the communication components following the platform specification. Second, it automati-
cally attaches memories to each processor. In our case, one or two (data and program) memory
modules have to be instantiated as the local memories along with each processor and the mem-
ory controllers have to be instantiated as the interfaces between each processor and its local
memories. The memory generation is controlled by parameters within the platform specifica-
tion. For example, in Figure 2.2 we have specified the size of the three processors’ memories
such as the data memories and the program memories. The size of the data memories and the
program memories which are generated for the three processors are controlled by the parame-
ters which are specified in Figure 2.2. Third, our tool automatically synthesizes, instantiates,
and connects all necessary communication memories and communication controllers to allow
efficient and safe data communication and synchronization between the components. In our
case, a FIFO buffer has to be instantiated for each channel in the KPN model. A bus has to be
instantiated for a connection between any two components of processor, FIFO, FIFO controller,
memory and memory controller. Finally, our tool sets proper values of the parameters of each
component.

In ESPAM, a communication memory is organized as FIFO buffers. This organization is be-
cause: 1) The applications which we map onto our multiprocessor platforms are specified as
KPNs where the data communication is realized via FIFO channels; 2) the inter-processor syn-
chronization in a platform can be implemented in a very simple and efficient way by blocking
read/write operations on empty/full FIFO buffers. When a processor has to write data to its
local communication memory, it first checks if there is room in the corresponding FIFO. If the
FIFO is full, the processor blocks. Otherwise, it sends the data to this FIFO buffer. When a
processor has to read from a communication memory, it first checks if there is any data in the
corresponding FIFO. The processor blocks if the FIFO is empty, otherwise it reads the data.
This mechanism which is described above is calledblockingread/write. There are two methods
to implement theblockingread/write. The first method is that some processors have dedicated
embedded hardware that can be used to stall the processors. The second method is that the
blocking is realized in software by executing empty loops. There are different advantages in
each of the methods. For the first one, theblocking read/write implemented in hardware is
faster than the second method in which theblocking read/write is implemented in software.
For the second one, theblockingread/write implemented in software is more general than the
first method in which theblockingread/write is implemented in hardware because the different
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processors are stalled in hardware in different ways. In our case, we use both of the methods to
implement theblockingread/write.

2.3 Mapping of Application Model onto Platform Model

In Figure 1.1, there is a specification namedMapping Specificationin theSystem-levelspecifi-
cation of ourESPAM tool. Based on theMapping Specification, our ESPAM tool executes the
mapping process which is a process of binding the application and platform models together. In
theMapping Specification, the relation between the channels and processes in theApplication
Specificationand all the components in thePlatform Specificationis given.

Currently, ourESPAM tool supports two types of mapping. They areone-to-onemapping and
many-to-onemapping. One-to-onemapping means that: 1) the number of processing com-
ponents in thePlatform Specificationis equal to the number of processes in theApplication
Specification. Each process is mapped onto only one processor and each processor has only
one process mapped onto it; 2) the number of communication memories in thePlatform Spec-
ification is equal to the number of channels in theApplication Specification. A channel in the
Application Specificationis mapped onto a communication memory in thePlatform Specifi-
cationand each communication memory has only one channel mapped onto it, so that all the
connections are point-to-point connections.Many-to-onemapping means that: 1) the number
of processing components in thePlatform Specificationis less than the number of processes in
theApplication Specification. Two or more processes are mapped onto only one processor; 2)
the number of communication memories in thePlatform Specificationis still equal to the num-
ber of channels in theApplication Specification. A channel in theApplication Specificationis
mapped onto a communication memory in thePlatform Specificationand each communication
memory has only one channel mapped onto it. Therefore, in order to obtain different alternative
implementations for an application we just need to change thePlatform Specificationand the
Mapping Specificationof this application.

Figure 2.3 shows an example of both theone-to-oneandmany-to-onemapping processes. The
top part of Figure 2.3 shows theApplication Specificationof this example. There are three
processes in this KPN model. They are processes P1, P2, and P3. These three processes are
connected by the FIFO channels CH1, CH2, and CH3. The left part of Figure 2.3 shows the
one-to-onemapping process. The middle-left part of Figure 2.3 shows thePlatform Specifica-
tion and theMapping Specificationfor theone-to-onemapping. In thePlatform Specification
of the one-to-onemapping, we see that there are three processors –MB 1, MB 2 andMB 3
in this platform specification and the types of these three processors are allMicroBlaze. We
also set the size of the data memory and program memory for each processor. The number
of the processors is equal to the number of processes in theApplication Specification. In the
Mapping Specification, we see that process P1 is mapped onto processorMB 1, process P2 is
mapped onto processorMB 2, process P3 is mapped onto processorMB 3. Notice that mapping
of channels is not specified in theMapping Specification. This is not necessary because each
communication memory (CM) may has only one channel mapped onto it according to the def-
inition of theone-to-onemapping. Therefore, each channel in theApplication Specificationis
mapped onto a communication memory which is organized as FIFO buffer with standard FIFO
input and output interface signals. We use Fast Simplex Link (FSL) to connect a FIFO buffer
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<platform name="myPlatform">

    <processor name="MB_1" type="MB"
data_memory="16384" program_memory="8192">
    </processor>

    <processor name="MB_2" type="MB"
data_memory="16384" program_memory="8192">
    </processor>

    <processor name="MB_3" type="MB"
data_memory="16384" program_memory="8192">
    </processor>

    </platform>

Platform Specification
<mapping name="myMapping">

   <processor name="MB_1">
       <process name="P1" />
   </processor>

   <processor name="MB_2">
       <process name="P2" />
   </processor>

   <processor name="MB_3">
       <process name="P3" />
   </processor>

</mapping>

Mapping Specification

One-to-one Mapping

<platform name="myPlatform">

    <processor name="MB_1" type="MB"
data_memory="16384" program_memory="8192">
    </processor>

    <processor name="MB_2" type="MB"
data_memory="32768" program_memory="16384">
    </processor>

    </platform>
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<mapping name="myMapping">

   <processor name="MB_1">
       <process name="P1" />
   </processor>

   <processor name="MB_2">
       <process name="P2" />
       <process name="P3" />
   </processor>

</mapping>
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Figure 2.3: An example ofone-to-onemapping andmany-to-onemapping.

to a MicroBlazeprocessor. In Section 2.2, we explained thatESPAM automatically attaches
memories to each processor. In this example, data (DM) and program (PM) memory modules
are instantiated as local memories along with each processor and the memory controllers (MC)
are instantiated as interfaces between each processor and its local memories. The size of the
memories is controlled by parameters within thePlatform Specification. The final elaborate
platform of theone-to-onemapping example is shown in the bottom-left part of Figure 2.3.

The right part of Figure 2.3 shows themany-to-onemapping process. The middle-right part
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of Figure 2.3 shows thePlatform Specificationand theMapping Specificationfor themany-to-
onemapping. In thePlatform Specification, we see that there are two processors –MB 1 and
MB 2 in this Platform Specificationand the types of these two processors areMicroBlaze. We
also set the size of the data memory and program memory for each processor. In thePlatform
Specification, we see that the number of the processors is less than the number of processes in
theApplication Specification. In theMapping Specification, we see that process P1 is mapped
onto processorMB 1, process P2 and process P3 are mapped onto processorMB 2. Notice
that mapping of channels is also not specified in theMapping Specification. The reason is the
same as in theone-to-onemapping. OurESPAM also automatically attaches data and program
memory and memory controllers to each processor. The size of the memories is controlled by
parameters within thePlatform Specification. The final elaborate platform of themany-to-one
mapping example is shown in the bottom-right part of Figure 2.3.

2.4 Programming Multiprocessor Platforms

The synthesized multiprocessor platform has to be programmed in order to execute an appli-
cation. Programming the multiprocessor platform means generating program code for each
processor in the platform using high level programming languages like C/C++.

In this thesis we use the MicroBlaze soft processor core as the processor in multiprocessor plat-
forms. The MicroBlaze soft processor core is programmed by GNU tools that generate standard
Executable and Linkable Format (ELF) [16] [17]. The MicroBlaze GNU tools include mb-gcc
compiler, mb-as assembler and mb-ld loader/linker, which can compile GNU compatible C/C++
source files to build ELF executable files. Our methodology implemented in theESPAM tool
is able to generate program code for MicroBlaze processors. We use the software engineer-
ing technique calledVisitor [18] to generate C program code for each MicroBlaze processor.
The brief explanation of the program code generation for each processor follows. As discussed
earlier, we model an application as a Kahn Process Network (KPN) and map processes of the
KPN onto the processors of a multiprocessor platform. Therefore, the processors must be pro-
grammed according to the behaviors of the corresponding processes in the KPN. The process in
the KPN is specified as a sequential program that executes concurrently with other processes. In
the KPN specification, such sequential program is modeled as a syntax tree [19]. The advantage
of a syntax tree representation is that a sequential program is modeled at an abstract level that
is independent on a specific programming language. Thus, it is easy to convert a syntax tree
representation into a program specified in any high level programming language. A syntax tree
gives a valid execution order between function calls which have to be executed inside a process.
It completely defines the internal behavior of the process. Then we use the software engineering
technique calledVisitor to traverse a syntax tree and to generate program code. The program
code can be expressed in any programming language for which a compiler support exists for
the processors used in a platform. We use the MicroBlaze soft processor core as the processor
in multiprocessor platforms and the MicroBlaze GNU tools include mb-gcc compiler, mb-as
assembler and mb-ld loader/linker, which can compile GNU compatible C/C++ source files to
build ELF executable files. Therefore, we use theVisitor technique to traverse a syntax tree and
to generate C program code.
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2.5 Project Generation for Xilinx Platform Studio

In this section, we introduce the methodology implemented inESPAM to generate Xilinx Plat-
form Studio (XPS) projects. Xilinx Platform Studio (XPS) is a system design Integrated De-
velopment Environment (IDE) that supports open interfaces making tool integration easy and
painless and it is used to develop Xilinx Embedded Development Kit (EDK) - based system
designs.XPSprovides a common fully integrated hardware/software development environment
that supports the complete range of Xilinx’s processor solutions.XPSis the graphical user inter-
face technology that integrates all of the processes from design entry to design debug and verifi-
cation. Embedded Development Kit (EDK) is a series of software tools for designing embedded
processor systems on programmable logic, and supports the IBM PowerPC hard processor core
and the Xilinx MicroBlaze soft processor core. Including in the EDK, the scalable Platform
Studio enables designers to easily develop, integrate and debug their entire embedded system.
In this thesis, we mainly use the configurable MicroBlaze embedded soft processor core. The
MicroBlaze embedded soft core is a reduced instruction set computer (RISC) optimized for
implementation in Xilinx field programmable gate arrays (FPGAs). It is highly configurable,
allowing users to select a specific set of features required by their design. As the MicroBlaze is
a soft processor core, the number of processors we can implement on a given FPGA is only lim-
ited by the size of the FPGA itself. Due to this reason, the MicroBlaze embedded soft processor
core is suitable for constructing our multiprocessor embedded systems.

However, directly using Xilinx Platform Studio (XPS) to design a multiprocessor embedded
system is extremely time-consuming and the parallelism implicit in an application can only be
depicted manually. Due to these reasons, generation of a complex multiprocessor embedded
system inXPS takes lots of time. In order to reduce the design time, theXPS tool can be
used as a back-end tool of ourESPAM tool. Our ESPAM tool can systematically synthesize a
platform and automatically generate all necessary files for anXPSproject according toPlatform
Specification, Application SpecificationandMapping Specificationwhich are shown in Figure
1.1. Therefore, using ourESPAM tool as the front-end tool andXPS tool as the back-end tool
a designer can design a multiprocessor embedded system on a specific FPGA board efficiently
and effectively.

2.5.1 Introduction to XPS Project Specification

In a Xilinx Platform Studio (XPS) project, all of the project information is stored in four
files: Xilinx Microprocessor Project (XMP) file [20], Microprocessor Hardware Specification
(MHS) file [20], Microprocessor Software Specification (MSS) file [20] and User Constraint
File (UCF) [21]. An Xilinx Microprocessor Project (XMP) file is the top-level project file for
an EDK design. It stores the project options. A Microprocessor Hardware Specification (MHS)
file defines the configuration of an embedded processor system including buses, peripherals,
processors, connectivity, and address space. A Microprocessor Software Specification (MSS)
file contains directives for customizing libraries, drivers, and file systems. An User Constraint
File (UCF) contains pin information for the physical implementation in a selected FPGA device.

An Xilinx Microprocessor Project (XMP) file includes the XMP version number, the location
of MHS and MSS files, the FPGA architecture family and the device type for which theXPS
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hardware tool flow needs to run and the software setting for this project.

A Microprocessor Hardware Specification (MHS) file defines the hardware component used in
a platform as well as the connections between these components. A MHS file defines the con-
figuration of an embedded processor system, and includes the following: 1) Bus architecture;
2) Peripherals; 3) Processor; 4) Connectivity; 5) Address space. A MHS file uses the following
format at the beginning of a component definition:BEGIN peripheralname. TheBEGINkey-
word signifies the beginning of a new peripheral. It uses the following format for assignment
commands:command name = value. It uses the following format to end a peripheral defini-
tion: END. There are three assignment commands: 1)BUSINTERFACE; 2) PARAMETER; 3)
PORT.

A Microprocessor Software Specification (MSS) file contains directives for customizing oper-
ating systems (OS), libraries, and drivers. A MSS file has a dependency on a MHS file. The
keywords that are used in a MSS file are as follows:BEGIN, ENDandParameter. TheBEGIN
keyword starts a driver, processor, or file system definition block. The begin keyword should
be followed bydriver, processoror filesyskeywords. TheEND keyword signifies the end of a
definition block. A MSS file has a simplename = valueformat for most statements. ThePara-
meterkeyword is required before every such NAME, VALUE pairs. The format for assigning a
value to a parameter isparameter name = value. If the parameter is within abegin-endblock,
it is a local assignment, otherwise it is a global (system level) assignment.

An User Constraint File (UCF) contains pin information for the physical implementation in
a selected FPGA device. It contains constrains such as FPGA pin locations, timing, FPGA
resource specification and I/O standards.

2.5.2 Project Suite Generation

Our ESPAM tool can systematically synthesize a platform and automatically generate all neces-
sary files for anXPSproject according toPlatform Specification, Application Specificationand
Mapping Specificationthat have been discussed before. The project suite is shown in Figure
2.4.

It includes thesystem.xmp, system.mhs, system.mssfiles andcode, etc, data, pcoresdirectories.
The system.xmp, system.mhs, system.mssfiles are the MHS, MSS, XMP files of the project
which have been discussed above. In thecodedirectory, the software program code files for
processors are stored. In the top level of thecodedirectory, there are two files namedaux func.h,
MemoryMap.h. They are the common files for all of the processors. Theaux func.hfile declares
read and write primitives and wrappers of all function calls in the initial code of an applica-
tion. TheMemoryMap.hfile specifies physical addresses of the components in a platform. The
program code for each processor is stored in the corresponding subdirectory named after the
processors. Theetcdirectory stores the optional files for theXPS implementation tools. There
are four files in this directory:bitgen.ut, bitgenspartan3.ut, fast runtime.optanddownload. In
the data directory, the UCF file is stored. According to different FPGA boards, several UCF
files are generated by ourESPAM tool. Thepcoresdirectory stores the customized IP cores for
the EDK project. This is theESPAM library of components depicted in Figure 1.1.
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<PROJECT_SUITE>
|--- system.xmp
|--- system.mhs
|--- system.mss
|--- code/: software program code
|---------- aux_func.h
|---------- MemoryMap.h
|---------- P_1/: program code for processor P_1
|---------------- P_1.cpp
|---------- P_2/: program code for processor P_2
|---------------- P_2.cpp
|--- etc/: optional files for implementation tools
|--------- bitgen.ut
|--------- bitgen_spartan3.ut
|--------- fast_runtime.opt
|--------- download.cmd
|--- data/: UCF files
|---------- system.ucf
|---------- system_ADMXRCII.ucf
|---------- system-default.ucf
|---------- system-zbt.ucf
|--- pcores/: customized IP cores for the EDK project
|------------ buffers_v1_00_a/
|------------ cb_wrapper_v1_00_a/
|------------ fifo_if_ctrl_v1_00_a/
|------------ fin_ctrl_v1_00_a/
|------------ host_design_ctrl_v1_00_a/
|------------ LMB_VB_CTRL_v1_00_a/
|------------ mux_v1_00_a/
|------------ myCLKRST_v1_00_a/
|------------ opb_zbt_controller_v1_00_a/
|------------ VB_Wrapper_v1_00_a/
|------------ zbt_main_v1_00_a/

Figure 2.4: The project suite automatically generated by ourESPAM tool.

2.5.3 Visitor Pattern Mechanism

In this section, first we briefly introduce theVisitor Patternand then we explain theVisitor
Patternmechanism which has been used in ourESPAM tool to generate theXPSproject.

The Visitor Pattern[18] represent an operation to be performed on the elements of an object
structure. TheVisitor Patternlets we define a new operation without changing the classes of
the elements on which it operates. TheVisitor Patternturns the tables on our object-oriented
model and creates an external class to act on data in other classes. This is useful if there are a
fair number of instances of a small number of classes and we want to perform some operation
that involves all or most of them. There are several participants in theVisitor Pattern: 1) Visitor
declares a Visit operation for each class ofConcreteElementin the object structure. 2)Concrete-
Visitor implements each operation declared byVisitor. 3) Elementdefines an Accept operation
that takes aVisitor as an argument. 4)ConcreteElementimplements an Accept operation that
takes aVisitor as an argument. 5)ObjectStructurecan enumerate its elements, may provide
a high-level interface to allow theVisitor to visit its elements and may either be a composite
or a collection such as a list or a set. The implementation of theVisitor Patternis described
as follows: EachObjectStructurewill have an associatedVisitor class. This abstractVisitor
class declares aVisitConcreteElementoperation for each class ofConcreteElementdefining the
ObjectStructure. Each Visit operation on theVisitor declares its argument to be a particular
ConcreteElement, allowing theVisitor to access the interface of theConcreteElementdirectly.
ConcreteElementclasses override each Visit operation to implement visitor-specific behavior
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for the correspondingConcreteElementclass.

The visitor classes hierarchy in ourESPAM tool is shown in Figure 2.5. We use theVisitor
technique which has been introduced above to generate all necessary files for anXPSproject. 

 
Visitor

PNVisitor

+visitComponent(x:ProcessNetwork)
+visitComponent(x:Process)
+visitComponent(x:Gate)
+visitComponent(x:Channel)

-_prefix:String

CDPNVisitor

+visitComponent(x:CDProcessNetwork)
+visitComponent(x:CDProcess)
+visitComponent(x:CDInGate)
+visitComponent(x:CDOutGate)
+visitComponent(x:CDChannel)

XpsNetworkVisitor

+visitComponent(x:CDProcessNetwork)

-_mapping:Mapping

XpsProcessVisitor

+visitComponent(x:CDProcessNetwork)
+xpsProcess(x:CDProcess)
-_writeFunctionArguments(x:CDProcess)
-_writeIncludes(x:CDProcess)
-_writeMain(x:CDProcess)
-_writeChannelTypes()
-_writeParameter(x:CDProcessNetwork)
-_writeOperations()

-_mapping:Mapping
-_fifoReadWriteApi:String

XmpVisitor

+visitComponent(x:CDProcessNetwork)

-_mapping:Mapping

StatementVisitor

XpsStatementVisitor

+visitStatment(x:RootStatement)
+visitStatment(x:ForStatement)
+visitStatment(x:IfStatement)
+visitStatment(x:ElseStatement)
+visitStatment(x:OpdStatement)
+visitStatment(x:AssignStatement)
+visitStatment(x:ControlStatement)
+visitStatment(x:FifoMemoryStatement)

-_cExpVisitor:CExpressionVisitor
-_mapping:Mapping
-_process:CDProcess

MappingVisitor

+visitComponent(x:Mapping)
+visitComponent(x:MFifo)
+visitComponent(x:MProcess)
+visitComponent(x:MProcessor)

XpsMemoryMapVisitor

+XpsMemoryMapVisitor()
+visitComponent(x:Mapping)
-_digitToStringHex(xInt:int, format:int)

-_mapping:Mapping

PlatformVisitor

MhsVisitor

+visitComponent(x:Platform)
+visitComponent(x:MicroBlaze)
+visitComponent(x:MultiFifo)
+visitComponent(x:Fifo)
+visitComponent(x:BRAM)
+visitComponent(x:MemoryController)
+visitComponent(x:MultiFifoController)
+visitComponent(x:FifosController)
+visitComponent(x:Crossbar)
+visitComponent(x:ZBTMemoryController)
+visitComponent(x:Uart)
-_digitToStringHex(xInt:int, format:int)
-_greaterPowerOfTwo(xInt:int)

-_fifoList:Vector

MssVisitor

+visitComponent(x:Platform)
+visitComponent(x:MicroBlaze)
+visitComponent(x:Fifo)
+visitComponent(x:MemoryController)
+visitComponent(x:FifosController)
+visitComponent(x:ZBTMemoryController)
+visitComponent(x:Uart)

FifoCtrlVisitor

+FifoCtrlVisitor()
+visitComponent(x:Platform)
-_writeHdlFile()
-_writeMpdFile()
-_writePaoFile()
-_digitToStringHex(xInt:int, format:int)

-_coreName:String
-_moduleName:String
-_moduleDir:String
-_paoFile:String
-_mpdFile:String
-_hdlFile:String

 

Figure 2.5: The visitor classes hierarchy in theESPAM tool.

In Figure 2.5, the top level in our visitor classes hierarchy is an interface class calledVisitor
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which is defined to traverse the data model. The data model includes all of the information
which is given byPlatform Specification, Application SpecificationandMapping Specification.
Four classesPNVisitor, StatementVisitor, MappingVisitorandPlatformVisitor implement the
interface class. ThePNVisitor class is an abstract class for a visitor that is used to generate
a Process Network description. TheStatementVisitorclass is an abstract class for a visitor to
traverse a processor’s syntax tree. TheMappingVisitorclass is an abstract class for a visitor that
is used to generate Mapping information. ThePlatformVisitorclass is an abstract class for a
visitor that is used to generate a Platform description.

CDPNVisitoris an abstract class that extentsPNVisitorclass and it is used to generate Compaan
Dynamic Process Network (CDPN) description. Three concrete classes namedXpsNetworkVis-
itor, XpsProcessVisitorandXmpVisitorextend abstract classCDPNVisitor. XpsNetworkVisitor
class is used to copy all of the predefined IP cores and the other necessary project files such as
optional files and UCF files which have been introduced in Section 2.5.2 into anXPS project.
XpsNetworkVisitorclass is also used to call theXpsProcessVisitorclass. XpsProcessVisitor
class is used to generate the global program code fileaux func.hand it is also used to call the
XpsStatementVisitorin order to traverse the syntax tree of each processor to generate program
code for each processor.XmpVisitorclass is used to generate the Xilinx Microprocessor Project
(XMP) file for anXPSproject.

The concrete class namedXpsStatementVisitorwhich extends abstract classStatementVisitoris
used to traverse the syntax tree of each processor and generate C code for each processor.

The concrete class namedXpsMemoryMapVisitorwhich extends abstract classMappingVisitor
is used to generate the global program code fileMemoryMap.h.

Three concrete classes namedMhsVisitor, MssVisitorandFifoCtrlVisitor extend abstract class
PlatformVisitor. MhsVisitorclass is used to generate Microprocessor Hardware Specification
(MHS) file for anXPS project. MssVisitorclass is used to generate Microprocessor Software
Specification (MSS) file for anXPS project. FifoCtrlVisitor class is used to generate a custom
IP core named Fifo Controller for anXPSproject.
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Chapter 3
Embedded System as Heterogeneous and
Hierarchical Architecture

In this chapter, we introduce an embedded system as heterogeneous and hierarchical architec-
ture and prove that it is possible to implement systematically and automatically an embedded
system as heterogeneous and hierarchical architecture using theESPAM technology. In Chapter
2 we explained that an application always consists of several concurrent processes and these
processes can be mapped onto the components on an embedded system platform. An embed-
ded system as homogeneous architecture means the processes of an application are mapped
onto the same type of components on an embedded system platform such as the same type of
processors. However, as we know different types of components are suitable for implementing
different types of processes. For example, some types of processors do not support floating
point computation, this means if we map the processes which include the floating point compu-
tation onto such types of processors, the processors will spend a lot of time to evaluate floating
point computation and the results will not be good enough. But if we map the floating point
computation processes onto the processors or the dedicated hardware IP cores which support
the floating point computation, it will save a lot of time and the results will be much better. Due
to similar reasons an embedded system as heterogeneous architecture has to be implemented
in order to meet the required performance of various applications. The problem is how to im-
plement an embedded system as heterogeneous architecture systematically and automatically.
What’s more, an application always consists of several processes and some of the processes of
the application maybe very complex. If we map a complex process onto a single component,
the process may not meet the required performance. In such case, we need to map the complex
process onto several components in order to meet the required performance. These several com-
ponents form a sub-network on an embedded system platform. Therefore we call the system
hierarchical architecture. Thus, an embedded system as hierarchical architecture also has to be
implemented. The problem is how to implement an embedded system as hierarchical architec-
ture systematically and automatically. In this chapter, we give the procedure to explain how
to implement an embedded system as heterogeneous and hierarchical architecture in order to
prove that it is possible to implement systematically and automatically an embedded system as
heterogeneous and hierarchical architecture using theESPAM technology.

This chapter is organized as follows. In Section 3.1, we first give a general introduction to an
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embedded system as heterogeneous and hierarchical architecture. In this section, we give an
example to describe the structure of the heterogeneous and hierarchical architecture and explain
the differences between the homogeneous architecture and the heterogeneous and hierarchical
architecture. In Section 3.2, we give the procedure that explains how to implement an embed-
ded system as heterogeneous and hierarchical architecture using Xilinx VirtexII FPGA as the
physical platform in order to prove that it is possible to implement systematically and auto-
matically an embedded system as heterogeneous and hierarchical architecture using theESPAM

technology.

3.1 Introduction to Heterogeneous and Hierarchical Archi-
tecture

As described above, an embedded system as homogeneous architecture means that all of the
components which compose an embedded system platform are of the same type. For example,
if an embedded system platform is a multiprocessor embedded system platform, a homoge-
neous architecture means all of the processors on the platform have the same attributes. Due
to the complexity of modern applications, such as high throughput multimedia, imaging and
digital signal processing which usually include complicated algorithms, an embedded system
as homogeneous architecture is no longer suitable for modern applications. As what have been
explained earlier, in order to meet the required performance of various applications we need to
implement systematically and automatically an embedded system as heterogeneous and hierar-
chical architecture.

Figure 3.1 give examples which describe the structures of a homogeneous architecture, and a
heterogeneous and hierarchical architecture. In the top of Figure 3.1, there is an example of
a homogeneous architecture. This example is a multiprocessor embedded system. It consists
of five processors and all of the processors are of the same type. They use a communication
structure to communicate with each other. This means all of the processes of an application are
mapped onto the same type of components. Because only one type of processors is not suitable
for different kinds of processes, such homogeneous architecture is difficult to meet the required
performance of various processes.

In the middle of Figure 3.1, there is an example of a heterogeneous and hierarchical architecture.
This architecture includes different types of components — four different types of processors
and one dedicated hardware IP core. They also use a communication structure to communicate
with each other. That means the processes of an application can be mapped onto different types
of components which are suitable for different types of processes of an application. Moreover,
it is better to map the process which is the most complicated or which runs most frequently
onto the dedicated hardware IP core. Because the process which is executed by a dedicated
hardware IP core is much faster than the process which is executed by the software program of
a processor. Thus, by using an embedded system as heterogeneous architecture, an application
can reach higher performances. The bottom part of Figure 3.1 shows what we call hierarchical
architecture in this example. The hierarchical architecture shows that the dedicated hardware IP
core is not a single component. The dedicated hardware IP core is a sub-network which consists
of four different hardware components — HW1, HW2, HW3 and HW4. The sub-network of
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Figure 3.1: The structures of a homogeneous architecture, and a heterogeneous and hierarchical
architecture.

the four hardware components implement the complex process of an application. This means
we map the complex process of an application onto several components in order to meet the
required performance. These several components form a sub-network on the embedded system
platform. Therefore we call the system hierarchical architecture. In the next section, we will
prove that it is possible to implement systematically and automatically an embedded system as
heterogeneous and hierarchical architecture using theESPAM technology.
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3.2 Heterogeneous and Hierarchical Architecture Implemen-
tation

In this section, we prove that it is possible to implement systematically and automatically an
embedded system as heterogeneous and hierarchical architecture using theESPAM technology.
In this section we use an example to explain how to implement an embedded system as hetero-
geneous and hierarchical architecture in order to prove that it is possible to implement system-
atically and automatically an embedded system as heterogeneous and hierarchical architecture
using theESPAM technology. This example maps the same application onto two architectures
— one is a homogeneous architecture and the other is a heterogeneous and hierarchical archi-
tecture. Also, we compare the application performances between these two architectures. This
section is organized as follows. In Section 3.2.1, we create a system with an embedded system
as homogeneous architecture. In Section 3.2.2, we create a system with an embedded system
as heterogeneous and hierarchical architecture which has the same functionality with the sys-
tem in 3.2.1. In Section 3.2.3, we do some tests on the system with the embedded system as
heterogeneous and hierarchical architecture and compare the results with the system with the
embedded system as homogeneous architecture.

3.2.1 Creating a System with Homogeneous Architecture

In this section, we use ourESPAM tool to automatically generate a system with homogeneous
architecture. This system is used to implement the Discrete Cosine Transform (DCT). Many
digital image and video compression applications usually use the Discrete Cosine Transform
(DCT) as the transform coding step [22]. First images are always spatially divided into blocks,
usually 8x8 pixels. Then DCT can process each block which includes 8x8 pixels. In our case,
the system uses Xilinx VirtexII FPGA as the physical platform. The architecture of the system
is shown in Figure 3.2.  

 

MB1 MB2 MB3
FIFO1 FIFO2  

Figure 3.2: The system with homogeneous architecture.

This system includes threeMicroBlazeprocessors — MB1, MB2 and MB3 and two FIFOs —
FIFO1 and FIFO2. Processor MB1 first generates the initial block and then writes the block
to processor MB2 using FIFO1. Processor MB2 first reads the block from FIFO1, applies the
DCT on this block and then writes the resulting block to processor MB3 using FIFO2. Processor
MB3 first reads the resulting block from FIFO2 and then writes the resulting block to an off-chip
memory. The main software code of these three processors is shown in Figure 3.3.

In Figure 3.3 we see that in our case we use an image which is in 4:2:2 YUV format. Thus the
image block includes four 8x8 sub-blocks — Y1 sub-block, Y2 sub-block, U1 sub-block and
V1 sub-block. In order to transfer the data between the processors, we use the FIFO compo-
nents. TheMicroBlazeprocessor gets data from other processor via a hardware FIFO buffer
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0 int main () {

TBlocks blocks = {
... ,
... ,

5 ... ,
...
};

writeFSL(0, &blocks, (sizeof(blocks)+(sizeof(blocks)%4)+3)/4);
10

...
} // main

MB1

0 int main () {

TBlocks blocks_in;

TBlocks blocks_out;
5

DCT dct;

readFSL(0, &blocks_in, (sizeof(blocks_in)+(sizeof(blocks_in)%4)+3)/4);

10 dct.main(blocks_in, blocks_out);

writeFSL(0, &blocks_out, (sizeof(blocks_out)+(sizeof(blocks_out)%4)+3)/4);

...
15 } // main

MB2

0 int main () {

volatile long * compImage = (volatile long * )0xf0000000;

TBlocks blocks;
5

readFSL(0, &blocks, (sizeof(blocks)+(sizeof(blocks)%4)+3)/4);

for( int k = 0; k < 64; k += 1 ) {

10 compImage[k] = (volatile long) blocks.Y1.pixel[k];
compImage[k+64] = (volatile long) blocks.Y2.pixel[k];
compImage[k+64 * 2] = (volatile long) blocks.U1.pixel[k];
compImage[k+64 * 3] = (volatile long) blocks.V1.pixel[k];

15 }

...
} // main

MB3

Figure 3.3: The main software code of the three processors.

using a read primitive and sends data to other processor via a hardware FIFO buffers using a
write primitive. Because the hardware FIFO buffers in our platform are bounded, the read/write
operation is blocking. In our example, we use Fast Simplex Link (FSL) [23] bus to communi-
cate with the FIFO buffers. The code in Figure 3.3 show that we usereadFSLandwriteFSL
functions to implement the blocking read/write FIFO mechanism. The FSL primitives imple-
ment the blocking read/write mechanism in hardware controlled by twoMicroBlazespecific
assembly instructions, namelyput andget [24]. TheMicroBlazespecific assembly instructions
are shown in Figure 3.4. ThereadFSLandwriteFSL functions are the wrappers for these as-
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sembly instructions which are shown in Figure 3.5. The variableposdenotes a port number for
a FSL bus of aMicroBlazeprocessor. The variablevalueis used to store the data to be read or
written. The variablelendenotes the length (measured in 32-bit words) of the data to be read or
written. When performing the read operation, aMicroBlazeprocessor gets data from one of its
FSL input ports and stores data into the variablevalue. When performing the write operation,
theMicroBlazeprocessor puts data stored in the variablevalueto one of its FSL output ports.

0 #define microblaze_bread_datafsl(val, id) \
asm(’’get %0, %1’’ : ’’=d’’ (##val##) : ’’m’’ (rfsl##id##))

#define microblaze_bwrite_datafsl(val, id) \
asm(’’put %0, %1’’ : ’’=d’’ (##val##) : ’’m’’ (rfsl##id##))

5

Figure 3.4: TheMicroBlazespecific FSL bus read/write assembly instructions.

0 #define readFSL(pos, value, len) \
do {\

int i; \
for (i = 0; i < len; i++) \

microblaze_bread_datafsl(((volatile int * ) value)[i], pos); \
5 } while(0)

#define writeFSL(pos, value, len) \
do {\

int i; \
10 for (i = 0; i < len; i++) \

microblaze_bwrite_datafsl(((volatile int * ) value)[i], pos); \
} while(0)

Figure 3.5: TheMicroBlazeFSL bus read/write primitives.

When we ran the system in Figure 3.2 which is an embedded system with homogeneous ar-
chitecture, we found out that the time performance of the DCT process is not very good. The
reason is that in this homogeneous architecture the DCT process is run as software on aMi-
croBlazeprocessor. It is hard for the system to reach the good time performance by running the
software DCT process on the processor.

3.2.2 Creating a system with Heterogeneous and Hierarchical Architec-
ture

In this section, we introduce the procedure to create a system with embedded system as het-
erogeneous and hierarchical architecture. This system has the same functionality as the system
presented in Section 3.2.1. It is also used to implement the Discrete Cosine Transform (DCT).
The architecture of this system is shown in the top part of Figure 3.6. We see that this hetero-
geneous and hierarchical architecture also includes three components. The difference between
this system and the system of homogeneous architecture is that we use a dedicated hardware
IP core to implement the Discrete Cosine Transform (DCT). In this system, there are twoMi-
croBlazeprocessors — MB1 and MB3 which have the same function as the MB1 and MB3
processors of the system which has been explained in Section 3.2.1. Instead of processor MB2
in the system explained in Section 3.2.1, we use a dedicated hardware IP core to implement the
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DCT process. Therefore this system is a heterogeneous architecture.MicroBlazeprocessors
use FIFOs to communicate with each other. In order to make the dedicated hardware IP core
can communicate withMicroBlazeprocessors, the dedicated hardware IP core should has the
FIFO input and output interfaces. In Figure 3.6 we see that the dedicated hardware IP core uses
the FIFO input interface to read data from FIFO1, and uses the FIFO output interface to write
data to FIFO2. The data flow of this system is: processor MB1 first generates the initial block
and then writes the block to the hardware IP core using FIFO1. The hardware IP core first reads
the block from FIFO1, applies the DCT on this block and then writes the resulting block to
processor MB3 using FIFO2. Processor MB3 first reads the resulting block from FIFO2 and
then writes the resulting block to an off-chip memory.

In order to create the system which has been described above, the first step we need to do is to
generate the dedicated hardware IP core which can implement the DCT process. In general, we
can design this dedicated hardware IP core by hand. But this method is error-prone and time
consuming. In our case, we use theLAURA tool [6], which has been developed at the Leiden
Embedded Research Center (LERC), to generate this dedicated hardware IP core which contains
the FIFO input and output interfaces. There is a tool chain calledCOMPAAN/LAURA that allows
us to map fast and efficiently applications written in Matlab onto reconfigurable platforms. In
this chain, first the Matlab code is converted automatically to executable Kahn Process Network
(KPN) specification. Then the tool calledLAURA accepts this specification and transforms the
specification into design implementations described as synthesizable VHDL. With the help of
LAURA, we can fast prototype the DCT process directly in hardware — synthesizable VHDL
code.

The bottom part of Figure 3.6 shows the sub-network of the hardware IP core for the DCT
process which is generated by theLAURA tool. This sub-network includes four components
— Node 1(ND1), Node 2(ND2), Node 3(ND3), and Node 4(ND4). They use the FIFO
components to communicate with each other. However, this sub-network of the hardware IP
core for the DCT process each time can only process one image block which includes four 8x8
sub-blocks — Y1 sub-block, Y2 sub-block, U1 sub-block and V1 sub-block. We need to use
a reset signal of this sub-network to repetitively reset the sub-network in order to execute the
DCT process for many image blocks. The architecture which shows how we use the reset signal
is shown in the middle of Figure 3.6. When the sub-network finishes processing the DCT for
one image block, it sends a stop signal to Flipflop1. Flipflop1 is used to store the stop signal.
There is a logic element which is used to delay the stop signal for a certain time. TheCounter
component in the middle of Figure 3.6 is this logic element. Then Flipflop2 is set by the stop
signal to start the sub-network of the hardware IP core for the DCT process. This system is a
hierarchical architecture, because there are three components on this embedded system platform
— two MicroBlazeprocessors — MB1, MB3 and one dedicated hardware IP core for the DCT
process, and the dedicated hardware IP core for the DCT process is a sub-network on this
embedded system platform which includes four components — Node 1(ND1), Node 2(ND2),
Node 3(ND3) and Node 4(ND4). What’s more, this sub-network is reset repetitively to apply
the DCT operation on many image blocks.

Because we use Xilinx Platform Studio (XPS) as a back-end tool of ourESPAM tool, after
we have got the hardware — synthesizable VHDL code of the DCT process, we still need to
generate the pcore of the DCT process in order to make this hardware IP core can be used in
XPS. There are two directories nameddataandhdl in the pcore directory of the DCT process.



32 Embedded System as Heterogeneous and Hierarchical Architecture
 
 

MB1
HW
DCT

MB3
FIFO1 FIFO2

DCT

Flipflop2 Flipflop1

Counter

datadata

start stop

ND_1

ND_2

ND_3

ND_4
FIFO1

FIFO3

FIFO2

FIFO4

DCT

 

Figure 3.6: The heterogeneous and hierarchical architecture with one dedicated hardware IP
core for the DCT process.

We need to generate two files for the pcore of the DCT process which are stored in thedata
directory: a Microprocessor Peripheral Definition (MPD) file [25] and a Peripheral Analyze
Order (PAO) file [25]. The MPD file defines the interface of the DCT and the PAO file contains
a list of HDL files that are needed for synthesis, and defines the analyze order for compilation.
The VHDL source code files of the DCT process are stored in thehdl directory. The main
contents of the MPD file and the PAO file are shown in Figure 3.7. In the MPD file the ports
RD CLK, RD EN, RD CONTROL, RD DATA and RD EXISTSare used to read data from a
FIFO. The portsWRCLK, WREN, WR CONTROL, WRDATAandWRFULL are used to write
data to a FIFO. The portSTATUSis used to indicate that the DCT processes are finished. The
port CLK andRSTare the clock signal and reset signal. In the PAO file we have all the VHDL
files that are needed for the DCT process and the analyze order for compilation. We can see that
the top level of the DCT process is the VHDL file calleddct. Thus all the top level architecture
information of the DCT process is stored in this file. The pcore for the DCT process can be
found in the CVS repository:
docs/students/WeiZhong/experiment/DCTpcore.zip

When we finish generating the pcore of the DCT process, based on the system with homoge-
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0 BEGIN kpn

## Peripheral Options
...

5 ## Bus Interfaces
BUS_INTERFACE BUS = SFSL, BUS_STD = FSL, BUS_TYPE = SLAVE
BUS_INTERFACE BUS = MFSL, BUS_STD = FSL, BUS_TYPE = MASTER

## Generics for VHDL or Parameters for Verilog
10

## Ports
PORT RD_CLK = FSL_S_Clk, DIR = out, SIGIS = CLK, BUS = SFSL
PORT RD_EN = FSL_S_Read, DIR = out, BUS = SFSL
PORT RD_CONTROL = FSL_S_Control, DIR = in, BUS = SFSL

15 PORT RD_DATA = FSL_S_Data, DIR = in, VEC = [31:0], BUS = SFSL, ENDIAN = LITTLE
PORT RD_EXISTS = FSL_S_Exists, DIR = in, BUS = SFSL
PORT WR_CLK = FSL_M_Clk, DIR = out, SIGIS = CLK, BUS = MFSL
PORT WR_EN = FSL_M_Write, DIR = out, BUS = MFSL
PORT WR_CONTROL = FSL_M_Control, DIR = out, BUS = MFSL

20 PORT WR_DATA = FSL_M_Data, DIR = out, VEC = [31:0], BUS = MFSL, ENDIAN = LITTLE
PORT WR_FULL = FSL_M_Full, DIR = in, BUS = MFSL
PORT STATUS = "", DIR = O
PORT CLK = "", DIR = I
PORT RST = "", DIR = I

25
END

MPD file

0 lib kpn_v1_00_a counter vhdl
lib kpn_v1_00_a decode_5 vhdl
lib kpn_v1_00_a fifo_cam_cntrl_c vhdl
lib kpn_v1_00_a fifo_cam_cntrl_p vhdl
...

5 lib kpn_v1_00_a dct vhdl

PAO file

Figure 3.7: The main contents of the MPD file and the PAO file of the pcore for the DCT
process.

neous architecture which has been created in Section 3.2.1, we just need to copy the pcore of
the dedicated hardware IP core for the DCT process to the system and replace the processor
MB2 with this dedicated hardware IP core for the DCT process in the system by hand. It is
possible for ourESPAM tool to automatically implement the work which is described above.
In this thesis, we just focus on showing the procedure about how to implement systematically
and automatically an embedded system as heterogeneous and hierarchical architecture. The
implementation in ourESPAM tool is straightforward and it is out of the scope of this thesis.
After this step, we have already finish creating the system with heterogeneous and hierarchical
architecture.

3.2.3 Testing the System with Heterogeneous and Hierarchical Architec-
ture

In this section, we explain how to test the system and compare the performance of this system
with the performance of the system which is the homogeneous architecture.
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0 int main () {

TBlocks blocks = {
... ,
... ,

5 ... ,
...
};

for (int i = 0; i < 6; i++) {
10

writeFSL(0, &blocks, (sizeof(blocks)+(sizeof(blocks)%4)+3)/4);

}

15 ...
} // main

MB1

0 int main () {

volatile long * compImage = (volatile long * )0xf0000000;

TBlocks blocks;
5

for (int i = 0; i < 6; i++) {

readFSL(0, &blocks, (sizeof(blocks)+(sizeof(blocks)%4)+3)/4);

10 for( int k = 0; k < 64; k += 1 ) {

compImage[k + i * 64 * 4] = (volatile long) blocks.Y1.pixel[k];
compImage[k + 64 + i * 64 * 4] = (volatile long) blocks.Y2.pixel[k];
compImage[k + 64 * 2 + i * 64 * 4] = (volatile long) blocks.U1.pixel[k];

15 compImage[k + 64 * 3 + i * 64 * 4] = (volatile long) blocks.V1.pixel[k];

}
}

20 ...
} // main

MB3

Figure 3.8: The main code of MB1 and MB3 for testing many image blocks.

In order to compare the performances of the two systems, we use the same image block which
is used in the system with homogeneous architecture in the system with heterogeneous and hier-
archical architecture. We use MB1 to generate the image block and send this image block to the
dedicated hardware IP core for the DCT process. When the hardware IP core finishes, it sends
the resulting data to MB3 and then MB3 writes the data to the off-chip memory. This procedure
is almost the same as the procedure which is done in Section 3.2.1. The only difference is that
in this procedure we use the dedicated hardware IP core instead ofMicroBlazeprocessor to do
the DCT process. As a result, we can get the correct resulting data and we find that this system
with heterogeneous and hierarchical architecture needs less time to do the DCT process than the
system which is the homogeneous architecture. Using the dedicated hardware IP core for the
DCT process the system with heterogeneous and hierarchical architecture can get better time
performance than the system with homogeneous architecture.

The other test we need to do is to test whether the system with heterogeneous and hierarchical
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architecture can do the DCT process for more than one image blocks. Thus we need to change
the software code of MB1 and MB3 to send several image blocks to the dedicated hardware IP
core for the DCT process and receive the resulting image blocks from the dedicated hardware IP
core for the DCT process. The main code of MB1 and MB3 which has been changed is shown
in Figure 3.8. In Figure 3.8 we see that MB1 sends 6 image blocks to the dedicated hardware
IP core for the DCT process and MB3 receives 6 resulting image blocks from the dedicated
hardware IP core for the DCT process and writes the 6 resulting image blocks to the off-chip
memory. The test result shows that we can get 6 correct resulting image blocks. This means
the system with heterogeneous and hierarchical architecture can do the DCT process with more
than one image blocks. After these two tests, we have proven that it is possible to implement
systematically and automatically an embedded system as heterogeneous and hierarchical ar-
chitecture and this heterogeneous and hierarchical architecture can get better performance than
the homogeneous architecture. A more complex system with heterogeneous and hierarchical
architecture example is given in Chapter 5.
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Chapter 4
Interface of an Embedded System with the
Outside World

Applications of modern embedded systems, such as the high throughput multimedia, imaging,
and digital signal processing, always need to exchange data with the outside world. Due to
this reason an efficient interface of an embedded system with the outside world is necessary for
modern embedded system. In this chapter, we explain how to construct an efficient interface
by using several memories and the approach about how to make theESPAM tool be able to
automatically generate the interface when it maps an application onto a multiprocessor platform.

In Section 4.1, we describe the target FPGA platform which our interface of an embedded
system with the outside world is based on. In Section 4.2, we explain the construction of the
interface and introduce the components included in the interface. In Section 4.3, the approach
about how to makeESPAM automatically generate our interface when it maps an application
onto a multiprocessor platform is presented.

4.1 Target FPGA platform

The target FPGA platform on which we implement our interface of an embedded system with
the outside world is the ADM-XRC-II board that is developed by Alpha Data Parallel Systems
Ltd [26]. The ADM-XRC-II is a high performance PCI Mezzanine Card (PMC) format device
designed for supporting development of applications using the Virtex-II series of FPGAs from
Xilinx. The architecture of the ADM-XRC-II board is shown in Figure 4.1.

The ADM-XRC-II supports high performance PCI operations without the need to integrate
proprietary cores into the FPGA. A PLX PCI9656 provides a rich set of PCI resources including
two high-speed DMA controllers. We can use this PCI interface to communicate with outside
host processors via the PCI bus. The features of the ADM-XRC-II board are listed below:

• Physically compatible to IEEE P1386 Common Mezzanine Card standard

• High performance PCI and DMA controllers
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Figure 4.1: The architecture of the ADM-XRC-II board.

• Local bus speeds of up to 66MHz

• Six banks of 256k/512kx32/36 ZBT SSRAM

• User clock programmable between 0.5MHz and 100MHz

• User front panel adapter with up to 146 free IO signals

• User rear panel PMC connector with 64 free IO signals

• Supports 3.3V and 5V PCI signalling levels (VI/O)

From the specification, we see that this FPGA board has six banks of ZBT SSRAM which are
off-chip memories. This type of off-chip memory is the Zero Bus Turnaround (ZBT) SSRAM
that employs high-speed, low-power CMOS designs using an advanced CMOS process. These
SSRAMs are optimized for 100 percent bus utilization, eliminating any turnaround cycles for
READ to WRITE, or WRITE to READ, transitions. All synchronous inputs pass through reg-
isters controlled by a positive-edge-triggered single clock input (CLK). Our interface uses these
six banks ZBT SSRAM which are off-chip memories to communicate with the outside world.
In order to make the processors in a multiprocessor platform can access the off-chip ZBT SS-
RAM, we need to develop a custom controller to connect the processor to the off-chip ZBT
SSRAM which is introduced in the next section.

4.2 Structure of the Interface of an Embedded System with
the Outside World

In this section, we introduce the construction of an interface of an embedded system with the
outside world by using several off-chip memories. The block diagram of the interface is shown
in Figure 4.2. In Figure 4.2, we show that the interface of an embedded system with the outside
world consists of four main parts — Host Interface, Function Design, Multiplexer and Buffer.
The Function Design is a multiprocessor system which is used to implement different types
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of embedded system applications. Besides these four main parts, our interface still need two
connection parts. One connection part is a custom controller for a processor in the Function
Design to connect to the off-chip ZBT SSRAM which is the blockB1 in Figure 4.2. The other
connection part includes two components which are used to transfer control signals and status
signals between the Host Interface and the Function Design which are the blockB2 and block
B3 in Figure 4.2. All components included in the interface are introduced one by one in Section
4.2.1 to Section 4.2.5. The more detailed explanation about the components included in the
interface is given in [27].

As described above, this interface can be used to communicate data between embedded sys-
tems and the outside world, such as an outside host processor, via the off-chip memories. For
example, this interface can be used in this way: first an outside host processor, such as Pentium,
can store data in the off-chip memories using the Host Interface. Then an application which has
been mapped onto an embedded system platform, which is the Function Design, can read the
data from the off-chip memories using the custom controllers (B1) and execute the tasks. At
last, when the application finishes the tasks it can store the resulting data in the off-chip memo-
ries using the custom controllers (B1) and the outside host processor can read the resulting data
back from the off-chip memories using the Host Interface.
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Figure 4.2: An interface of an embedded system with the outside world.
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4.2.1 Host Interface

The Host Interface component uses PCI interface PLX 9656 to connect to an outside host
processor, such as Pentium, with a PCI bus. An outside host processor uses the Host Inter-
face component to write data to the off-chip ZBT SSRAMs and read data from the off-chip
ZBT SSRAMs. The Host Interface component generates control signals to tell the Multiplexer
component which part (the outside host processor or the Function Design component) needs to
be connected to the off-chip ZBT SSRAMs. It also generates control signals to tell the Func-
tion Design component to start running and receive status signals from the Function Design
component that indicates that the Function Design component has already finished the tasks.

In order to be able to use the Host Interface component in anXPS project, we need to cre-
ate a pcore for the Host Interface component. We create azbt main v1 00 a directory that
includes all the files which the pcore of the Host Interface component requires, such as a
Microprocessor Peripheral Definition (MPD) file, a Peripheral Analyze Order (PAO) file and
VHDL source code files. In order to make the Host Interface component connectivity inter-
face simpler, we add some bus interfaces in the MPD file. The main code of the MPD file
of the Host Interface component is shown in Figure 4.3. As Figure 4.3 shows, we add a
bus namedHOSTMUX PORTto bundle the signals that the Host Interface component uses
to connect to the Multiplexer component and add the buses namedHOSTBUFF 0 PORT,
HOSTBUFF 1 PORT, HOSTBUFF 2 PORT, HOSTBUFF 3 PORT, HOSTBUFF 4 PORT,
andHOSTBUFF 5 PORTto bundle the signals that the Host Interface component uses to con-
nect to the Buffer component. The portCOMMANDREGis used to send control signals to the
Multiplexer component or the Function Design component. The portDESIGNSTATREG is
used to receive status signals from the Function Design component.

4.2.2 Multiplexer

The function of the Multiplexer component is to switch signals from the Host Interface compo-
nent or signals from the Function Design component according to the control signals given
by the Host Interface component. We need to create a pcore for the Multiplexer compo-
nent. We create amuxv1 00 a directory that includes all the files and directories which the
pcore of the Multiplexer component requires, such as a Microprocessor Peripheral Definition
(MPD) file, a Peripheral Analyze Order (PAO) file and VHDL source code files. We also
need to add some bus interfaces in the MPD file of the Multiplexer component in order to
make the Multiplexer component connectivity interface simpler. The main code of the MPD
file of the Multiplexer component is shown in Figure 4.4. As Figure 4.4 shows, we add a
bus namedMUX HOSTPORTto bundle the signals that the Multiplexer component uses to
connect to the Host Interface component. We add the buses namedMUX DESIGN0 PORT,
MUX DESIGN1 PORT, MUX DESIGN2 PORT, MUX DESIGN3 PORT, MUX DESIGN4 PORT,
andMUX DESIGN5 PORTto bundle the signals that the Multiplexer component uses to con-
nect to the Function Design component and add a bus namedMUX BUFF PORTto bundle
the signals that the Multiplexer component uses to connect to the Buffer component. The port
CNTRLis used to receive control signals from the Host Interface component. In the MPD file
of the Multiplexer component we also add a parameter namedN MUX which is used to tell the
Multiplexer component how many multiplexer units it needs to generate. The maximum value
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0 BEGIN zbt main

## Peripheral Options
...

5 ## Bus Interfaces
BUSINTERFACE BUS = HOSTMUXPORT, BUSSTD = TRANSPARENT, BUSTYPE = UNDEF
BUSINTERFACE BUS = HOSTBUFF 0 PORT, BUSSTD = TRANSPARENT, BUSTYPE = UNDEF
BUSINTERFACE BUS = HOSTBUFF 1 PORT, BUSSTD = TRANSPARENT, BUSTYPE = UNDEF
BUSINTERFACE BUS = HOSTBUFF 2 PORT, BUSSTD = TRANSPARENT, BUSTYPE = UNDEF

10 BUS INTERFACE BUS = HOSTBUFF 3 PORT, BUSSTD = TRANSPARENT, BUSTYPE = UNDEF
BUSINTERFACE BUS = HOSTBUFF 4 PORT, BUSSTD = TRANSPARENT, BUSTYPE = UNDEF
BUSINTERFACE BUS = HOSTBUFF 5 PORT, BUSSTD = TRANSPARENT, BUSTYPE = UNDEF

## Generics for VHDL or Parameters for Verilog
15 ...

## Ports
...

20 PORT HData R0 = RDI, DIR = I, VEC = [31:0], ENDIAN = LITTLE, BUS = HOST BUFF 0 PORT
PORT HData W0 = HDW0, DIR = O, VEC = [31:0], ENDIAN = LITTLE, BUS = HOST MUXPORT
PORT HTristate 0 = H TRI0, DIR = O, VEC = [31:0], ENDIAN = LITTLE, BUS = HOST MUXPORT
PORT HRA0 = HAD0, DIR = O, VEC = [19:0], ENDIAN = LITTLE, BUS = HOST MUXPORT
PORT HRC0 = HCO0, DIR = O, VEC = [8:0], ENDIAN = LITTLE, BUS = HOST MUXPORT

25 ...

PORT COMMANDREG = "", DIR = O, VEC = [31:0], ENDIAN = LITTLE
...

30 PORT DESIGNSTAT REG = "", DIR = I, VEC = [31:0], ENDIAN = LITTLE

END

Figure 4.3: The main code of the MPD file of the Host Interface component.

of parameterN MUX is 6.

4.2.3 Buffer

The function of the Buffer component is to transfer data between the ZBT SSRAM memory
and the Function Design component or the Host Interface component. We need to create a
pcore for the Buffer component. We create abuffersv1 00 a directory that includes all the
files and directories which the pcore of the Buffer component requires, such as a Microproces-
sor Peripheral Definition (MPD) file, a Peripheral Analyze Order (PAO) file and VHDL source
code files. We also need to add some bus interfaces in the MPD file of the Buffer component
in order to make the Buffer component connectivity interface simpler. The main code of the
MPD file of the Buffer component is shown in Figure 4.5. As Figure 4.5 shows, we add a
bus namedBUFF MUX PORTto bundle the signals that the Buffer component uses to connect
to the Multiplexer component and the buses namedBUFF RD 0 PORT, BUFF RD 1 PORT,
BUFF RD 2 PORT, BUFF RD 3 PORT, BUFF RD 4 PORT, andBUFF RD 5 PORTto bun-
dle the signals that the Buffer component uses to connect to the Host Interface component or
the Function Design component.
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0 BEGIN mux

## Peripheral Options
...

5 ## Bus Interfaces
BUSINTERFACE BUS = MUXHOSTPORT, BUSSTD = TRANSPARENT, BUSTYPE = UNDEF
BUSINTERFACE BUS = MUXDESIGN0 PORT, BUSSTD = TRANSPARENT, BUSTYPE = UNDEF
BUSINTERFACE BUS = MUXDESIGN1 PORT, BUSSTD = TRANSPARENT, BUSTYPE = UNDEF
BUSINTERFACE BUS = MUXDESIGN2 PORT, BUSSTD = TRANSPARENT, BUSTYPE = UNDEF

10 BUS INTERFACE BUS = MUXDESIGN3 PORT, BUSSTD = TRANSPARENT, BUSTYPE = UNDEF
BUSINTERFACE BUS = MUXDESIGN4 PORT, BUSSTD = TRANSPARENT, BUSTYPE = UNDEF
BUSINTERFACE BUS = MUXDESIGN5 PORT, BUSSTD = TRANSPARENT, BUSTYPE = UNDEF
BUSINTERFACE BUS = MUXBUFF PORT, BUSSTD = TRANSPARENT, BUSTYPE = UNDEF

15 ## Generics for VHDL or Parameters for Verilog
PARAMETER NMUX = 1, DT = integer

## Ports
PORT HDW0 = HDW0, DIR = I, VEC = [31:0], ENDIAN = LITTLE, BUS = MUX HOSTPORT, DEFAULT = HDW0

20 PORT HTRI0 = H TRI0, DIR = I, VEC = [31:0], ENDIAN = LITTLE, BUS = MUX HOSTPORT, DEFAULT = HTRI0
PORT HAD0 = HAD0, DIR = I, VEC = [19:0], ENDIAN = LITTLE, BUS = MUX HOSTPORT, DEFAULT = HAD0
PORT HCO0 = HCO0, DIR = I, VEC = [8:0], ENDIAN = LITTLE, BUS = MUX HOSTPORT, DEFAULT = HCO0

PORT DDW0 = DDW, DIR = I, VEC = [31:0], ENDIAN = LITTLE, BUS = MUX DESIGN0 PORT, DEFAULT = DDW
25 PORT DTRI0 = D TRI, DIR = I, VEC = [31:0], ENDIAN = LITTLE, BUS = MUX DESIGN0 PORT, DEFAULT = DTRI

PORT DAD0 = DAD, DIR = I, VEC = [19:0], ENDIAN = LITTLE, BUS = MUX DESIGN0 PORT, DEFAULT = DAD
PORT DCO0 = DCO, DIR = I, VEC = [8:0], ENDIAN = LITTLE, BUS = MUX DESIGN0 PORT, DEFAULT = DCO

PORT DW0 = DW0, DIR = O, VEC = [31:0], ENDIAN = LITTLE, BUS = MUX BUFF PORT, DEFAULT = DW0
30 PORT TRI0 = TRI0, DIR = O, VEC = [31:0], ENDIAN = LITTLE, BUS = MUX BUFF PORT, DEFAULT = TRI0

PORT ra0 = "", DIR = O, VEC = [19:0], ENDIAN = LITTLE
PORT rc0 = "", DIR = O, VEC = [8:0], ENDIAN = LITTLE
...

35 PORT CNTRL = "", DIR = I, VEC = [31:0], ENDIAN = LITTLE

END

Figure 4.4: The main code of the MPD file of the Multiplexer component.

4.2.4 Custom Memory Controller

The custom memory controller which is the blockB1 in Figure 4.2 is used as an interface
between aMicroBlazeprocessor and the ZBT SSRAM. Because we choose the IBM’s On-chip
Peripheral Bus (OPB) [28] as the bus interface of aMicroBlazeprocessor to connect to the
off-chip ZBT SSRAM, the custom memory controller translates the OPB bus protocol into the
ZBT SSRAM special protocol. In order to make our custom memory controller as a consistent
interface to connect aMicroBlazeprocessor to the ZBT SSRAM, we also write a wrapper for
our custom memory controller. Finally, we have got two VHDL files for our custom memory
controller —opb zbt controller core.vhd(the core VHDL file) andopb zbt controller.vhd(the
wrapper VHDL file).

We need to create a pcore for our custom memory controller. We create aopb zbt controller v1 00 a
directory that includes all the files and directories which the pcore of the custom memory con-
troller requires, such as a Microprocessor Peripheral Definition (MPD) file, a Peripheral Ana-
lyze Order (PAO) file and VHDL source code files. We also need to add some bus interfaces
in the MPD file of the custom memory controller in order to make the custom memory con-
troller connectivity interface simpler. The main code of the MPD file of the custom memory
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0 BEGIN buffers

## Peripheral Options
...

5 ## Bus Interfaces
BUSINTERFACE BUS = BUFFMUXPORT, BUS_STD = TRANSPARENT, BUSTYPE = UNDEF
BUSINTERFACE BUS = BUFFRD0 PORT, BUS_STD = TRANSPARENT, BUSTYPE = UNDEF
BUSINTERFACE BUS = BUFFRD1 PORT, BUS_STD = TRANSPARENT, BUSTYPE = UNDEF
BUSINTERFACE BUS = BUFFRD2 PORT, BUS_STD = TRANSPARENT, BUSTYPE = UNDEF

10 BUS INTERFACE BUS = BUFFRD3 PORT, BUS_STD = TRANSPARENT, BUSTYPE = UNDEF
BUSINTERFACE BUS = BUFFRD4 PORT, BUS_STD = TRANSPARENT, BUSTYPE = UNDEF
BUSINTERFACE BUS = BUFFRD5 PORT, BUS_STD = TRANSPARENT, BUSTYPE = UNDEF

## Generics for VHDL or Parameters for Verilog
15

## Ports
PORT I0 = RDI, DIR = O, VEC = [31:0], ENDIAN = LITTLE, BUS = BUFF RD0 PORT, DEFAULT = RDI
PORT O0 = DW0, DIR = I, VEC = [31:0], ENDIAN = LITTLE, BUS = BUFF MUXPORT
PORT T0 = TRI0, DIR = I, VEC = [31:0], ENDIAN = LITTLE, BUS = BUFF MUXPORT

20 PORT rd0 = "", DIR = IO, VEC = [31:0], ENDIAN = LITTLE, THREE STATE=FALSE, IOB STATE=BUF
...

END

Figure 4.5: The main code of the MPD file of the Buffer component.

controller is shown in Figure 4.6. As Figure 4.6 shows, we add a bus namedSOPBto bundle
the signals that the custom memory controller uses to connect to the OPB bus, add a bus named
DESIGNBUFF PORTto bundle the signals that the custom memory controller uses to connect
to the Buffer component and a bus namedDESIGNMUX PORTto bundle the signals that the
custom memory controller uses to connect to the Multiplexer component.

4.2.5 Transfer Components

In order to transfer control signals and status signals between the Host Interface component
and the Function Design component, we need to develop two components —fin ctrl compo-
nent which is the blockB2 in Figure 4.2 andhostdesignctrl component which is the block
B3 in Figure 4.2. Thefin ctrl component is used to connect thehostdesignctrl component
to MicroBlazeprocessors in the Function Design component using the Local Memory Buses
(LMB) [29]. When aMicroBlazeprocessor finishes its tasks, it sends a finish signal to the
hostdesignctrl component through thefin ctrl component. Thehostdesignctrl component
is used to connect the Host Interface component to the Function Design component. The
function of thehostdesignctrl component is to send the start signal to the Function Design
component that is used to tellMicroBlazeprocessors to start to work. Thehostdesignctrl
component is also used to collect all the finish signals sent byMicroBlazeprocessors through
thefin ctrl components and when all of theMicroBlazeprocessors have already sent the finish
signals to it, it will sent a final finish signal to the Host Interface component to tell an outside
host processor that the Function Design component has already finished the tasks. We need
to create the pcores for thefin ctrl component and thehostdesignctrl component. We cre-
ate afin ctrl v1 00 a directory that include all the files and directories which the pcore of the
fin ctrl component requires, such as a MPD file, a PAO file and VHDL source code files and
a hostdesignctrl v1 00 a directory that include all the files and directories which the pcore
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0 BEGIN opb zbt controller

## Peripheral Options
...

5 ## Bus Interfaces
BUSINTERFACE BUS = SOPB, BUSSTD = OPB, BUSTYPE = SLAVE
BUSINTERFACE BUS = DESIGNBUFF PORT, BUSSTD = TRANSPARENT, BUSTYPE = UNDEF
BUSINTERFACE BUS = DESIGNMUXPORT, BUSSTD = TRANSPARENT, BUSTYPE = UNDEF

10 ## Generics for VHDL or Parameters for Verilog
...

## Ports
PORT OPBClk = "", DIR = IN, SIGIS = CLK, BUS = SOPB, DEFAULT =

15 PORT OPBRst = OPB Rst, DIR = IN, BUS = SOPB, DEFAULT = OPB Rst
PORT OPBABus = OPBABus, DIR = IN, VEC = [0:31], BUS = SOPB, DEFAULT = OPB ABus
PORT OPBBE = OPBBE, DIR = IN, VEC = [0:3], BUS = SOPB, DEFAULT = OPB BE
PORT OPBRNW = OPBRNW, DIR = IN, BUS = SOPB, DEFAULT = OPBRNW
PORT OPBselect = OPB select, DIR = IN, BUS = SOPB, DEFAULT = OPB select

20 PORT OPBseqAddr = OPB seqAddr, DIR = IN, BUS = SOPB, DEFAULT = OPB seqAddr
PORT OPBDBus = OPBDBus, DIR = IN, VEC = [0:31], BUS = SOPB, DEFAULT = OPB DBus
PORT ZBTDBus = Sl DBus, DIR = OUT, VEC = [0:31], BUS = SOPB, DEFAULT = Sl DBus
PORT ZBTerrAck = Sl errAck, DIR = OUT, BUS = SOPB, DEFAULT = Sl errAck
PORT ZBTretry = Sl retry, DIR = OUT, BUS = SOPB, DEFAULT = Sl retry

25 PORT ZBTtoutSup = Sl toutSup, DIR = OUT, BUS = SOPB, DEFAULT = Sl toutSup
PORT ZBTxferAck = Sl xferAck, DIR = OUT, BUS = SOPB, DEFAULT = Sl xferAck

...

30 PORT RCO = DCO, DIR = O, VEC = [0:8], BUS = DESIGN MUXPORT
PORT RAO = DAD, DIR = OUT, VEC = [0:C ZBT ADDRSIZE-1], BUS = DESIGN MUXPORT
PORT RDI = RD I, DIR = I, VEC = [0:31], BUS = DESIGN BUFF PORT
PORT RDO = DDW, DIR = O, VEC = [0:31], BUS = DESIGN MUXPORT
PORT TRD = DTRI, DIR = O, VEC = [0:31], BUS = DESIGN MUXPORT

35
END

Figure 4.6: The main code of the MPD file of the custom memory controller.

of thehostdesignctrl component requires, such as a MPD file, a PAO file and VHDL source
code files. The main code of the MPD files of thefin ctrl component and the main code of the
MPD files of thehostdesignctrl component are shown in Figure 4.7 and Figure 4.8. As Figure
4.7 shows, in thefin ctrl component we add a bus namedSLMBto bundle the signals that the
fin ctrl component uses to connect to the LMB bus. The portSl FinOut is used to send the
finish signal to thehostdesignctrl component. As Figure 4.8 shows, in thehostdesignctrl
component the portCOMMANDREG is used to receive the control signals from the Host In-
terface component. The ports fromFIN REG0 to FIN REG19 are used to receive the finish
signals from thefin ctrl components. The portRSTOUT is used to reset the Function Design
component, in other words it is used to tell the Function Design component to start to work. The
portSTATUSREGis used to send the final finish signal to the Host Interface component to tell
an outside host processor that the Function Design component has already finished the tasks.
We also add a parameter namedN FIN which is used to tell thehostdesignctrl component
how manyfin ctrl components need to connect to it. The maximum number of the parameter
N FIN is twenty.
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0 BEGIN fin ctrl

## Peripheral Options
...

5 ## Bus Interfaces
BUS_INTERFACE BUS = SLMB, BUS_TYPE = SLAVE, BUS_STD = LMB

## Generics for VHDL or Parameters for Verilog
...

10
## Ports
PORT LMBClk = "", DIR = I, BUS = SLMB
PORT LMBRst = LMB Rst, DIR = I, BUS = SLMB
PORT LMBABus = LMBABus, DIR = I, VEC = [0:(C LMBAWIDTH-1)], BUS = SLMB

15 PORT LMBWriteDBus = LMB WriteDBus, DIR = I, VEC = [0:(C LMBDWIDTH-1)], BUS = SLMB
PORT LMBAddrStrobe = LMB AddrStrobe, DIR = I, BUS = SLMB
PORT LMBReadStrobe = LMB ReadStrobe, DIR = I, BUS = SLMB
PORT LMBWriteStrobe = LMB WriteStrobe, DIR = I, BUS = SLMB
PORT LMBBE = LMBBE, DIR = I, VEC = [0:((C LMBDWIDTH/8)-1)], BUS = SLMB

20 PORT Sl DBus = Sl DBus, DIR = O, VEC = [0:(C LMBDWIDTH-1)], BUS = SLMB
PORT Sl Ready = Sl Ready, DIR = O, BUS = SLMB

PORT Sl FinOut = "", DIR = O

25 END

Figure 4.7: The main code of the MPD files of thefin ctrl component.

0 BEGIN host design ctrl

## Peripheral Options
...

5 ## Bus Interfaces

## Generics for VHDL or Parameters for Verilog
PARAMETER NFIN = 1, DT = integer

10 ## Ports
...
PORT COMMANDREG = "", DIR = I, VEC = [31:0], ENDIAN = LITTLE
PORT FIN REG0 = "", DIR = I
...

15 PORT FIN REG19 = "", DIR = I
PORT RSTOUT = "", DIR = O
PORT STATUSREG = "", DIR = O, VEC = [31:0], ENDIAN = LITTLE

END

Figure 4.8: The main code of the MPD files of thehostdesignctrl component.

4.3 Generating the Interface of an Embedded System with
the Outside World

In Section 4.2, we introduced the structure of the interface of an embedded system with the
outside world. This interface can be used for data exchange between the embedded system and
the outside world, such as an outside host processor, via the off-chip memories. In this section,
we explain the approach about how to make theESPAM tool be able to automatically generate
the interface when it maps an application onto a multiprocessor platform.

First, we need to add a new group of generic parameterized components namedPeripheral Com-
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ponentsin the platform model of ourESPAM tool. In thePeripheral Componentswe need to add
our custom memory controller which is used as an interface between aMicroBlazeprocessor
and the ZBT SSRAM. For the sake of making a processor communicate with an outside ter-
minal, in thePeripheral Componentswe also need to add the UART (Universal Asynchronous
Receiver Transmitter) which can control the serial port of the FPGA board to communicate with
an outside terminal. Moreover, we need to add the OPB (IBM’s On-chip Peripheral Bus) port
which is used by our custom memory controller and the UART in the platform model. In order
to add such components in the platform model of ourESPAM tool, we need to create a new class
namedPeripheral, a new class namedZBTMemoryControllerwhich is the class for our custom
memory controller and it extentsPeripheralclass, a new class namedUart which is the class
for the Universal Asynchronous Receiver Transmitter and it also extentsPeripheralclass, a new
class namedOPBPortwhich is the class for the OPB port in the data model of ourESPAM tool.
The second step is to modify the platform specification parser of ourESPAM tool. In this step,
we need to modify the platform specification parser to make it parse the peripheral components
such as our custom memory controller and the UART when we specify such peripheral compo-
nents in a platform specification. The third step is to modify ourMhsVisitorclass which is used
to generate a Microprocessor Hardware Specification (MHS) file for anXPS project and our
MssVisitorclass which is used to generate a Microprocessor Software Specification (MSS) file
for anXPSproject. In theMhsVisitorclass, first we generate the external port for our interface to
connect to the PCI bus in a MHS file. Second, every time we generate a processor component
in the MHS file we also generate afin ctrl component. Third, we make theMhsVisitorclass
visit the data model to get the information of our custom memory controllers and the UARTs
and generate these two types of components in the MHS file. Fourth, when we generate our
custom memory controllers in the MHS file we also generate the Host Interface component, the
Multiplexer component, the Buffer component, and thehostdesignctrl component in the MHS
file. But the Host Interface component, the Multiplexer component, the Buffer component, and
thehostdesignctrl component are just generated once in the MHS file. In theMssVisitorclass,
first every time we generate a processor component in a MSS file we also generate afin ctrl
component. Second, we also make this class can visit the data model to get the information of
our custom memory controllers and the UARTs and generate these two types of components
in the MSS file. Third, when we generate our custom memory controllers in the MSS file we
also generate the Host Interface component, the Multiplexer component, the Buffer component,
and thehostdesignctrl component in the MSS file. But also the Host Interface component,
the Multiplexer component, the Buffer component, and thehostdesignctrl component are just
generated once in the MSS file.

By implementing the steps explained above, ourESPAM tool can automatically generate the
interface of an embedded system with the outside world when it maps an application onto a
multiprocessor platform. For example, when we give the platform specification shown in Figure
4.9, ourESPAM tool can automatically generate the interface. In this platform specification,
we specify threeMicroBlazeprocessors (MB 1, MB 2 andMB 3), one UART (RS232Uart 1)
and three custom memory controllers (ZBT CTRL 1, ZBT CTRL 2 andZBT CTRL 3) which
are used as the interfaces between theMicroBlazeprocessors and the ZBT SSRAMs. Each
processor has 16K data memory, 8K program memory and the OPB port.MB 1 uses the link
mb opb 1 to connect to theZBT CTRL 1 andRS232Uart 1 via the OPB bus.MB 2 uses the
link mb opb 2 to connect to theZBT CTRL 2 via the OPB bus.MB 3 uses the linkmb opb 3
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0 <platform name="myPlatform">

<processor name="MB 1" type="MB" data_memory="16384" program_memory="8192">
<port name="OPB 1" type="OPBPort"/>

</processor>
5

<processor name="MB 2" type="MB" data_memory="16384" program_memory="16384">
<port name="OPB 2" type="OPBPort"/>

</processor>

10 <processor name="MB 3" type="MB" data_memory="8192" program_memory="8192">
<port name="OPB 3" type="OPBPort"/>

</processor>

<peripheral name="ZBT CTRL 1" type="ZBTCTRL" size="1000000">
15 <port name="IO 1" type="OPBPort"/>

</peripheral>

<peripheral name="RS232 Uart 1" type="UART" size="256">
<port name="UARTIO 1" type="OPBPort"/>

20 </peripheral>

<peripheral name="ZBT CTRL 2" type="ZBTCTRL" size="1000000">
<port name="IO 2" type="OPBPort"/>

</peripheral>
25

<peripheral name="ZBT CTRL 3" type="ZBTCTRL" size="1000000">
<port name="IO 3" type="OPBPort"/>

</peripheral>

30 <link name="mb opb 1">
<resource name="MB 1" port="OPB 1"/>
<resource name="ZBT CTRL 1" port="IO 1"/>
<resource name="RS232 Uart 1" port="UARTIO 1"/>

</link>
35

<link name="mb opb 2">
<resource name="MB 2" port="OPB 2"/>
<resource name="ZBT CTRL 2" port="IO 2"/>

</link>
40

<link name="mb opb 3">
<resource name="MB 3" port="OPB 3"/>
<resource name="ZBT CTRL 3" port="IO 3"/>

</link>
45

</platform>

Figure 4.9: An example of a platform specification.

to connect to theZBT CTRL 3 via the OPB bus. OurESPAM tool automatically generates the
components which the interface needs, such as the Host Interface component, the Multiplexer
component, the Buffer component, thefin ctrl components, and thehostdesignctrl component.
More complex example which generates the interface using ourESPAM tool is given in Chapter
5.
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Chapter 5
Case Studies

In this chapter, we present two case studies. The first case study is about M-JPEG multiproces-
sor system with homogeneous architecture which is used to evaluate the design methodology
in our ESPAM tool presented in Chapter 2 and to validate the interface of an embedded system
with the outside world explained in Chapter 4. The second case study is about M-JPEG multi-
processor system with heterogeneous and hierarchical architecture which is used to validate the
procedure of implementing an embedded system as heterogeneous and hierarchical architecture
and to evaluate the heterogeneous and hierarchical architecture introduced in Chapter 3. Based
on the results which are obtained from the experiments in these two case studies, we present an
analysis and comments on these results.

5.1 M-JPEG Homogeneous Multiprocessor System

In this case study, we use a complex application, namely a modified Motion JPEG (M-JPEG)
encoder which is mapped onto multiprocessor embedded system platform with homogeneous
architecture. Just as the traditional M-JPEG encoder, this modified M-JPEG encoder com-
presses a sequence of video frames, using JPEG [30] [31] picture compression in each frame
of the video. This modified M-JPEG encoder processes video data which is in the 4:2:2 YUV
format.

Figure 5.1 shows the initial Matlab code of this M-JPEG encoder application. In line 1 to line 3,
it specifies the parameters which are namedNumFrames, VNumBlocksandHNumBlocks. The
parameterNumFramesstands for the number of frames to be processed and it ranges from 1 to
100. The parameterVNumBlocksstands for the vertical size of a frame in number of 8×8-pixel
blocks and it ranges from 2 to 100. The parameterHNumBlocksstands for the horizontal size
of a frame in number of 8×8-pixel blocks and it ranges from 1 to 100. Lines 5-15 define some
types of data which are used in the code. Lines 17-23 initialize the luminance and chrominance
quantization table (QTables) and luminance and chrominance Huffman table (HuffTableAC)
and so on. First, theVideoInMain()function divides the frames in YUV format in 8×8-pixel
blocks. Thus, every block is a 4:2:2 YUV block. After that each frame is compressed using
the standard JPEG compression algorithm. The Discrete Cosine Transform (DCT) is applied
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on every 4:2:2 YUV block - line 30, followed by quantization (Q) and variable-length encoding
(VLE) - lines 31-34. FunctionVideoOut()in lines 35-36 is used to add the header information
to the compressed frame.

1 %parameter NumFrames 1 100;
2 %parameter VNumBlocks 2 100;
3 %parameter HNumBlocks 1 100;
4
5 %typedef HeaderInfo THeaderInfo;
6 %typedef LuminanceQTable TQTables;
7 %typedef ChrominanceQTable TQTables;
8 %typedef LuminanceHuffTableDC THuffTablesDC;
9 %typedef ChrominanceHuffTableDC THuffTablesDC;
10 %typedef LuminanceHuffTableAC THuffTablesAC;
11 %typedef ChrominanceHuffTableAC THuffTablesAC;
12 %typedef LuminanceTablesInfo TTablesInfo;
13 %typedef ChrominanceTablesInfo TTablesInfo;
14 %typedef Packets TPackets;
15 %typedef Block TBlocks;
16
17 for k = 1:1:1,
18 [ LuminanceQTable, ChrominanceQTable,
19 LuminanceHuffTableDC,ChrominanceHuffTableDC,
20 LuminanceHuffTableAC,ChrominanceHuffTableAC,
21 LuminanceTablesInfo, ChrominanceTablesInfo
22 ] = DefaultTables();
23 end
24
25 for k = 1:1:NumFrames,
26 [ HeaderInfo ] = VideoInInit();
27 for j = 1:1:VNumBlocks,
28 for i = 1:1:HNumBlocks,
29 [ Block ] = VideoInMain();
30 [ Block ] = DCT( Block );
31 [ Block ] = Q( Block, LuminanceQTable, ChrominanceQTable );
32 [ Packets ] = VLE( Block,
33 LuminanceHuffTableDC,ChrominanceHuffTableDC,
34 LuminanceHuffTableAC,ChrominanceHuffTableAC );
35 [ dummy ] = VideoOut( HeaderInfo, LuminanceTablesInfo,
36 ChrominanceTablesInfo, Packets );
37 end
38 end
39 end

Figure 5.1: The initial Matlab code of the M-JPEG encoder application.

First, we need to convert the initial Matlab code which is shown in Figure 5.1 into a KPN spec-
ification. We use theCOMPAAN tool [2] to automatically transform the Matlab code of the
M-JPEG encoder application which is specified in a sequential model of computation into a
KPN model of computation making the task-level parallelism available in the M-JPEG encoder
application explicit. The KPN of the M-JPEG encoder application which is generated byCOM-
PAAN is shown in Figure 5.2. In this KPN specification of the M-JPEG encoder application,
there are seven processes —ND 1, ND 2, ND 3, ND 4, ND 5, ND 6 andND 7. ND 1 is the
DefaultTables()process.ND 2 is theVideoInInit()process.ND 3 is theVideoInMain()process.
ND 4 is theDCT() process.ND 5 is theQ() process.ND 6 is theVLE() process.ND 7 is
theVideoOut()process. In this case study, we conduct two experiments to evaluate the design
methodology in ourESPAM tool and validate the interface of an embedded system with the
outside world.

In the first experiment, we map the M-JPEG encoder application onto the one-processor em-
bedded system platform shown in Figure 5.3. In this case, actually there is no task-level par-
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Figure 5.2: The KPN of the M-JPEG encoder application. 
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Figure 5.3: One-processor embedded system platform for M-JPEG encoder application.

allelism exploited in this embedded system as this is the case in the initial Matlab program.
Based on the design methodology in ourESPAM tool, we still need to write thePlatform Spec-
ification and theMapping Specificationshown in Figure 5.4 and Figure 5.5. In thePlatform
Specification, we see that there are oneMicroBlazeprocessor (MB 1) and two custom mem-
ory controllers (ZBT CTRL 1 andZBT CTRL2) which are used as the interfaces between the
MicroBlazeprocessors and the ZBT SSRAMs in this embedded system platform. Because we
use the ADM-XRC-II board as the target FPGA platform, there are six banks of ZBT SSRAM
which are the off-chip memories on this FPGA board. TheMB 1 uses the two custom mem-
ory controllers —ZBT CTRL 1 andZBT CTRL 2 to connect to two banks of ZBT SSRAM.
ZBT CTRL 1 is used to read the initial video data from ZBT SSRAM andZBT CTRL 2 is used
to write the resulting video data to the ZBT SSRAM. We also set the data memory and program
memory ofMB 1 to 64K. In theMapping Specification, we map all of the processes which
includeDefaultTables()process (ND1), VideoInInit()process (ND2), VideoInMain()process
(ND 3), DCT() process (ND4), Q() process (ND5), VLE() process (ND6) andVideoOut()
process (ND7) in the KPN specification which is shown in Figure 5.2 onto oneMicroBlaze
processor —MB 1. In this experiment we use one video frame which size is 128×128 pixels to
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test the M-JPEG encoder embedded system. In order to make the embedded system be able to
exchange video data with the outside world, we need to use the interface presented in Chapter 4
to communicate with an outside host processor and to store the video data in the off-chip mem-
ories. First, we use the outside host processor to store the video data in the first bank of ZBT
SSRAM. Then processorMB 1 uses the controllerZBT CTRL1 to read the video data from
this bank and starts to execute the M-JPEG process on this video frame. When processorMB 1
finishes all of the tasks, it stores the resulting video data in the second bank of ZBT SSRAM
using controllerZBT CTRL 2. Finally, the outside host processor uses the interface to read back
the resulting video data from such bank of ZBT SSRAM.

0 <platform name="myPlatform">

<processor name="MB 1" type="MB" data_memory="64000" program_memory="64000">
<port name="OPB 1" type="OPBPort"/>

</processor>
5

<peripheral name="ZBT CTRL 1" type="ZBTCTRL" size="1000000">
<port name="IO 1" type="OPBPort"/>

</peripheral>

10 <peripheral name="ZBT CTRL 2" type="ZBTCTRL" size="1000000">
<port name="IO 2" type="OPBPort"/>

</peripheral>

<link name="mb opb 1">
15 <resource name="MB 1" port="OPB 1"/>

<resource name="ZBT CTRL 1" port="IO 1"/>
<resource name="ZBT CTRL 2" port="IO 2"/>

</link>

20 </platform>

Figure 5.4:Platform Specificationfor one-processor embedded system platform.

0 <mapping name="myMapping">

<processor name="MB 1">
<process name="ND 1" />
<process name="ND 2" />

5 <process name="ND 3" />
<process name="ND 4" />
<process name="ND 5" />
<process name="ND 6" />
<process name="ND 7" />

10 </processor>

</mapping>

Figure 5.5:Mapping Specificationfor one-processor embedded system platform.

In the second experiment, we map the M-JPEG encoder application onto a five-processor em-
bedded system platform shown in Figure 5.6. In this case, there are five parallel tasks which are
executed concurrently in this embedded system platform. ThePlatform Specificationand the
Mapping Specificationfor this five-processor embedded system platform are shown in Figure
5.7 and Figure 5.8. In thePlatform Specification, we see that there are fiveMicroBlazeproces-
sors (MB 1, MB 2, MB 3, MB 4, andMB 5) and five custom memory controllers (ZBT CTRL 1,
ZBT CTRL 2, ZBT CTRL 3, ZBT CTRL 4, andZBT CTRL 5) which are used as the interfaces
between theMicroBlazeprocessors and the ZBT SSRAMs in this embedded system platform.
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Figure 5.6: Five-processor embedded system platform for M-JPEG encoder application.

In this platform, eachMicroBlazeprocessor uses one of the custom memory controllers to con-
nect to one bank of ZBT SSRAM on the target FPGA platform. TheMB 1 usesZBT CTRL 1 to
read the initial video data from the ZBT SSRAM and theMB 5 usesZBT CTRL 5 to write the
resulting video data to the ZBT SSRAM. We also set the data memory size and program memory
size for each processor in thePlatform Specification. In theMapping Specification, we mapDe-
faultTables()process (ND1), VideoInInit()process (ND2) andVideoInMain()process (ND3)
onto processorMB 1, DCT() process (ND4) onto processorMB 2, Q() process (ND5) onto
processorMB 3, VLE() process (ND6) onto processorMB 4 andVideoOut()process (ND7)
onto processorMB 5. In this experiment we also use one video frame which size is 128×128
pixels to test the M-JPEG encoder embedded system. In order to make the embedded system
be able to exchange video data with the outside world, we need to use the interface explained in
Chapter 4 to communicate with an outside host processor and to store the video data in the off-
chip memories. First, we use the outside host processor to store the video data in the first bank
of ZBT SSRAM using the interface. Then processorMB 1 uses the controllerZBT CTRL 1 to
read the video data from this bank of ZBT SSRAM and the fiveMicroBlazeprocessors start to
execute the M-JPEG process on this video frame. When all of the five processors finish all of
the tasks, processorMB 5 stores the resulting video data in the fifth bank of ZBT SSRAM using
the controllerZBT CTRL 5. Finally, the outside host processor uses the interface to read back
the resulting video data from this bank of ZBT SSRAM.

In these two experiments, we use one video frame which size is 128×128 pixels to test these
two M-JPEG encoder embedded systems. The performances of these two M-JPEG encoder
embedded systems is shown in Figure 5.9. The frequency of the processors in this case study
is 100MHz. Comparing the performances of these two experiments, we see that the second
experiment which maps the M-JPEG encoder application onto five-processor embedded system
platform is about 2 times faster than the first experiment which maps the M-JPEG encoder appli-
cation onto one-processor embedded system platform. The first experiment uses one processor
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0 <platform name="myPlatform">

<processor name="MB 1" type="MB" data_memory="65536" program_memory="32768">
<port name="OPB 1" type="OPBPort"/>

</processor>
5 <processor name="MB 2" type="MB" data_memory="16384" program_memory="16384">

<port name="OPB 2" type="OPBPort"/>
</processor>
<processor name="MB 3" type="MB" data_memory="8192" program_memory="8192">

<port name="OPB 3" type="OPBPort"/>
10 </processor>

<processor name="MB 4" type="MB" data_memory="16384" program_memory="16384">
<port name="OPB 4" type="OPBPort"/>

</processor>
<processor name="MB 5" type="MB" data_memory="16384" program_memory="16384">

15 <port name="OPB 5" type="OPBPort"/>
</processor>

<peripheral name="ZBT CTRL 1" type="ZBTCTRL" size="1000000">
<port name="IO 1" type="OPBPort"/>

20 </peripheral>
<peripheral name="ZBT CTRL 2" type="ZBTCTRL" size="1000000">

<port name="IO 2" type="OPBPort"/>
</peripheral>
<peripheral name="ZBT CTRL 3" type="ZBTCTRL" size="1000000">

25 <port name="IO 3" type="OPBPort"/>
</peripheral>
<peripheral name="ZBT CTRL 4" type="ZBTCTRL" size="1000000">

<port name="IO 4" type="OPBPort"/>
</peripheral>

30 <peripheral name="ZBT CTRL 5" type="ZBTCTRL" size="1000000">
<port name="IO 5" type="OPBPort"/>

</peripheral>

<link name="mb opb 1">
35 <resource name="MB 1" port="OPB 1"/>

<resource name="ZBT CTRL 1" port="IO 1"/>
</link>
<link name="mb opb 2">

<resource name="MB 2" port="OPB 2"/>
40 <resource name="ZBT CTRL 2" port="IO 2"/>

</link>
<link name="mb opb 3">

<resource name="MB 3" port="OPB 3"/>
<resource name="ZBT CTRL 3" port="IO 3"/>

45 </link>
<link name="mb opb 4">

<resource name="MB 4" port="OPB 4"/>
<resource name="ZBT CTRL 4" port="IO 4"/>

</link>
50 <link name="mb opb 5">

<resource name="MB 5" port="OPB 5"/>
<resource name="ZBT CTRL 5" port="IO 5"/>

</link>

55 </platform>

Figure 5.7:Platform Specificationfor five-processor embedded system platform.

to execute the M-JPEG encoder application and the second experiment uses five processors
which run concurrently to execute the M-JPEG encoder application. Thus, the platform in the
second experiment should be 5 times faster than the first experiment theoretically. However,
in Figure 5.9 we see that actually the second experiment is just 2 times faster than the first ex-
periment. The first reason is that the tasks which are executed in each processor in the second
experiment are not balanced. Table 5.1 shows how many clock cycles and the utilization percent
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0 <mapping name="myMapping">

<processor name="MB 1">
<process name="ND 1" />
<process name="ND 2" />

5 <process name="ND 3" />
</processor>

<processor name="MB 2">
<process name="ND 4" />

10 </processor>

<processor name="MB 3">
<process name="ND 5" />

</processor>
15

<processor name="MB 4">
<process name="ND 6" />

</processor>

20 <processor name="MB 5">
<process name="ND 7" />

</processor>

</mapping>

Figure 5.8:Mapping Specificationfor five-processor embedded system platform.

of each process, which is executed by one processor in the second experiment, need to take in
order to process one block image which includes 8×8 pixels. We see that the processes which
are executed by the five processors are not balanced. TheDCT() process takes more than 50
percent of the whole time, but theVideoInMain()process just takes 4.1 percent andVideoOut()
process just takes 0.7 percent of the whole time. Thus, in this case theDCT() process is the
bottleneck of the whole system. The second reason is that in the second experiment, the five
processors have to spend time in communicating with each other. In contrast, the first experi-
ment just includes one processor and it saves lots of time in the communication. 
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Figure 5.9: The performances of the two M-JPEG encoder embedded systems.

Table 5.2 shows the device utilization summary for the second experiment. In this experiment,
the number indicates that 13 percent of the FPGA resources are used. However, we see that
there are 123 out of 144RAMB16sof the on-chip memories are used. This means 85 percent
of the on-chip memories are used. Because aMicroBlazeprocessor is a soft core, based on
the requirement of an application we can map the application onto any number ofMicroBlaze
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Table 5.1: Cycles and utilization percentage of each process in experiment 2.
VideoInMain DCT Q VLE VideoOut

Cycles 10,837 135,036 68,314 49,683 1,727
Percentage(%) 4.1 50.8 25.7 18.7 0.7

processors embedded system platform. The only limitation is whether the target FPGA board
has enough on-chip memories and reconfigurable resources.

Table 5.2: Virtex2 xc2v6000: device utilization summary for experiment 2.
FPGA Resource Utilization %

Number of MULT18X18s 15 out of 144 10%
Number of RAMB16s 123 out of 144 85%

Number of SLICEs 4664 out of 33792 13%
Number of BUFGMUXs 2 out of 16 12%

In this case study, we verify the design methodology in ourESPAM tool by mapping the M-
JPEG encoder application onto two types of embedded system platform and compare the per-
formances of a multiprocessor embedded system with a single processor embedded system.
With the help of ourESPAM tool we can map an application onto a multiprocessor embedded
system platform easily and quickly. We prove that with mapping the same application onto a
multiprocessor embedded system gives better time performance compared a single processor
embedded system. We also validate the interface of our embedded systems with the outside
world explained in Chapter 4. In this case study, we find out that there are still several tasks
we need to do manually after the system asXPSproject automatic generation using ourESPAM

tool. The main tasks are related to the memory allocation. According to different applications,
we need to manually set the size of some FIFOs, the stack size of each processor or even the
data/program memory allocation of each processor. The other tasks are about importing the
implementations of function calls in processors and changing function calls in processors’ pro-
gram code and so on. All these custom tasks which we need to do manually will be explained
in Chapter 6.

5.2 M-JPEG Heterogeneous and Hierarchical Multiproces-
sor System

In this case study, we use the same application M-JPEG encoder, but we map this application
onto a multiprocessor embedded system platform with heterogeneous and hierarchical archi-
tecture which is shown in Figure 5.10. We see that this heterogeneous and hierarchical multi-
processor system includes fourMicroBlazeprocessors and one dedicated hardware IP core for
theDCT() process in the M-JPEG encoder application.

In order to generate this multiprocessor embedded system, the first step is to convert the Matlab
code shown in Figure 5.1 to a KPN specification. We use theCOMPAAN tool to automati-
cally transform the code to a KPN specification. Because of the fourMicroBlazeprocessors
together with one dedicated hardware IP core, there are five parallel tasks which are executed
concurrently in this embedded system platform in this case. Thus, the second step is to write
thePlatform Specificationand theMapping Specificationfor a five-processor embedded system
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Figure 5.10: The multiprocessor embedded system platform with heterogeneous and hierarchi-
cal architecture for M-JPEG encoder application.

platform which are the same as Figure 5.7 and Figure 5.8. In thePlatform Specification, there
are fiveMicroBlazeprocessors (MB 1, MB 2, MB 3, MB 4, andMB 5) and five custom mem-
ory controllers (ZBT CTRL 1, ZBT CTRL 2, ZBT CTRL3, ZBT CTRL 4, andZBT CTRL5)
which are used as the interfaces between theMicroBlazeprocessors and the ZBT SSRAMs in
this embedded system platform. In theMapping Specification, we mapDefaultTables()process
(ND 1),VideoInInit()process (ND2) andVideoInMain()process (ND3) onto processorMB 1,
DCT() process (ND4) onto processorMB 2, Q() process (ND5) onto processorMB 3, VLE()
process (ND6) onto processorMB 4 and VideoOut()process (ND7) onto processorMB 5.
In the third step we use ourESPAM tool to map the M-JPEG encoder application onto this
five-processor embedded system platform. Because theDCT() process has been mapped onto
processorMB 2, the fourth step is to use the dedicated hardware IP core for theDCT() process
which was generated in Section 3.2.2 to replace processorMB 2. The detailed steps of replacing
processorMB 2 with the dedicated hardware IP core for theDCT() process will be explained
in Chapter 6. It is possible for ourESPAM tool to automatically implement the work which is
described above. In this thesis, we just focus on showing the procedure about how to implement
systematically and automatically an embedded system as heterogeneous and hierarchical archi-
tecture. The implementation in ourESPAM tool is straightforward and it is out of the scope of
this thesis.

In this case study, we use one video frame which size is 128×128 pixels to test this M-JPEG
encoder heterogeneous and hierarchical embedded system. In order to make the embedded
system be able to exchange video data with the outside world, we still need to use the interface
which is explained in Chapter 4 to communicate with an outside host processor and to store
the video data in the off-chip memories. Figure 5.11 shows the performances of this M-JPEG
encoder heterogeneous and hierarchical embedded system together with the M-JPEG encoder
homogeneous embedded systems — the one-processor embedded system and five-processor
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embedded system. The frequency of the processors in this case study is 100MHz. In Figure 5.11
we see that the M-JPEG encoder heterogeneous and hierarchical embedded system is around
2 times faster than the five-processor homogeneous embedded system and it is around 4 times
faster than the one-processor homogeneous embedded system. In Table 5.1, we see that in
the five-processor homogeneous embedded system theDCT() process is the bottleneck of the
system. In the five-processor homogeneous embedded system, theDCT() process takes 50.8
percent of the whole time and it is around 2 times slower than theQ() process which takes
25.7 percent of the whole time. For this heterogeneous and hierarchical embedded system,
Table 5.3 shows how many clock cycles and the utilization percent of each process, which is
executed by one processor or the dedicated hardware IP core, need to take in order to process
one block image. We see that theQ() process takes the longest time in the processes of the
M-JPEG encoder application. TheQ() process takes 50.3 percent of the whole time and now
it is the bottleneck of the system. Comparing with theQ() process, theDCT() process takes
around 0 percent of the whole time. In the five-processor homogeneous embedded system the
DCT() process is the bottleneck of the whole system and it is around 2 times slower than the
Q() process, but in this heterogeneous and hierarchical embedded system theQ() process is the
bottleneck of the whole system and comparing with theQ() process theDCT() process takes
around 0 percent of the whole time. Due to this reason the M-JPEG encoder heterogeneous and
hierarchical embedded system is 2 times faster than the five-processor homogeneous embedded
system. In Table 5.3, we also see that theVLE() process and theVideoOut()process in this
case take different clock cycles from theVLE() process and theVideoOut()process in the five-
processor homogeneous embedded system. The reason is that the precision of the resulting data
that we get from theDCT() process executed by the dedicated hardware IP core is different
from the the resulting data when theDCT() process is executed by theMicroBlazeprocessor.
Because theVLE() process and theVideoOut()process are sensitive to the precision of the
data, the clock cycles spent on theVLE() process and theVideoOut()process in this case are
different from theVLE()process and theVideoOut()process in the five-processor homogeneous
embedded system. Because theVideoInMain()process and theQ() process are insensitive to the
precision of the data, the clock cycles spent on theVideoInMain()process and theQ() process
in this case are almost the same as theVideoInMain()process and theQ() process in the five-
processor homogeneous embedded system.
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Figure 5.11: The performances of the three M-JPEG encoder embedded systems.

Table 5.4 shows the device utilization summary for this heterogeneous and hierarchical em-
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Table 5.3: Cycles and utilization percentage of each process.
VideoInMain DCT Q VLE VideoOut

Cycles 10,837 400 68,972 54,210 2,795
Percentage(%) 7.9 0.3 50.3 39.5 2

bedded system. We see that there are 111 out of 144 (77 percent)RAMB16swhich are the
on-chip memories used. This heterogeneous and hierarchical embedded system needs less on-
chip memories than the five-processor homogeneous embedded system. The reason is that we
use a dedicated hardware IP core for theDCT() process and it doesn’t need any data memories
or program memories comparing to aMicroBlazeprocessor.

Table 5.4: Virtex2 xc2v6000: device utilization summary.
FPGA Resource Utilization %

Number of MULT18X18s 20 out of 144 13%
Number of RAMB16s 111 out of 144 77%

Number of SLICEs 5675 out of 33792 16%
Number of BUFGMUXs 2 out of 16 12%

In this case study, we validate the procedure of implementing an embedded system as heteroge-
neous and hierarchical architecture and evaluate the heterogeneous and hierarchical architecture
introduced in Chapter 3. Also we compare the performances of the heterogeneous and hierar-
chical embedded system with the homogeneous embedded systems. We prove that it is possible
to implement systematically and automatically an embedded system as heterogeneous and hier-
archical architecture, and with mapping the same application a heterogeneous and hierarchical
embedded system has better time performance comparing with a homogeneous embedded sys-
tem. For this M-JPEG encoder application, we use a dedicated hardware IP core for theDCT()
process. Then theQ() process becomes the bottleneck of the whole system. In Table 5.3, we
see that theQ() process and theVLE() process take much longer time than theVideoInMain()
process andVideoOut()process. If we want to improve the time performance further, we have
to use dedicated hardware IP cores for theQ() process and theVLE()process. Then in such het-
erogeneous and hierarchical embedded system, we just useMicroBlazeprocessors to execute
theVideoInMain()process andVideoOut()process and the other processes are all executed by
the dedicated hardware IP cores. In such case, we can get real-time performance.
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Chapter 6
Getting Started: Tutorial on Heterogeneous
and Hierarchical System Design

In this chapter, we give a tutorial with example of heterogeneous and hierarchical embedded
system design. This tutorial gives the detailed steps for how to design a heterogeneous and
hierarchical embedded system using theCOMPAAN tool, ourESPAM tool and the commercial
synthesis tool Xilinx Platform Studio (XPS). We use the M-JPEG encoder heterogeneous and
hierarchical embedded system presented in Section 5.2 to explain in detail the design steps. In
order to design the heterogeneous and hierarchical embedded system for the M-JPEG encoder
application, first we need to use theCOMPAAN tool and ourESPAM tool to generate a five-
processor homogeneous embedded system for the M-JPEG encoder application and generate
systematically and automatically all of the necessary files of anXPS project for the M-JPEG
encoder homogeneous embedded system. Then we need to change thisXPS project to hetero-
geneous and hierarchical embedded system manually. Finally, we import thisXPSproject into
XPSand useXPS to generate the final bitstream file which is used to configure the FPGA chip
to implement the M-JPEG encoder application.

This chapter is organized as follows. In Section 6.1, we explain how to generate theXPSproject
with homogeneous embedded system for the M-JPEG encoder application. In Section 6.2, we
describe how to change thisXPS project to heterogeneous and hierarchical embedded system
by hand. In Section 6.3 we explain how to import the project intoXPSand useXPS to generate
the final bitstream file. In this section, we also describe how to use a software program in an
outside host processor to download the final bitstream file onto the target FPGA board and test
the heterogeneous and hierarchical embedded system to get the resulting data, and how to debug
the M-JPEG encoder heterogeneous and hierarchical embedded system.

6.1 Generation of Homogeneous Embedded System

In this section, we explain how to generate anXPSproject with homogeneous embedded system
for the M-JPEG encoder application. First, we need to use theCOMPAAN tool to automatically
transform the initial Matlab code of the M-JPEG encoder application into KPN specification.
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Second, we need to create thePlatform Specificationand theMapping Specificationfor this
five-processor homogeneous embedded system. Then, we use ourESPAM tool to automatically
generate all of the necessary files of anXPS project for this M-JPEG encoder system. Finally,
we need to manually do some modifications in theXPSproject.

6.1.1 KPN Specification Generation Using theCOMPAAN tool

In this section, we describe how to generate the KPN specification from the initial Matlab
code of the M-JPEG encoder application using theCOMPAAN tool. The initial Matlab code of
the M-JPEG encoder application is shown in Figure 6.1. This M-JPEG encoder compresses a
sequence of video frames, using JPEG picture compression in each frame of the video. The
detailed explanation of this Matlab code was given in Section 5.1.

1 %parameter NumFrames 1 100;
2 %parameter VNumBlocks 2 100;
3 %parameter HNumBlocks 1 100;
4
5 %typedef HeaderInfo THeaderInfo;
6 %typedef LuminanceQTable TQTables;
7 %typedef ChrominanceQTable TQTables;
8 %typedef LuminanceHuffTableDC THuffTablesDC;
9 %typedef ChrominanceHuffTableDC THuffTablesDC;
10 %typedef LuminanceHuffTableAC THuffTablesAC;
11 %typedef ChrominanceHuffTableAC THuffTablesAC;
12 %typedef LuminanceTablesInfo TTablesInfo;
13 %typedef ChrominanceTablesInfo TTablesInfo;
14 %typedef Packets TPackets;
15 %typedef Block TBlocks;
16
17 for k = 1:1:1,
18 [ LuminanceQTable, ChrominanceQTable,
19 LuminanceHuffTableDC,ChrominanceHuffTableDC,
20 LuminanceHuffTableAC,ChrominanceHuffTableAC,
21 LuminanceTablesInfo, ChrominanceTablesInfo
22 ] = DefaultTables();
23 end
24
25 for k = 1:1:NumFrames,
26 [ HeaderInfo ] = VideoInInit();
27 for j = 1:1:VNumBlocks,
28 for i = 1:1:HNumBlocks,
29 [ Block ] = VideoInMain();
30 [ Block ] = DCT( Block );
31 [ Block ] = Q( Block, LuminanceQTable, ChrominanceQTable );
32 [ Packets ] = VLE( Block,
33 LuminanceHuffTableDC,ChrominanceHuffTableDC,
34 LuminanceHuffTableAC,ChrominanceHuffTableAC );
35 [ dummy ] = VideoOut( HeaderInfo, LuminanceTablesInfo,
36 ChrominanceTablesInfo, Packets );
37 end
38 end
39 end

Figure 6.1: The initial Matlab code of the M-JPEG encoder application.

In this Matlab code, we see that there are seven function calls namedDefaultTables(), VideoInInit(),
VideoInMain(), DCT(), Q(), VLE(), andVideoOut(). When we use theCOMPAAN tool to gen-
erate the KPN specification, by default it generates a process for each function call in the initial
Matlab code. Thus, theCOMPAAN tool will generate seven processes in the KPN specifica-
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tion. Notice that theCOMPAAN tool and ourESPAM tool do not deal with the implementations
of the function calls in the initial Matlab code, they just generate empty wrappers for these
function calls. In order to implement the M-JPEG encoder application in theXPS, we need
to change these empty wrappers which is explained in Section 6.1.3. We need to generate the
implementations for all of the function calls in the initial Matlab code. The needed data types
are declared in lines 5-15 lines in Figure 6.1 and the definitions of these data types are in the
file types.h. The implementation ofDefaultTables()function in line 22 is in fileControlInit.cpp.
The implementations ofVideoInInit()function in line 26 andVideoInMain()function in line 29
are in fileVideo in.cpp. The implementation ofDCT() function in line 30 is in fileDCT.cpp.
The implementation ofQ() function in line 31 is in fileQ.cpp. The implementation ofVLE()
function in line 32 is in fileVLE.cpp. The implementation ofVideoOut()function in line 35 is
in file Videoout.cpp. We need to manually import all of these files to theXPSproject which we
will generate later and this step will be explained in Section 6.3.1. The source files discussed
above can be found in the CVS repository :
docs/students/WeiZhong/experiment/MJPEG-Pentium.zip

1) matparser --input M JPEG.m --output M JPEG.sac --compile --verbose -r

2) dgparser --input M JPEG.sac --output M JPEG --xml -r

3) panda --input M JPEG.xml -c M JPEG.m --xml -ls --lms -RP -r

Figure 6.2: The three commands of theCOMPAAN tool.

We need to use three commands of theCOMPAAN tool to generate a KPN specification for
the M-JPEG encoder application. The three commands are shown in Figure 6.2. The first
command uses theMATPARSER tool [32] to transform the initial Matlab code into a single as-
signment code (SAC), which resembles the dependence graph (DG) of the initial Matlab code.
The-- input option is followed by a filename that points to a file where the initial Matlab code
is stored. The-- outputoption is followed by a filename that points to a file where results, for
example the SAC, need to be written. The-- compileoption tellsMATPARSER to convert the
Matlab code into a SAC. The-- verboseoption causesMATPARSER to produce information
messages showing the progress made in the conversion. The-r option applies a set of opti-
mizations on the solution tree which describes data dependencies. The optimizations include
removing redundant if/else statements, removing redundant index statements, and removing
redundant sub-graphs.

The second command uses theDGPARSER tool to convert the SAC into a Polyhedral Reduced
Dependence Graph (PRDG) data structure, which is a compact mathematical representation
of the DG in terms of polyhedra. The-- input option specifies the SAC file generated by
MATPARSER. The -- outputoption specifies the output file where the PRDG data structure
will be stored. The-- xml option specifies the format of the output file to be XML. The-r
option manipulates the parse tree. In particular, it removes control from the index statements.

The third command uses thePANDA tool to convert the PRDG into a KPN process network [33]
[34]. The -- input option specifies the input PRDG XML file generated byDGPARSER. The
-c option describes a valid global schedule as a Matlab program for all the nodes in the PRDG
graph. The-- xml option specifies the format of the output file to be XML. The-ls and-- lms
options tellPANDA to select communication linearization model, since the communication is
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not always in order. For more details see [33] [34]. The-RPoption makes sure that the number
of data tokens which a producer process sends is the same as the number of tokens a consumer
process needs. For more details see [33] [34]. The-r option optimizes the number of commu-
nication channels without decreasing the performance of the process network. It removes some
channels which start from one and the same process and end to another process.
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Figure 6.3: The KPN of the M-JPEG encoder application.

After executing the three commands described above, we can get the KPN specification in
XML format. The KPN of the M-JPEG encoder application which is generated byCOMPAAN

is shown in Figure 6.3. In this KPN specification of the M-JPEG encoder application, there are
seven processes —ND 1, ND 2, ND 3, ND 4, ND 5, ND 6 andND 7. ND 1 is theDefaultTa-
bles()process.ND 2 is theVideoInInit()process.ND 3 is theVideoInMain()process.ND 4 is
theDCT()process.ND 5 is theQ() process.ND 6 is theVLE()process.ND 7 is theVideoOut()
process.

6.1.2 Generating Homogeneous Embedded System Using theESPAM tool

In Figure 1.1, we see that the inputs of ourESPAM tool areApplication Specification, Platform
SpecificationandMapping Specification. Thus, after we get the KPN specification which is the
Application Specificationfrom the initial Matlab code of the M-JPEG encoder application using
theCOMPAAN tool, we still need to create thePlatform Specificationand theMapping Specifi-
cation. ThePlatform Specificationand theMapping Specificationfor the M-JPEG encoder five
processors homogeneous embedded system are shown in Figure 6.4 and Figure 6.5. In thePlat-
form Specification, there are fiveMicroBlazeprocessors (MB 1, MB 2, MB 3, MB 4, andMB 5)
and five custom memory controllers (ZBT CTRL 1, ZBT CTRL 2, ZBT CTRL 3, ZBT CTRL 4,
andZBT CTRL 5) which are used as the interfaces between theMicroBlazeprocessors and the
ZBT SSRAMs in this embedded system platform. In theMapping Specification, we mapDe-
faultTables()process (ND1), VideoInInit()process (ND2) andVideoInMain()process (ND3)
onto processorMB 1, DCT() process (ND4) onto processorMB 2, Q() process (ND5) onto
processorMB 3, VLE() process (ND6) onto processorMB 4 andVideoOut()process (ND7)
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onto processorMB 5. The detailed description for thesePlatform SpecificationandMapping
Specificationare given in Section 5.1.

0 <platform name="myPlatform">

<processor name="MB 1" type="MB" data memory="65536" program memory="32768">
<port name="OPB 1" type="OPBPort"/>

</processor>
5 <processor name="MB 2" type="MB" data memory="16384" program memory="16384">

<port name="OPB 2" type="OPBPort"/>
</processor>
<processor name="MB 3" type="MB" data memory="8192" program memory="8192">

<port name="OPB 3" type="OPBPort"/>
10 </processor>

<processor name="MB 4" type="MB" data memory="16384" program memory="16384">
<port name="OPB 4" type="OPBPort"/>

</processor>
<processor name="MB 5" type="MB" data memory="16384" program memory="16384">

15 <port name="OPB 5" type="OPBPort"/>
</processor>

<peripheral name="ZBT CTRL 1" type="ZBTCTRL" size="1000000">
<port name="IO 1" type="OPBPort"/>

20 </peripheral>
<peripheral name="ZBT CTRL 2" type="ZBTCTRL" size="1000000">

<port name="IO 2" type="OPBPort"/>
</peripheral>
<peripheral name="ZBT CTRL 3" type="ZBTCTRL" size="1000000">

25 <port name="IO 3" type="OPBPort"/>
</peripheral>
<peripheral name="ZBT CTRL 4" type="ZBTCTRL" size="1000000">

<port name="IO 4" type="OPBPort"/>
</peripheral>

30 <peripheral name="ZBT CTRL 5" type="ZBTCTRL" size="1000000">
<port name="IO 5" type="OPBPort"/>

</peripheral>

<link name="mb opb 1">
35 <resource name="MB 1" port="OPB 1"/>

<resource name="ZBT CTRL 1" port="IO 1"/>
</link>
<link name="mb opb 2">

<resource name="MB 2" port="OPB 2"/>
40 <resource name="ZBT CTRL 2" port="IO 2"/>

</link>
<link name="mb opb 3">

<resource name="MB 3" port="OPB 3"/>
<resource name="ZBT CTRL 3" port="IO 3"/>

45 </link>
<link name="mb opb 4">

<resource name="MB 4" port="OPB 4"/>
<resource name="ZBT CTRL 4" port="IO 4"/>

</link>
50 <link name="mb opb 5">

<resource name="MB 5" port="OPB 5"/>
<resource name="ZBT CTRL 5" port="IO 5"/>

</link>

55 </platform>

Figure 6.4:Platform Specificationfor the five processors homogeneous embedded system.

When we get theApplication Specification, Platform SpecificationandMapping Specification,
we can start to run ourESPAM tool to automatically generate all of the necessary files of the
XPS project for this M-JPEG encoder five-processor homogeneous embedded system. The
command of ourESPAM tool we need to execute is shown in Figure 6.6.
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0 <mapping name="myMapping">

<processor name="MB 1">
<process name="ND 1" />
<process name="ND 2" />

5 <process name="ND 3" />
</processor>

<processor name="MB 2">
<process name="ND 4" />

10 </processor>

<processor name="MB 3">
<process name="ND 5" />

</processor>
15

<processor name="MB 4">
<process name="ND 6" />

</processor>

20 <processor name="MB 5">
<process name="ND 7" />

</processor>

</mapping>

Figure 6.5:Mapping Specificationfor the five processors homogeneous embedded system.

espam --platform M JPEG.pla --kpn M JPEG.kpn --mapping M JPEG.map --scheduler M JPEG.m --xps
--libxps <libXPS> --debugger

Figure 6.6: The command of theESPAM tool.

By executing this command, ourESPAM tool can automatically generate all of the necessary
files of theXPSproject for this M-JPEG encoder five processors homogeneous embedded sys-
tem according to theApplication Specification, Platform SpecificationandMapping Specifi-
cation. The -- platform option specifies thePlatform Specificationfile. The -- kpn option
specifies theApplication Specificationfile. The-- mappingoption specifies theMapping Spec-
ification file. The -- scheduleroption specifies a file which is used to describe a valid global
schedule among the processes in theApplication Specification. The-- xpsoption is used to tell
our ESPAM tool to generate all necessary files of anXPSproject. The-- libxpsoption specifies
a library that stores the predefined platform components used to generate anXPS project. An
XPSproject always consists of two parts. One part is generated at compile time, including the
XMP/MHS/MSS files, the program code for each processor in a platform and some custom IP
cores. The other part is a library which consists of predefined components that are common for
all projects, such as some common custom IP cores, the UCF file and some optional files for
XPS implementation tools. We store this library in the CVS repository. The<libXPS> spec-
ifies the path to this library so that ourESPAM tool can copy and use it during the generation
of an XPS project suite. Currently, we use the following CVS repository path for this library:
.../espam/src/espam/libXPS. The-- debuggeroption is used to tell ourESPAM tool to generate
component used for debugging. We explain this debugging component in Section 6.3.3.

After we run this command of ourESPAM tool, anXPS project for the M-JPEG encoder five-
processor homogeneous embedded system is generated. Figure 6.7 shows theXPS project
directory hierarchy.

Thesystem.xmp, system.mhsandsystem.mssfiles are the corresponding XMP, MHS and MSS
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<PROJECT_ROOT>
|--- system.xmp
|--- system.mhs
|--- system.mss
|--- loader.exe
|--- etc/
|------------- bitgen.ut
|------------- bitgen_spartan3.ut
|------------- fast_runtime.opt
|------------- download.cmd
|--- data/
|------------- system.ucf
|------------- system ADMXRCII.ucf
|------------- system-default.ucf
|------------- system-zbt.ucf
|--- code/
|------------- aux func.h
|------------- MemoryMap.h
|------------- P 1/
|----------------------- P 1.cpp
|------------- P 2/
|----------------------- P 2.cpp
|------------- P 3/
|----------------------- P 3.cpp
|------------- P 4/
|----------------------- P 4.cpp
|------------- P 5/
|----------------------- P 5.cpp
|--- pcores/
|------------- buffers v1 00 a/
|------------- cb_wrapper v1 00 a/
|------------- clock cycle counter v1 00 a/
|------------- fifo if ctrl v1 00 a/
|------------- fin ctrl v1 00 a/
|------------- host design ctrl v1 00 a/
|------------- LMB VB CTRL v1 00 a/
|------------- mux v1 00 a/
|------------- myCLKRST v1 00 a/
|------------- opb zbt controller v1 00 a/
|------------- VB Wrapper v1 00 a/
|------------- zbt main v1 00 a/

Figure 6.7:XPSproject directory hierarchy for the M-JPEG encoder embedded system.

files which have been explained in Section 2.5.1. The MHS file —system.mhsand the MSS file
— system.msswhich are automatically generated by ourESPAM tool are shown in Appendix A
and Appendix B. Theloader.exefile is a program used to download and run the bitstream file.
Theetcdirectory contains four files —bitgen.ut[35], bitgenspartan3.ut, fast runtime.opt[35]
anddownload.cmd. They are the files with options for settingXPS implementation tools. The
data directory contains several UCF files according to the different FPGA devices. In our
case, we use thesystemADMXRCII.ucfUCF file which contains pin information for the phys-
ical implementation in the selected FPGA device. In thecodedirectory, the software program
code files for processors are stored. In the top level of thecodedirectory, there are two files
namedaux func.hand MemoryMap.h. They are the common files for all of the processors.
The aux func.hfile declares read and write primitives and wrappers of all function calls in
the initial code of the application. TheMemoryMap.hfile specifies physical addresses of the
components in the platform. The program code for each processors is stored in the correspond-
ing subdirectory named after the processors. Thepcoresdirectory contains all predefined IP
cores and the IP cores generated by ourESPAM tool. Thebuffersv1 00 a, fin ctrl v1 00 a,
hostdesignctrl v1 00 a, muxv1 00 a, opb zbt controller v1 00 a andzbt main v1 00 a are
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the IP cores for the interface of an embedded system with the outside world which have been
explained in Section 4.2. Thefifo if ctrl v1 00 a is the LMB FIFO controller. The detailed
description about this controller can be found in [5]. Theclock cyclecounterv1 00 a is the IP
core for debugging. ThemyCLKRSTv1 00 a is the IP core which is used to generate the system
clock and reset and it is not used in our case. Thecb wrapperv1 00 a, LMB VB CTRL v1 00 a
andVB Wrapperv1 00 a are the IP cores for the crossbar communication component and they
are not used in our case.

6.1.3 Custom Modification for theXPS Project

After we get theXPSproject which is automatically generated by ourESPAM tool, we still need
to do some modifications for both the hardware and software in thisXPSproject.

Hardware Modification

As discussed in Section 5.1, the main purpose of the hardware modification is related to the
memory allocation. The main task for the memory allocation modification is the FIFOs size
adjustment. We need to adjust the size of the FIFOs in the MHS file. By default, ourESPAM tool
set 2048 bytes (512×32) for each FIFO. The 512 is the data depth of a FIFO and the 32 is the
data width of a FIFO. Lines 496 and 497 of Appendix A show the example of FIFO size setting
in the MHS file. However, in the initial M-JPEG code, we find out that the size of structures
THuffTablesAC, THuffTablesDCandTTablesInfois larger than 2048 bytes, all of which will be
put into certain FIFOs. Thus, the corresponding FIFOs’ size is not sufficient. We need to enlarge
the corresponding FIFOs’ size to 4096 bytes (1024×32) [5]. In the MHS file which is shown
in Appendix A, we need to enlarge the size of FIFOsFIFO MB 1 Out 4, FIFO MB 1 Out 5,
FIFO MB 1 Out 6, FIFO MB 1 Out 7, FIFO MB 1 Out 9 andFIFO MB 1 Out 10 to 4096
bytes. An example modification of the size of FIFOFIFO MB 1 Out 4 is shown in line 562 of
Figure 6.8. The other FIFOs’ size can be modified in the same way. Other task for the memory
allocation modification is the stack size adjustment of each processor which will be explained
in Section 6.3.1.

554 BEGIN fsl_v20
555 PARAMETER HW_VER = 2.00.a

PARAMETER INSTANCE =FIFO MB 1 Out 4
PARAMETER CEXT RESETHIGH = 0
PARAMETER CASYNCCLKS = 0
PARAMETER CIMPL STYLE = 1

560 PARAMETER CUSECONTROL = 0
PARAMETER CFSL DWIDTH = 32
PARAMETER CFSL DEPTH = 1024
PORT FSLClk = sys clk s
PORT SYSRst = net design rst

565 END

Figure 6.8: Set the size of FIFOFIFO MB 1 Out 4 to 4 Kbytes.

The second thing we need to modify is the UCF file name. In thedata directory of ourXPS

project, there are several UCF files. When we import the project toXPS, theXPSwill automat-
ically recognize the UCF file which is namedsystem.ucf. Thus, we need to change the name of
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the UCF file which we need to use tosystem.ucfin thedatadirectory. In our case, the UCF file
we need in thedatadirectory issystemADMXRCII.ucf. However, there is already a UCF file
namedsystem.ucfin thedatadirectory. We need to change the name of originalsystem.ucffile
to systemold.ucf, then change the name ofsystemADMXRCII.ucffile to system.ucf.

The third thing we need to modify is related to filefast runtime.opt. TheXPSproject generated
by our ESPAM tool is based onXPS version 6.3, but later we will import ourXPS project to
XPSversion 7.1. When we import ourXPSproject toXPSversion 7.1,XPSwill automatically
upgradeXPS project to adapt to version 7.1. However just one thingXPS can not upgrade
automatically is in thefast runtime.optfile which is stored in theetc directory of ourXPS

project. In thefast runtime.optfile there is an option for place and route named-ol which is
used to set the overall effort level. InXPSversion 6.3, it can be set to number 1 to 5. But inXPS

version 7.1, it just can be set tostd, medandhigh. By default ourESPAM tool set this option to
number 5. In our case, we need to manually change this number 5 tostd.

Software Modification

The first thing for the software modification is that we need to copy all of the header files
which the program code for processors needs to thecodedirectory of ourXPS project. Also
we need to copy the implementation program code files for each processor’s program code to
the corresponding subdirectory named after the processors in thecodedirectory. In our case,
we need to copyControlInit.cppandVideo in.cppfiles toP 1 subdirectory,DCT.cppfile to P 2
subdirectory,Q.cppfile to P 3 subdirectory,VLE.cppfile to P 4 subdirectory, andVideoout.cpp
file to P 5 subdirectory. After this step, we still need to manually import all of these header files
and implementation program code files to theXPS project which will be explained in Section
6.3.1.

The second task we need to do is to add the function declarations and replace each empty
wrapper with a function call in each processor program code. As an example, the modified
program code of processorP 1 is shown in Figure 6.9. The bold lines in the code highlight the
modification which we need to do manually. In lines 26 and 27, we define two instancesvin
andcinit. In lines 31, 59 and 66, we replace the empty wrappers with the actual function calls.
The program code of the other processors can be modified in the same way. In Figure 6.9, we
see that there is one more place we need to modify is in line 75. In line 75 we store a variable
to the ZBT memory which is used for debugging and it will be explained in Section 6.3.3.

The third thing we need to change is to modify theaux func.hfile. The modifiedaux func.h
file is shown in Figure 6.10. The bold lines in the code highlight the modification which we
need to do manually. In lines 6-11, we include all of the header files which are used in the
processors’ program code. In lines 28-30, we can change the three parameters —NumFrames,
VNumBlocksandHNumBlocksbased on how many frames we need to process and the size of
the video frame. Because later we will use one video frame which size is 128×128 pixels to test
the M-JPEG encoder embedded system, we set the parameterNumFramesto 1, VNumBlocks
to 16 andHNumBlocksto 8. Because we have already replaced the empty wrappers with the
actual function calls in program code of each processor, we need to comment the empty wrapper
declarations in lines 33-59.

The fourth thing we need to change is to modify theMemoryMap.hfile. The modifiedMem-
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0 #include "xparameters.h"
#include "stdio.h"
#include "stdlib.h"
#include "aux_func.h"
#include "MemoryMap.h"

5

int main () {

int clk_num;
10 * clk_cntr = 0;

// Input Arguments

// Output Arguments
15 tCH_3 out_0ND_1;

tCH_4 out_1ND_1;
tCH_6 out_2ND_1;
tCH_7 out_3ND_1;
tCH_8 out_4ND_1;

20 tCH_9 out_5ND_1;
tCH_11 out_6ND_1;
tCH_12 out_7ND_1;
tCH_10 out_0ND_2;
tCH_1 out_0ND_3;

25
Video in vin(VNumBlocks,2*HNumBlocks);
ControlInit cinit;

for( int k = ceil1(1); k <= floor1(1 ); k += 1 ) {
30 //DefaultTables(&out 0ND 1, &out 1ND 1, &out 2ND 1, &out 3ND 1, &out 4ND 1, &out 5ND 1, &out 6ND 1, &out 7ND 1) ;

cinit.main(out 0ND 1, out 1ND 1, out 2ND 1, out 3ND 1, out 4ND 1, out 5ND 1, out 6ND 1, out 7ND 1);

writeFSL(ND_1_OG_2_CH_3, &out_0ND_1, (sizeof(tCH_3)+(sizeof(tCH_3)%4)+3)/4);

35
writeFSL(ND_1_OG_3_CH_4, &out_1ND_1, (sizeof(tCH_4)+(sizeof(tCH_4)%4)+3)/4);

writeFSL(ND_1_OG_4_CH_6, &out_2ND_1, (sizeof(tCH_6)+(sizeof(tCH_6)%4)+3)/4);
40

writeFSL(ND_1_OG_5_CH_7, &out_3ND_1, (sizeof(tCH_7)+(sizeof(tCH_7)%4)+3)/4);

45 writeFSL(ND_1_OG_6_CH_8, &out_4ND_1, (sizeof(tCH_8)+(sizeof(tCH_8)%4)+3)/4);

writeFSL(ND_1_OG_7_CH_9, &out_5ND_1, (sizeof(tCH_9)+(sizeof(tCH_9)%4)+3)/4);

50
write(ND_1_OG_9_CH_11, &out_6ND_1, (sizeof(tCH_11)+(sizeof(tCH_11)%4)+3)/4);

write(ND_1_OG_10_CH_12, &out_7ND_1, (sizeof(tCH_12)+(sizeof(tCH_12)%4)+3)/4);
55

} // for k
for( int k = ceil1(1); k <= floor1(NumFrames ); k += 1 ) {

//VideoInInit(&out 0ND 2) ;
vin.init(out 0ND 2);

60
writeFSL(ND_2_OG_8_CH_10, &out_0ND_2, (sizeof(tCH_10)+(sizeof(tCH_10)%4)+3)/4);

for( int j = ceil1(1); j <= floor1(VNumBlocks ); j += 1 ) {
for( int i = ceil1(1); i <= floor1(HNumBlocks ); i += 1 ) {

65 //VideoInMain(&out 0ND 3) ;
vin.main(out 0ND 3);

writeFSL(ND_3_OG_1_CH_1, &out_0ND_3, (sizeof(tCH_1)+(sizeof(tCH_1)%4)+3)/4);

70 } // for i
} // for j

} // for k

clk_num = * clk_cntr;
75 *(ZBT MEMORY) = (volatile long)clk num;

* FIN_SIGNAL = (volatile long)0x00000001;
} // main

Figure 6.9: Modified program code of processorP 1.

oryMap.hfile is shown in Figure 6.11. The bold lines in the code highlight the modification
which we need to do manually. In line 149 we need to add the physical address for our custom
memory controllers which are used as the interfaces between theMicroBlazeprocessors and the
ZBT SSRAMs in this embedded system platform. The complete modified project can be found
in the CVS repository:
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0 #ifndef __AUX_FUNC_H__
#define __AUX_FUNC_H__

#include <math.h>
#include "mb_interface.h"

5
#include ”Video in.h”
#include ”Video out.h”
#include ”ControlInit.h”
#include ”DCT.h”

10 #include ”Q.h”
#include ”VLE.h”

typedef TBlocks tCH_1;
typedef TBlocks tCH_2;

15 typedef TQTables tCH_3;
typedef TQTables tCH_4;
typedef TBlocks tCH_5;
typedef THuffTablesDC tCH_6;
typedef THuffTablesDC tCH_7;

20 typedef THuffTablesAC tCH_8;
typedef THuffTablesAC tCH_9;
typedef THeaderInfo tCH_10;
typedef TTablesInfo tCH_11;
typedef TTablesInfo tCH_12;

25 typedef TPackets tCH_13;

// Parameters
#define NumFrames 1
#define VNumBlocks 16

30 #define HNumBlocks 8

/*
inline
void DefaultTables( tCH_3 * out_0, tCH_4 * out_1, tCH_6 * out_2, tCH_7 * out_3, tCH_8 * out_4, tCH_9 * out_5, tCH_11 * out_6, tCH_12 * out_7 ) {

35 }

inline
void VideoInInit( tCH_10 * out_0 ) {
}

40
inline
void VideoInMain( tCH_1 * out_0 ) {
}

45 inline
void DCT( tCH_1 in_0, tCH_2 * out_0 ) {
}

inline
50 void Q( tCH_2 in_0, tCH_3 in_1, tCH_4 in_2, tCH_5 * out_0 ) {

}

inline
void VLE( tCH_5 in_0, tCH_6 in_1, tCH_7 in_2, tCH_8 in_3, tCH_9 in_4, tCH_13 * out_0 ) {

55 }

inline
void VideoOut( tCH_10 in_0, tCH_11 in_1, tCH_12 in_2, tCH_13 in_3, char * out_0 ) {
}

60 */

#define min(a,b) ((a)<=(b))?(a):(b)
#define max(a,b) ((a)>=(b))?(a):(b)

65 ...

#endif

Figure 6.10: Modifiedaux func.hfile.

docs/students/WeiZhong/experiment/MJPEG5p.zip

6.2 Generation of Heterogeneous and Hierarchical Embed-
ded System

After we get theXPS project with homogeneous embedded system for the M-JPEG encoder
application in Section 6.1, we can change thisXPS project to heterogeneous and hierarchical
embedded system.
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0 #ifndef __MEMORYMAP_H_
#define __MEMORYMAP_H_

#define PCTRL_BRAM1_MB_1 0x00000000 //read from PCTRL_BRAM1_MB_1 address for MB_1

5 #define PCTRL_BRAM1_MB_1 0x00000000 //write to PCTRL_BRAM1_MB_1 address for MB_1

#define PCTRL_BRAM2_MB_1 0x00004000 //read from PCTRL_BRAM2_MB_1 address for MB_1

#define PCTRL_BRAM2_MB_1 0x00004000 //write to PCTRL_BRAM2_MB_1 address for MB_1
10

//MB_1 FIFOs
#define ND_1_OG_9_CH_11 0xc0800000 //write to CDChannelCH_11 address for MB_1

//MB_1 FIFOs
15 #define ND_1_OG_10_CH_12 0xc0800008 //write to CDChannelCH_12 address for MB_1

#define DCTRL_BRAM1_MB_1 0x00000000 //read from DCTRL_BRAM1_MB_1 address for MB_1

#define DCTRL_BRAM1_MB_1 0x00000000 //write to DCTRL_BRAM1_MB_1 address for MB_1
20

#define DCTRL_BRAM2_MB_1 0x00004000 //read from DCTRL_BRAM2_MB_1 address for MB_1

#define DCTRL_BRAM2_MB_1 0x00004000 //write to DCTRL_BRAM2_MB_1 address for MB_1

25 #define ZBT_CTRL_1 0xf0000000 //read from ZBT_CTRL_1 address for MB_1

#define ZBT_CTRL_1 0xf0000000 //write to ZBT_CTRL_1 address for MB_1

//MB_1 FIFOs
30 #define ND_3_OG_1_CH_1 0 //write to CDChannelCH_1 address for MB_1

//MB_1 FIFOs
#define ND_1_OG_2_CH_3 1 //write to CDChannelCH_3 address for MB_1

35 //MB_1 FIFOs
#define ND_1_OG_3_CH_4 2 //write to CDChannelCH_4 address for MB_1

//MB_1 FIFOs
#define ND_1_OG_4_CH_6 3 //write to CDChannelCH_6 address for MB_1

40
//MB_1 FIFOs
#define ND_1_OG_5_CH_7 4 //write to CDChannelCH_7 address for MB_1

//MB_1 FIFOs
45 #define ND_1_OG_6_CH_8 5 //write to CDChannelCH_8 address for MB_1

//MB_1 FIFOs
#define ND_1_OG_7_CH_9 6 //write to CDChannelCH_9 address for MB_1

50 //MB_1 FIFOs
#define ND_2_OG_8_CH_10 7 //write to CDChannelCH_10 address for MB_1

...

#define ZBT MEMORY (volatile long *)0xf0000000
150 #define clk_cntr (volatile int * )0xf8000000

#define FIN_SIGNAL (volatile long * )0xf9000000

#endif

Figure 6.11: ModifiedMemoryMap.hfile.

The first step is that we need to copy the pcore for theDCT()process which has been described
in Section 3.2.2 to thepcoresdirectory of ourXPS project. Later we will introduce how to
use this dedicated hardware IP core to replace theMicroBlazeprocessor —MB 2 in the XPS

project of homogeneous embedded system which is also used to execute theDCT() process.
The detailed steps for the pcore for theDCT() process generation was given in Section 3.2.2.
The pcore for the DCT process can be found in the CVS repository:
docs/students/WeiZhong/experiment/DCTpcore.zip

In the second step we start to replace theMicroBlazeprocessor —MB 2 in the XPS project
of homogeneous embedded system with the dedicated hardware IP core for theDCT() process.
In this step, we need to replace theMB 2 with the dedicated hardware IP core for theDCT()
process in the MHS file. First, we need to commentMB 2 and the components which belong
to MB 2 in the MHS file. In the MHS file which is shown in Appendix A, we need to comment
PBUSMB 2 component in lines 99-105,DBUSMB 2 component in lines 107-113,mb opb 2
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component in lines 115-121,fin ctrl P2 component in lines 123-131,clock cyclecounterP2
component in lines 133-140,MB 2 MicroBlazeprocessor in lines 142-155, theBUSINTERFACE
MUX DESIGN1 PORT = muxdesign1 of multiplexercomponent in line 390,ZBT CTRL2
component in lines 441-451,BRAM1MB 2component in lines 725-730,DCTRL BRAM1MB 2
component in lines 732-740 andPCTRLBRAM1MB 2 component in lines 742-750. Then we
need to add the dedicated hardware IP core for theDCT() process in the MHS file which is
shown in Figure 6.12.

BEGIN kpn
PARAMETER INSTANCE = KPN_DCT
PARAMETER HW_VER = 1.00.a
BUS_INTERFACE MFSL = FIFO_MB_2_Out_1
BUS_INTERFACE SFSL = FIFO_MB_1_Out_1
PORT STATUS = net_fin_signal_P2
PORT CLK = sys_clk_s
PORT RST = net_design_rst
END

Figure 6.12: The dedicated hardware IP core for theDCT() process in the MHS file.

In the third step, we need to remove theMB 2 and the components which belong toMB 2 in
the MSS file. Because the dedicated hardware IP core for theDCT() process use the generic
driver andXPS can automatically add this generic driver for it, we do not need to add the
driver for the dedicated hardware IP core for theDCT() process in the MSS file. In the
MSS file which is shown in Appendix B, we need to commentMB 2 MicroBlazeproces-
sor in lines 35-47,mb opb 2 component in lines 49-53,fin ctrl P2 component in lines 55-59,
clock cyclecounterP2 component in lines 61-65,ZBT CTRL 2 component in lines 193-197,
DCTRL BRAM1MB 2 component in lines 325-329 andPCTRLBRAM1MB 2 component in
lines 331-335.

In the fourth step, we need to change the software in theXPS project. First, we need to delete
the software project forMicroBlazeprocessor —MB 2 in XPS which will be introduced in
Section 6.3.1. Second, in order to get the resulting video frame for the M-JPEG encoder ap-
plication we need to change some program code for the processorP 1 and processorP 3. The
modified program code of processorP 1 is shown in Figure 6.13. The bold lines in the code
highlight the modification. In 68-74, we linearize the packet of the video data which is used
to preprocess the video data for the dedicated hardware IP core for theDCT() process. The
modified program code of processorP 3 is shown in Figure 6.14. The bold lines in the code
highlight the modification. In lines 31-45, we need to convert the negative 9-bit numbers to
32-bit negative numbers for the video data. In lines 47-55, we need to transpose the video data
blocks in the packet. The processes of these lines are used to postprocess the video data for the
dedicated hardware IP core for theDCT() process. After these steps, finally we get theXPS

project of heterogeneous and hierarchical embedded system which consists of fourMicroBlaze
processors and one dedicated hardware IP core for theDCT() process.

6.3 Import Project to XPS and XPS Project Execution and
Results

In this section, we explain how to import our project of heterogeneous and hierarchical em-
bedded system toXPS and there are still some modifications we need to do inXPS. Then we
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0 #include "xparameters.h"
#include "stdio.h"
#include "stdlib.h"
#include "aux_func.h"
#include "MemoryMap.h"

5

int main () {

int clk_num;
10 * clk_cntr = 0;

// Input Arguments

// Output Arguments
15 tCH_3 out_0ND_1;

tCH_4 out_1ND_1;
tCH_6 out_2ND_1;
tCH_7 out_3ND_1;
tCH_8 out_4ND_1;

20 tCH_9 out_5ND_1;
tCH_11 out_6ND_1;
tCH_12 out_7ND_1;
tCH_10 out_0ND_2;
tCH_1 out_0ND_3;

25
Video_in vin(VNumBlocks,2 * HNumBlocks);
ControlInit cinit;

for( int k = ceil1(1); k <= floor1(1 ); k += 1 ) {
30 //DefaultTables(&out_0ND_1, &out_1ND_1, &out_2ND_1, &out_3ND_1, &out_4ND_1, &out_5ND_1, &out_6ND_1, &out_7ND_1) ;

cinit.main(out_0ND_1, out_1ND_1, out_2ND_1, out_3ND_1, out_4ND_1, out_5ND_1, out_6ND_1, out_7ND_1);

writeFSL(ND_1_OG_2_CH_3, &out_0ND_1, (sizeof(tCH_3)+(sizeof(tCH_3)%4)+3)/4);

35
writeFSL(ND_1_OG_3_CH_4, &out_1ND_1, (sizeof(tCH_4)+(sizeof(tCH_4)%4)+3)/4);

writeFSL(ND_1_OG_4_CH_6, &out_2ND_1, (sizeof(tCH_6)+(sizeof(tCH_6)%4)+3)/4);
40

writeFSL(ND_1_OG_5_CH_7, &out_3ND_1, (sizeof(tCH_7)+(sizeof(tCH_7)%4)+3)/4);

45 writeFSL(ND_1_OG_6_CH_8, &out_4ND_1, (sizeof(tCH_8)+(sizeof(tCH_8)%4)+3)/4);

writeFSL(ND_1_OG_7_CH_9, &out_5ND_1, (sizeof(tCH_9)+(sizeof(tCH_9)%4)+3)/4);

50
write(ND_1_OG_9_CH_11, &out_6ND_1, (sizeof(tCH_11)+(sizeof(tCH_11)%4)+3)/4);

write(ND_1_OG_10_CH_12, &out_7ND_1, (sizeof(tCH_12)+(sizeof(tCH_12)%4)+3)/4);
55

} // for k
for( int k = ceil1(1); k <= floor1(NumFrames ); k += 1 ) {

//VideoInInit(&out_0ND_2) ;
vin.init(out_0ND_2);

60
writeFSL(ND_2_OG_8_CH_10, &out_0ND_2, (sizeof(tCH_10)+(sizeof(tCH_10)%4)+3)/4);

for( int j = ceil1(1); j <= floor1(VNumBlocks ); j += 1 ) {
for( int i = ceil1(1); i <= floor1(HNumBlocks ); i += 1 ) {

65 //VideoInMain(&out_0ND_3) ;
vin.main(out_0ND_3);

// linearize the packet
for (int l = 0; l < 64; l++) {

70 out 0ND 3.Y1.pixel[l] = (unsigned int)(out 0ND 3.Y1.pixel[l]/2);
out 0ND 3.Y2.pixel[l] = (unsigned int)(out 0ND 3.Y2.pixel[l]/2);
out 0ND 3.U1.pixel[l] = (unsigned int)(out 0ND 3.U1.pixel[l]/2);
out 0ND 3.V1.pixel[l] = (unsigned int)(out 0ND 3.V1.pixel[l]/2);

}
75

writeFSL(ND_3_OG_1_CH_1, &out_0ND_3, (sizeof(tCH_1)+(sizeof(tCH_1)%4)+3)/4);

} // for i
} // for j

80 } // for k

clk_num = * clk_cntr;

* (ZBT_MEMORY) = (volatile long)clk_num;

* FIN_SIGNAL = (volatile long)0x00000001;
85 } // main

Figure 6.13: Modified program code of processorP 1.

introduce how to execute the project inXPS, get the result from this heterogeneous and hierar-
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0 #include "xparameters.h"
#include "stdio.h"
#include "stdlib.h"
#include "aux_func.h"
#include "MemoryMap.h"

5

int main () {

int clk_num;
10 * clk_cntr = 0;

// Input Arguments
tCH_2 in_0ND_5;
tCH_3 in_1ND_5;

15 tCH_4 in_2ND_5;

// Output Arguments
tCH_5 out_0ND_5;

20 tCH 2 tmp;

Q q;

for( int k = ceil1(1); k <= floor1(NumFrames ); k += 1 ) {
25 for( int j = ceil1(1); j <= floor1(VNumBlocks ); j += 1 ) {

for( int i = ceil1(1); i <= floor1(HNumBlocks ); i += 1 ) {

//readFSL(ND 5 IG 1 CH 2, &in 0ND 5, (sizeof(tCH 2)+(sizeof(tCH 2)%4)+3)/4);
readFSL(ND 5 IG 1 CH 2, &tmp, (sizeof(tCH 2)+(sizeof(tCH˙2)%4)+3)/4);

30
//convert the negative 9-bit numbers to 32-bit negative numbers
for (int l = 0; l < 64; l++) {

if (tmp.Y1.pixel[l] >= 256){
tmp.Y1.pixel[l] = tmp.Y1.pixel[l] | 0xfffffe00U;

35 }
if (tmp.Y2.pixel[l] >= 256){

tmp.Y2.pixel[l] = tmp.Y2.pixel[l] | 0xfffffe00U;
}
if (tmp.U1.pixel[l] >= 256){

40 tmp.U1.pixel[l] = tmp.U1.pixel[l] | 0xfffffe00U;
}
if (tmp.V1.pixel[l] >= 256){

tmp.V1.pixel[l] = tmp.V1.pixel[l] | 0xfffffe00U;
}

45 }

// transpose the data blocks in the packet
for (int t = 0; t < 8; t++) {

for (int q = 0; q < 8; q++) {
50 in 0ND 5.Y1.pixel[t*8+q] = (int)tmp.Y1.pixel[q*8+t]*2;

in 0ND 5.Y2.pixel[t*8+q] = (int)tmp.Y2.pixel[q*8+t]*2;
in 0ND 5.U1.pixel[t*8+q] = (int)tmp.U1.pixel[q*8+t]*2;
in 0ND 5.V1.pixel[t*8+q] = (int)tmp.V1.pixel[q*8+t]*2;
}

55 }

if( k-1 == 0 ) {
if( j-1 == 0 ) {
if( i-1 == 0 ) {

60
readFSL(ND_5_IG_2_CH_3, &in_1ND_5, (sizeof(tCH_3)+(sizeof(tCH_3)%4)+3)/4);

}
}

65 }
if( k-1 == 0 ) {

if( j-1 == 0 ) {
if( i-1 == 0 ) {

70 readFSL(ND_5_IG_3_CH_4, &in_2ND_5, (sizeof(tCH_4)+(sizeof(tCH_4)%4)+3)/4);

}
}

}
75 //Q(in_0ND_5, in_1ND_5, in_2ND_5, &out_0ND_5) ;

q.main(in_0ND_5, in_1ND_5, in_2ND_5, out_0ND_5);

writeFSL(ND_5_OG_1_CH_5, &out_0ND_5, (sizeof(tCH_5)+(sizeof(tCH_5)%4)+3)/4);

80 } // for i
} // for j

} // for k

clk_num = * clk_cntr;
85 * (ZBT_MEMORY) = (volatile long)clk_num;

* FIN_SIGNAL = (volatile long)0x00000001;
} // main

Figure 6.14: Modified program code of processorP 3.
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chical embedded system and debug this heterogeneous and hierarchical embedded system.

6.3.1 Import Project to XPS

In order to import our project of heterogeneous and hierarchical embedded system intoXPS,
first we need to startXPS. We use the start menu of the Windows:start->Xilinx Platform Stu-
dio 7.1i->Xilinx Platform Studio . In XPS, we select the menu option:File->Open Project.
In the new dialog box, we select the XMP file —system.xmpof our XPS project. In our case
we useXPS version 7.1. Because ourXPS project is based onXPS version 6.3,XPS automat-
ically upgrade ourXPS project to adapt to version 7.1 and import ourXPS project intoXPS.
We can get a view of all the components and settings in ourXPSproject by selecting the menu
option: Project->Add/Edit Cores...(dialog). All the components, buses, addresses, ports, and
parameters are listed separately in the tabsPeripherals, Bus Connections, Addresses, Ports,
andParameters.

After we import our project toXPS, we still need to do some modifications for our project in
XPS. First, we need to set our target FPGA board. In theSystemtab ofXPS, there is aProject
Options. In theProject Options, there is an option forDevice. Double click theDeviceoption,
then in the new dialog box we set the target device to :Architecture: virtex2, Device Size:
xc2v6000, Package: ff1152, Grade: -5. When we set the target device, we can click theOK
button and thenXPSset the target device for our project.

Second, we need to set the stack size for each processor of our project and import all of the
header files and implementation program code files for each processor of our project inXPS.
Also, we need to delete the software project for processorMB 2, because it has already been
replaced with the dedicated hardware IP core for theDCT() process. In theApplicationstab
of XPS, there are fiveSoftware Projects: Proj MB 1, Proj MB 2, Proj MB 3, Proj MB 4 and
Proj MB 5. Right click theProj MB 2 and select theDelete Project ...option to delete the
software project for processorMB 2. In each software project, there is aCompiler Options.
Double click theCompiler Options, then in the new dialog box we can set theStack Sizefor
each processor. We need to set 64000 forStack Sizeof Proj MB 1, 9000 forStack Sizeof
Proj MB 3, 19000 forStack Sizeof Proj MB 4, and 20000 forStack Sizeof Proj MB 5. Now
we need to import all of the header files and implementation program code files for each proces-
sor of our project. In each software project, there are aSourcesoption and aHeadersoption.
Double click theSourcesoption, then in the new dialog box we can add the implementation
program code files for each processor. Double click theHeadersoption, then in the new dialog
box we can add the head files for each processor. ForProj MB 1, in Sourcesoption we need
to addVideo in.cppandControlInit.cppfiles, and inHeadersoption we need to addVideo in.h,
ControlInit.h, csize.h, marker.h, param.h, tables.h, andtypes.hfiles. ForProj MB 3, in Sources
option we need to addQ.cppfile, and inHeadersoption we need to addQ.h, csize.h, marker.h,
param.h, tables.h, andtypes.hfiles. ForProj MB 4, in Sourcesoption we need to addVLE.cpp
file, and inHeadersoption we need to addVLE.h, csize.h, marker.h, param.h, tables.h, and
types.hfiles. ForProj MB 5, in Sourcesoption we need to addVideoout.cppfile, and inHead-
ers option we need to addVideoout.h, csize.h, marker.h, param.h, tables.h, andtypes.hfiles.
The complete modified project of this heterogeneous and hierarchical embedded system can be
found in the CVS repository:
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docs/students/WeiZhong/experiment/MJPEG4p DCTHW.zip

6.3.2 XPS Project Execution and Results

When we finish with importing our project toXPSand all of the modifications for our project,
we start to useXPSto generate the final bitstream file. The bitstream file is used to configure the
FPGA chip to implement the M-JPEG encoder application. We use the following commands
that can be found in the menu optionTools in XPS to generate the final bitstream file step by
step.

• Generate Netlist: This command uses the platform building toolPlatGenwith the MHS
file as input. It produces system netlist files in NGC format.

• Generate Bitstream: This command uses thexflow tool with the NGC netlist files as
input. Thefast runtime.optandbitgen.utfiles in theetcdirectory of our project are used
to set some options of thexflow tool. The xflow tool generates the bitstream file —
system.bitfor the FPGA. This file is located in directoryimplementationof our project.

• Generate Libraries: This command uses the library building toolLibGenwith the cor-
rect MSS file as input to create the Board Support Packet (BSP) which includes device
drivers, libraries, STDIN/STDOUT configurations, and interrupt handlers associated with
the design.

• Build All User Applications : This command uses the cross compilermc-gcc. This com-
piler generates several ELF executable files, one for each processor in the system, by
compiling the program code for each processor. IfLibGenhas not been executed, this
command first executesLibGen.

• Update Bitstream: This command uses the toolbitinit. This is the stage where the
hardware and the software flows are merged. If the above commands have not been
executed, this command will execute them one by one. Finally, we can get the final
bitstream file —download.bitfile in the implementationdirectory of our project that
contains the entire FPGA configuration information including both the software and the
hardware information of our heterogeneous and hierarchical embedded system.

In order to download the final bitstream file onto the target FPGA board and test our heteroge-
neous and hierarchical embedded system to get the resulting data, we need to use a software
program in an outside host processor to communicate with our target board — ADM-XRC-II
board. The software program uses the ADM-XRC application-programming interface (API) to
takes care of open, close and device I/O control calls to the driver of the ADM-XRC-II board.
We compile and run the software program with Microsoft Visual C++ 6.0. The main code of
the software program is shown in Figure 6.15. In our case, we use one video frame which
size is 128×128 pixels to test our M-JPEG encoder heterogeneous and hierarchical embedded
system. First in line 24 of Figure 6.15, the outside host processor writes the initial video data
into the off-chip memory. Then in lines 31-37, our M-JPEG encoder heterogeneous and hi-
erarchical embedded system reads the initial video data from the off-chip memory, executes
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0 void FPGA::MJPEG() {

// Initialization
fh1 = mropen("nonint.Y");
fh2 = mropen("nonint.U");

5 fh3 = mropen("nonint.V");

for (int n=0; n<imageH * imageV; n++) {
rambuf[n] = (DWORD)bgetc(fh1);

}
10 for (n=0; n<imageH * imageV/2; n++) {

rambuf[imageH * imageV + n] = (DWORD)bgetc(fh2);
}
for (n=0; n<imageH * imageV/2; n++) {

rambuf[imageH * imageV + imageH * imageV/2 + n] = (DWORD)bgetc(fh3);
15 }

mclose(fh1);
mclose(fh2);
mclose(fh3);

20
// write the packet into to Bank1 of the FPGA board
fpgaSpace[COMMAND_REG] = cmd_Initialize; // initialise memory mode + access to banks to host
fpgaSpace[COMMAND_REG];
status = writeSSRAM(rambuf , 0, imageH * imageV * 2, dma);

25 if (status != ADMXRC2_SUCCESS) {
printf("exiting

n");
exit(0);

}

30 // process the packet in the FPGA
fpgaSpace[COMMAND_REG] = cmd_Execute; // execute mode + access to banks to design
fpgaSpace[COMMAND_REG];
WORD temp;
while(1) {

35 temp = fpgaSpace[STATUS_REG];
if (temp == stat_Finished) break;

}

// read the packet from Banks of the FPGA board
40 fpgaSpace[COMMAND_REG] = cmd_Read; // read memory mode + access to banks to host

fpgaSpace[COMMAND_REG];
DWORD index;
DWORD clk1;
DWORD clk3;

45 DWORD clk4;
DWORD clk5;

readSSRAM(&clk1, 0, 1, dma);
readSSRAM(&clk3, bankSize + bankSize, 1, dma);

50 readSSRAM(&clk4, bankSize + bankSize + bankSize, 1, dma);
readSSRAM(&index, bankSize + bankSize + bankSize + bankSize, 1, dma);
readSSRAM(&clk5, bankSize + bankSize + bankSize + bankSize + index + 1, 1, dma);
status = readSSRAM(rambuf + bankSize, bankSize + bankSize + bankSize + bankSize + 1, index, dma);
if (status != ADMXRC2_SUCCESS) {

55 printf("Error: failed to read SSRAM
n");

exit(1);
}

// Store the jpeg image
60 fh4 = mwopen("nonint.jpg");

for (int k = 0; k < index; k++) {
bputc(rambuf[bankSize + k],fh4);
}

65
mclose(fh4);

printf("%i",(int)clk1);
printf(" Ä");

70 printf("%i",(int)clk3);
printf(" Ä");
printf("%i",(int)clk4);
printf(" Ä");
printf("%i",(int)clk5);

75 printf(" Ä");

return;
}

Figure 6.15: The main code of the software program in the host processor.

the M-JPEG application for the initial video data and writes the resulting video data into the
off-chip memory. Finally, in lines 48-53, the outside host processor reads back the resulting
video data from the off-chip memory. Meanwhile, the outside host processor reads back the
debugging information from the off-chip memory for our M-JPEG encoder heterogeneous and
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hierarchical embedded system which will be explained in Section 6.3.3. Therefore, in order to
download the final bitstream file onto the target FPGA board and test our heterogeneous and
hierarchical embedded system to get the resulting data, we just need to copy the final bitstream
file which has been generated before to the directory of this software program. Then we compile
and run this software program with Microsoft Visual C++ 6.0. We can get the resulting video
data in the outside host processor. This software program can be found in the CVS repository:
docs/students/WeiZhong/experiment/PentiumProgram.zip

6.3.3 Debugging the Heterogeneous and Hierarchical Embedded System

In order to debug our M-JPEG encoder heterogeneous and hierarchical embedded system and
evaluate the time performance of our system, we need to count the number of the clock cycles
of each processor for processing the video frame with the M-JPEG application.
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Figure 6.16:MicroBlazeprocessor connect toCountercomponent via LMB bus.

We need a custom IP core namedclock cyclecounterv1 00 a for counting the number of the
clock cycles of each processor. Figure 6.16 shows that aMicroBlazeprocessor use LMB bus to
connect to aclock cyclecounterv1 00 a component in order to count the number of the clock
cycles. As an example, we use the componentclock cyclecounterP1 in lines 69-76 of the
MHS file shown in Appendix A. In order to make an outside host processor get the number of
the clock cycles, we also need to store the number of the clock cycles in the off-chip memories.
Because we add the-- debuggeroption when we run ourESPAM tool, this-- debuggeroption
tells our ESPAM tool to generate the component which is used for debugging. OurESPAM

tool automatically copies the pcore ofclock cyclecounterv1 00 a to thepcoresdirectory of
our project and store the number of the clock cycles in a variable in the program code of each
processor. However, we still need to manually do the modification in the program code of each
processor for storing the number of the clock cycles in the off-chip memories. As an example,
we can see the modified program code of processorP 1 which is shown in Figure 6.9. In
lines 9-10, we define a variable for storing the number of the clock cycles and initialize the
clock cyclecounterv1 00 a component by setting the initial value to 0. In lines 74-75, first
we store the number of the clock cycles in the variable which is defined before and then store
the value of this variable in the off-chip memory. Finally, by using the software program in an
outside host processor which has been explained in Section 6.3.2, the outside host processor
can read back the number of the clock cycles of each processor from the off-chip memories.
Lines 48-52 in Figure 6.15 show how an outside host processor read back the number of the
clock cycles of each processor from the off-chip memories.
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Chapter 7
Summary and Conclusions

In this thesis, first we propose a system design methodology which is used to close theIm-
plementation Gapbetween theSystem-levelspecification of multiprocessor embedded systems
and theRTL-levelspecification of multiprocessor embedded systems. We have developed a
tool calledESPAM (Embedded System-level Platform synthesis and Application Mapping) to
implement this system design methodology. OurESPAM tool allows designers to specify a
multiprocessor embedded system at a high level of abstraction (System-level), then it refines
this specification and systematically and automatically converts this specification to aRTL-level
specification. Second, we introduce our view on an embedded system with heterogeneous and
hierarchical architecture and prove that it is possible to implement systematically and automat-
ically such embedded system as heterogeneous and hierarchical architecture using theESPAM

technology. Third, we introduce the construction of an interface of an embedded system with
the outside world which can be used to efficiently communicate between the system and the out-
side world, such as an outside host processor, via off-chip memories. We also have explained
the approach about how to make theESPAM tool automatically generate the interface when it
maps an application onto a multiprocessor platform.

In Chapter 1, we have explained that modern complex embedded applications lead to the situa-
tion that a single processor embedded system architecture can no longer meet the performance
requirements of these applications. Because of this fact, several problems emerge. The first
problem is how to design systematically and automatically a multiprocessor embedded system.
The second problem is how to implement an embedded system as heterogeneous and hierar-
chical architecture systematically and automatically. The third problem is how to construct an
efficient interface of an embedded system with the outside world. First, we need to develop a
system design methodology to efficiently and effectively map the concurrent model of an ap-
plication onto a multiprocessor embedded system platform in a systematic and automated way.
Second, we need to give the procedure which explains how to implement systematically and
automatically an embedded system as heterogeneous and hierarchical architecture. Third, we
need to construct an efficient interface of an embedded system with the outside world.

In Chapter 2, we have given a detailed description of our system design methodology which
is implemented in ourESPAM tool – Embedded System-level Platform Synthesis and Applica-
tion Mapping. The description of our system design methodology follows the process of how
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the ESPAM tool bridge theImplementation Gapbetween theSystem-levelspecification of an
embedded system and theRTL-levelspecification of an embedded system. TheSystem-level
specification consists of three parts which arePlatform Specification, Application Specification
andMapping Specification. In our ESPAM design methodology, we use the Kahn Process Net-
works (KPN) model of computation forApplication Specification. We use theCOMPAAN tool to
automatically transforms an application which is specified in a sequential model of computation
into a KPN model of computation making the task-level parallelism available in an application
explicit. First,ESPAM constructs a platform instance according to aPlatform Specificationand
runs a consistency check on this instance. This platform instance is an abstract model and at
this step no information about the target physical platform is taken into account. Such platform
instance consists of the generic parameterized system components. At the second step,ESPAM

refines the abstract platform model to an elaborate parameterized RTL model which is ready for
an implementation on a target physical platform. At last,ESPAM generates the program code for
each processor in the multiprocessor embedded system platform according to theApplication
SpecificationandMapping Specification. At present, ourESPAM tool can systematically syn-
thesize a platform and automatically generate all necessary files for anXPS project according
to Platform Specification, Application SpecificationandMapping Specification. In our ESPAM

tool, theVisitor Patternmechanism is used to generate anXPSproject.

In Chapter 3, we introduce a heterogeneous and hierarchical architecture, and the differences
between a homogeneous architecture and a heterogeneous and hierarchical architecture, and
prove that it is possible to implement systematically and automatically an embedded system
as heterogeneous and hierarchical architecture using theESPAM technology. A homogeneous
architecture means all of the components which compose an embedded system platform be-
long to the same type. A heterogeneous architecture means different types of processes are
executed by different types of components which compose an embedded system platform. The
hierarchical architecture which we have defined earlier means the complex process of an ap-
plication is mapped onto several components which compose a sub-network on an embedded
system platform. Due to the complexity of modern applications, such as high throughput mul-
timedia, imaging and digital signal processing which usually include complicated algorithms,
different types of processes of an application are suitable for being executed by different types
of components on an embedded system platform. Therefore, an embedded system as homoge-
neous architecture is no longer suitable for modern applications. In order to meet the required
performance of various applications we need to implement systematically and automatically
a heterogeneous and hierarchical architecture on an embedded system platform. In this chap-
ter, we give the procedure which explains how to implement systematically and automatically
an embedded system as heterogeneous and hierarchical architecture which contains processor
components and a dedicated hardware IP core. In our case, the processor components use FI-
FOs to communicate with each other. In order to make the dedicated hardware IP core can
communicate with the processor components, the dedicated hardware IP core should has the
FIFO input and output interfaces. We use theLAURA tool [6] which has been developed at the
Leiden Embedded Research Center (LERC) to generate the dedicated hardware IP core which
contains the FIFO input and output interfaces. In this heterogeneous and hierarchical archi-
tecture, we use the dedicated hardware IP core to execute the most complicated process of an
application repetitively and use the processor components to execute the other processes of the
application in order to get good performance of execution time. In this way, we can prove that it
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is possible to implement systematically and automatically an embedded system as heterogenous
and hierarchical architecture using theESPAM technology.

In Chapter 4, we explain how to construct an efficient interface of an embedded system with
the outside world step by step. This interface can be used to communicate between embedded
systems and the outside world via off-chip memories. The target FPGA platform on which we
implement our interface of an embedded system with the outside world is the ADM-XRC-II
board which supports high performance PCI operation without the need to integrate proprietary
cores into the FPGA. The interface of an embedded system with the outside world consists
of four main parts — Host Interface, Function Design, Multiplexer and Buffer. The Function
Design is a multiprocessor system which is used to implement different types of embedded
system applications. Besides these four main parts, our interface has two connection parts.
One connection part is a custom controller for a processor in the Function Design to connect
to the off-chip ZBT SSRAM. The other connection part includes two components which are
used to transfer control signals and status signals between the Host Interface and the Function
Design. We also make theESPAM tool can automatically generate the interface when it maps
an application onto a multiprocessor platform.

In Chapter 5, two case studies are given. The first case study is about a M-JPEG multiprocessor
system with homogeneous architecture which is used to evaluate the design methodology in
our ESPAM tool presented in Chapter 2 and validate the interface of an embedded system with
the outside world explained in Chapter 4. The second case study is about a M-JPEG multi-
processor system with heterogeneous and hierarchical architecture which is used to validate the
procedure of implementing an embedded system as heterogeneous and hierarchical architecture
and evaluate the heterogeneous and hierarchical architecture introduced in Chapter 3. From the
result of the first case study, we prove that with mapping the same application a multiprocessor
embedded system has better time performance than a single processor embedded system. We
find out that based on requirement of an application we can map the application onto any num-
ber of MicroBlazeprocessors embedded system platform. The only limitation is whether the
target FPGA board has enough on-chip memories and reconfigurable resources. We also find
out that there are still several tasks we need to do after theXPS project automatic generation
using ourESPAM tool, such as modifying the memory allocation, importing implementations
of the function calls in processors and changing function calls in processors’ program code and
so on. From the result of the second case study, we prove that with mapping the same appli-
cation a heterogeneous and hierarchical embedded system has better time performance than a
homogeneous embedded system.

In Chapter 6, a tutorial with example of heterogeneous and hierarchical embedded system de-
sign is given. This tutorial gives the detailed steps for how to design a heterogeneous and
hierarchical embedded system using theCOMPAAN tool, ourESPAM tool and the commercial
synthesis tool Xilinx Platform Studio (XPS). First, we generate anXPSproject of homogeneous
embedded system for an application. Second, we change theXPSproject of homogeneous em-
bedded system to heterogeneous and hierarchical embedded system by hand. Third, we import
the project intoXPSand useXPS to generate the final bitstream file. At last, we use a software
program in an outside host processor to download the final bitstream file onto the target FPGA
board and test the heterogeneous and hierarchical embedded system to get the resulting data.

In conclusion, by using ourESPAM tool, designers can easily design multiprocessor embedded
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systems for various applications. By implementing embedded systems as heterogeneous and hi-
erarchical architecture, we can make embedded systems of various applications meet required
performance. By using our interface of an embedded system with the outside world, an embed-
ded system can efficiently communicate with the outside world. Because of time limitations
related to the preparation of this thesis, currently ourESPAM tool can not generate automati-
cally an embedded system as heterogeneous and hierarchical architecture. However, this is only
an implementation issue that has to be addressed in the future. In this thesis we have already
proven that it is possible for ourESPAM tool to generate systematically and automatically an
embedded system as heterogeneous and hierarchical architecture by giving a detailed proce-
dure. Therefore, in the future the people who continue developing ourESPAM tool can work on
the implementation issue related to the automatic generation of heterogeneous and hierarchical
systems.



Appendix A
MHS File for M-JPEG Encoder Five
Processors Homogeneous Embedded System

1 PARAMETER VERSION = 2.1.0
PORT lclk = lclk, DIR = IN
PORT mclk = mclk, DIR = IN
PORT ramclki = ramclki, VEC = [1:0], DIR = IN

5 PORT ramclko = ramclko, VEC = [1:0], DIR = OUT
PORT lreseto_l = lreseto_l, DIR = IN
PORT lwrite = lwrite, DIR = IN
PORT lads_l = lads_l, DIR = IN
PORT lblast_l = lblast_l, DIR = IN

10 PORT lbterm_l = lbterm_l, DIR = INOUT
PORT ld = ld, VEC = [31:0], DIR = INOUT
PORT la = la, VEC = [23:2], DIR = IN
PORT lreadyi_l = lreadyi_l, DIR = OUT
PORT lbe_l = lbe_l, VEC = [3:0], DIR = IN

15 PORT fholda = fholda, DIR = IN
PORT ra0 = ra0, VEC = [19:0], DIR = OUT
PORT rd0 = rd0, VEC = [31:0], DIR = INOUT
PORT rc0 = rc0, VEC = [8:0], DIR = OUT
PORT ra1 = ra1, VEC = [19:0], DIR = OUT

20 PORT rd1 = rd1, VEC = [31:0], DIR = INOUT
PORT rc1 = rc1, VEC = [8:0], DIR = OUT
PORT ra2 = ra2, VEC = [19:0], DIR = OUT
PORT rd2 = rd2, VEC = [31:0], DIR = INOUT
PORT rc2 = rc2, VEC = [8:0], DIR = OUT

25 PORT ra3 = ra3, VEC = [19:0], DIR = OUT
PORT rd3 = rd3, VEC = [31:0], DIR = INOUT
PORT rc3 = rc3, VEC = [8:0], DIR = OUT
PORT ra4 = ra4, VEC = [19:0], DIR = OUT
PORT rd4 = rd4, VEC = [31:0], DIR = INOUT

30 PORT rc4 = rc4, VEC = [8:0], DIR = OUT
PORT ra5 = ra5, VEC = [19:0], DIR = OUT
PORT rd5 = rd5, VEC = [31:0], DIR = INOUT
PORT rc5 = rc5, VEC = [8:0], DIR = OUT

35 BEGIN lmb_v10
PARAMETER INSTANCE = PBUS_MB_1
PARAMETER HW_VER = 1.00.a
PARAMETER C_EXT_RESET_HIGH = 0
PORT SYS_Rst = net_design_rst

40 PORT LMB_Clk = sys_clk_s
END

BEGIN lmb_v10
PARAMETER INSTANCE = DBUS_MB_1

45 PARAMETER HW_VER = 1.00.a
PARAMETER C_EXT_RESET_HIGH = 0
PORT SYS_Rst = net_design_rst
PORT LMB_Clk = sys_clk_s

END
50

BEGIN opb_v20
PARAMETER INSTANCE = mb_opb_1
PARAMETER HW_VER = 1.10.c

PARAMETER C_EXT_RESET_HIGH = 0
55 PORT SYS_Rst = net_design_rst

PORT OPB_Clk = sys_clk_s
END

BEGIN fin_ctrl
60 PARAMETER INSTANCE = fin_ctrl_P1

PARAMETER HW_VER = 1.00.a
PARAMETER C_BASEADDR = 0xf9000000
PARAMETER C_HIGHADDR = 0xf900000f
PARAMETER C_AB = 8

65 BUS_INTERFACE SLMB = DBUS_MB_1
PORT Sl_FinOut = net_fin_signal_P1

END

BEGIN clock_cycle_counter
70 PARAMETER INSTANCE = clock_cycle_counter_P1

PARAMETER HW_VER = 1.00.a
PARAMETER C_BASEADDR = 0xf8000000
PARAMETER C_HIGHADDR = 0xf8000003
BUS_INTERFACE SLMB = DBUS_MB_1

75 PORT LMB_Clk = sys_clk_s
END

BEGIN microblaze
PARAMETER INSTANCE = MB_1

80 PARAMETER HW_VER = 4.00.a
PARAMETER C_NUMBER_OF_PC_BRK = 1
PARAMETER C_NUMBER_OF_RD_ADDR_BRK = 0
PARAMETER C_NUMBER_OF_WR_ADDR_BRK = 0
BUS_INTERFACE MFSL0 = FIFO_MB_1_Out_1

85 BUS_INTERFACE MFSL1 = FIFO_MB_1_Out_2
BUS_INTERFACE MFSL2 = FIFO_MB_1_Out_3
BUS_INTERFACE MFSL3 = FIFO_MB_1_Out_4
BUS_INTERFACE MFSL4 = FIFO_MB_1_Out_5
BUS_INTERFACE MFSL5 = FIFO_MB_1_Out_6

90 BUS_INTERFACE MFSL6 = FIFO_MB_1_Out_7
BUS_INTERFACE MFSL7 = FIFO_MB_1_Out_8
BUS_INTERFACE DLMB = DBUS_MB_1
BUS_INTERFACE ILMB = PBUS_MB_1
BUS_INTERFACE DOPB = mb_opb_1

95 PARAMETER C_FSL_LINKS = 8
PORT CLK = sys_clk_s

END

BEGIN lmb_v10
100 PARAMETER INSTANCE = PBUS_MB_2

PARAMETER HW_VER = 1.00.a
PARAMETER C_EXT_RESET_HIGH = 0
PORT SYS_Rst = net_design_rst
PORT LMB_Clk = sys_clk_s

105 END



86 MHS File for M-JPEG Encoder Five Processors Homogeneous Embedded System

BEGIN lmb_v10
PARAMETER INSTANCE = DBUS_MB_2
PARAMETER HW_VER = 1.00.a

110 PARAMETER C_EXT_RESET_HIGH = 0
PORT SYS_Rst = net_design_rst
PORT LMB_Clk = sys_clk_s

END

115 BEGIN opb_v20
PARAMETER INSTANCE = mb_opb_2
PARAMETER HW_VER = 1.10.c
PARAMETER C_EXT_RESET_HIGH = 0
PORT SYS_Rst = net_design_rst

120 PORT OPB_Clk = sys_clk_s
END

BEGIN fin_ctrl
PARAMETER INSTANCE = fin_ctrl_P2

125 PARAMETER HW_VER = 1.00.a
PARAMETER C_BASEADDR = 0xf9000000
PARAMETER C_HIGHADDR = 0xf900000f
PARAMETER C_AB = 8
BUS_INTERFACE SLMB = DBUS_MB_2

130 PORT Sl_FinOut = net_fin_signal_P2
END

BEGIN clock_cycle_counter
PARAMETER INSTANCE = clock_cycle_counter_P2

135 PARAMETER HW_VER = 1.00.a
PARAMETER C_BASEADDR = 0xf8000000
PARAMETER C_HIGHADDR = 0xf8000003
BUS_INTERFACE SLMB = DBUS_MB_2
PORT LMB_Clk = sys_clk_s

140 END

BEGIN microblaze
PARAMETER INSTANCE = MB_2
PARAMETER HW_VER = 4.00.a

145 PARAMETER C_NUMBER_OF_PC_BRK = 1
PARAMETER C_NUMBER_OF_RD_ADDR_BRK = 0
PARAMETER C_NUMBER_OF_WR_ADDR_BRK = 0
BUS_INTERFACE MFSL0 = FIFO_MB_2_Out_1
BUS_INTERFACE SFSL0 = FIFO_MB_1_Out_1

150 BUS_INTERFACE DLMB = DBUS_MB_2
BUS_INTERFACE ILMB = PBUS_MB_2
BUS_INTERFACE DOPB = mb_opb_2
PARAMETER C_FSL_LINKS = 1
PORT CLK = sys_clk_s

155 END

BEGIN lmb_v10
PARAMETER INSTANCE = PBUS_MB_3
PARAMETER HW_VER = 1.00.a

160 PARAMETER C_EXT_RESET_HIGH = 0
PORT SYS_Rst = net_design_rst
PORT LMB_Clk = sys_clk_s

END

165 BEGIN lmb_v10
PARAMETER INSTANCE = DBUS_MB_3
PARAMETER HW_VER = 1.00.a
PARAMETER C_EXT_RESET_HIGH = 0
PORT SYS_Rst = net_design_rst

170 PORT LMB_Clk = sys_clk_s
END

BEGIN opb_v20
PARAMETER INSTANCE = mb_opb_3

175 PARAMETER HW_VER = 1.10.c
PARAMETER C_EXT_RESET_HIGH = 0
PORT SYS_Rst = net_design_rst
PORT OPB_Clk = sys_clk_s

END
180

BEGIN fin_ctrl
PARAMETER INSTANCE = fin_ctrl_P3
PARAMETER HW_VER = 1.00.a
PARAMETER C_BASEADDR = 0xf9000000

185 PARAMETER C_HIGHADDR = 0xf900000f
PARAMETER C_AB = 8
BUS_INTERFACE SLMB = DBUS_MB_3
PORT Sl_FinOut = net_fin_signal_P3

END
190

BEGIN clock_cycle_counter
PARAMETER INSTANCE = clock_cycle_counter_P3
PARAMETER HW_VER = 1.00.a
PARAMETER C_BASEADDR = 0xf8000000

195 PARAMETER C_HIGHADDR = 0xf8000003
BUS_INTERFACE SLMB = DBUS_MB_3
PORT LMB_Clk = sys_clk_s

END

200 BEGIN microblaze
PARAMETER INSTANCE = MB_3
PARAMETER HW_VER = 4.00.a
PARAMETER C_NUMBER_OF_PC_BRK = 1
PARAMETER C_NUMBER_OF_RD_ADDR_BRK = 0

205 PARAMETER C_NUMBER_OF_WR_ADDR_BRK = 0
BUS_INTERFACE MFSL0 = FIFO_MB_3_Out_1
BUS_INTERFACE SFSL0 = FIFO_MB_2_Out_1
BUS_INTERFACE SFSL1 = FIFO_MB_1_Out_2
BUS_INTERFACE SFSL2 = FIFO_MB_1_Out_3

210 BUS_INTERFACE DLMB = DBUS_MB_3
BUS_INTERFACE ILMB = PBUS_MB_3
BUS_INTERFACE DOPB = mb_opb_3
PARAMETER C_FSL_LINKS = 3
PORT CLK = sys_clk_s

215 END

BEGIN lmb_v10
PARAMETER INSTANCE = PBUS_MB_4
PARAMETER HW_VER = 1.00.a

220 PARAMETER C_EXT_RESET_HIGH = 0
PORT SYS_Rst = net_design_rst
PORT LMB_Clk = sys_clk_s

END

225 BEGIN lmb_v10
PARAMETER INSTANCE = DBUS_MB_4
PARAMETER HW_VER = 1.00.a
PARAMETER C_EXT_RESET_HIGH = 0
PORT SYS_Rst = net_design_rst

230 PORT LMB_Clk = sys_clk_s
END

BEGIN opb_v20
PARAMETER INSTANCE = mb_opb_4

235 PARAMETER HW_VER = 1.10.c
PARAMETER C_EXT_RESET_HIGH = 0
PORT SYS_Rst = net_design_rst
PORT OPB_Clk = sys_clk_s

END
240

BEGIN fin_ctrl
PARAMETER INSTANCE = fin_ctrl_P4
PARAMETER HW_VER = 1.00.a
PARAMETER C_BASEADDR = 0xf9000000

245 PARAMETER C_HIGHADDR = 0xf900000f
PARAMETER C_AB = 8
BUS_INTERFACE SLMB = DBUS_MB_4
PORT Sl_FinOut = net_fin_signal_P4

END
250

BEGIN clock_cycle_counter
PARAMETER INSTANCE = clock_cycle_counter_P4
PARAMETER HW_VER = 1.00.a
PARAMETER C_BASEADDR = 0xf8000000

255 PARAMETER C_HIGHADDR = 0xf8000003
BUS_INTERFACE SLMB = DBUS_MB_4
PORT LMB_Clk = sys_clk_s

END

260 BEGIN microblaze
PARAMETER INSTANCE = MB_4
PARAMETER HW_VER = 4.00.a
PARAMETER C_NUMBER_OF_PC_BRK = 1
PARAMETER C_NUMBER_OF_RD_ADDR_BRK = 0

265 PARAMETER C_NUMBER_OF_WR_ADDR_BRK = 0
BUS_INTERFACE MFSL0 = FIFO_MB_4_Out_1
BUS_INTERFACE SFSL0 = FIFO_MB_3_Out_1
BUS_INTERFACE SFSL1 = FIFO_MB_1_Out_4
BUS_INTERFACE SFSL2 = FIFO_MB_1_Out_5

270 BUS_INTERFACE SFSL3 = FIFO_MB_1_Out_6
BUS_INTERFACE SFSL4 = FIFO_MB_1_Out_7
BUS_INTERFACE DLMB = DBUS_MB_4
BUS_INTERFACE ILMB = PBUS_MB_4
BUS_INTERFACE DOPB = mb_opb_4

275 PARAMETER C_FSL_LINKS = 5
PORT CLK = sys_clk_s

END

BEGIN lmb_v10
280 PARAMETER INSTANCE = PBUS_MB_5

PARAMETER HW_VER = 1.00.a
PARAMETER C_EXT_RESET_HIGH = 0
PORT SYS_Rst = net_design_rst
PORT LMB_Clk = sys_clk_s

285 END

BEGIN lmb_v10
PARAMETER INSTANCE = DBUS_MB_5
PARAMETER HW_VER = 1.00.a

290 PARAMETER C_EXT_RESET_HIGH = 0
PORT SYS_Rst = net_design_rst
PORT LMB_Clk = sys_clk_s

END

295 BEGIN opb_v20
PARAMETER INSTANCE = mb_opb_5
PARAMETER HW_VER = 1.10.c
PARAMETER C_EXT_RESET_HIGH = 0
PORT SYS_Rst = net_design_rst

300 PORT OPB_Clk = sys_clk_s
END



87

BEGIN fin_ctrl
PARAMETER INSTANCE = fin_ctrl_P5

305 PARAMETER HW_VER = 1.00.a
PARAMETER C_BASEADDR = 0xf9000000
PARAMETER C_HIGHADDR = 0xf900000f
PARAMETER C_AB = 8
BUS_INTERFACE SLMB = DBUS_MB_5

310 PORT Sl_FinOut = net_fin_signal_P5
END

BEGIN clock_cycle_counter
PARAMETER INSTANCE = clock_cycle_counter_P5

315 PARAMETER HW_VER = 1.00.a
PARAMETER C_BASEADDR = 0xf8000000
PARAMETER C_HIGHADDR = 0xf8000003
BUS_INTERFACE SLMB = DBUS_MB_5
PORT LMB_Clk = sys_clk_s

320 END

BEGIN microblaze
PARAMETER INSTANCE = MB_5
PARAMETER HW_VER = 4.00.a

325 PARAMETER C_NUMBER_OF_PC_BRK = 1
PARAMETER C_NUMBER_OF_RD_ADDR_BRK = 0
PARAMETER C_NUMBER_OF_WR_ADDR_BRK = 0
BUS_INTERFACE SFSL0 = FIFO_MB_1_Out_8
BUS_INTERFACE SFSL1 = FIFO_MB_1_Out_9

330 BUS_INTERFACE SFSL2 = FIFO_MB_1_Out_10
BUS_INTERFACE SFSL3 = FIFO_MB_4_Out_1
BUS_INTERFACE DLMB = DBUS_MB_5
BUS_INTERFACE ILMB = PBUS_MB_5
BUS_INTERFACE DOPB = mb_opb_5

335 PARAMETER C_FSL_LINKS = 4
PORT CLK = sys_clk_s

END

BEGIN zbt_main
340 PARAMETER INSTANCE = host_zbt_main

PARAMETER HW_VER = 1.00.a
BUS_INTERFACE HOST_BUFF_0_PORT = buff_rd_0
BUS_INTERFACE HOST_BUFF_1_PORT = buff_rd_1
BUS_INTERFACE HOST_BUFF_2_PORT = buff_rd_2

345 BUS_INTERFACE HOST_BUFF_3_PORT = buff_rd_3
BUS_INTERFACE HOST_BUFF_4_PORT = buff_rd_4
BUS_INTERFACE HOST_BUFF_5_PORT = buff_rd_5
BUS_INTERFACE HOST_MUX_PORT = mux_to_host
PORT lclk = lclk

350 PORT mclk = mclk
PORT ramclko = ramclko
PORT ramclki = ramclki
PORT lreseto_l = lreseto_l
PORT lwrite = lwrite

355 PORT lads_l = lads_l
PORT lblast_l = lblast_l
PORT lbterm_l = lbterm_l
PORT ld = ld
PORT la = la

360 PORT lreadyi_l = lreadyi_l
PORT lbe_l = lbe_l
PORT fholda = fholda
PORT CLK_out = sys_clk_s
PORT RST_out = sys_rst_s

365 PORT COMMAND_REG = net_command
PORT DESIGN_STAT_REG = net_design_status

END

BEGIN host_design_ctrl
370 PARAMETER INSTANCE = host_design_controller

PARAMETER HW_VER = 1.00.a
PARAMETER N_FIN = 5
PORT RST = sys_rst_s
PORT COMMAND_REG = net_command

375 PORT STATUS_REG = net_design_status
PORT RST_OUT = net_design_rst
PORT FIN_REG_0 = net_fin_signal_P1
PORT FIN_REG_1 = net_fin_signal_P2
PORT FIN_REG_2 = net_fin_signal_P3

380 PORT FIN_REG_3 = net_fin_signal_P4
PORT FIN_REG_4 = net_fin_signal_P5

END

BEGIN mux
385 PARAMETER INSTANCE = multiplexer

PARAMETER HW_VER = 1.00.a
PARAMETER N_MUX = 5
BUS_INTERFACE MUX_BUFF_PORT = buff_to_mux
BUS_INTERFACE MUX_DESIGN_0_PORT = mux_design_0

390 BUS_INTERFACE MUX_DESIGN_1_PORT = mux_design_1
BUS_INTERFACE MUX_DESIGN_2_PORT = mux_design_2
BUS_INTERFACE MUX_DESIGN_3_PORT = mux_design_3
BUS_INTERFACE MUX_DESIGN_4_PORT = mux_design_4
BUS_INTERFACE MUX_HOST_PORT = mux_to_host

395 PORT ra0 = ra0

PORT ra1 = ra1
PORT ra2 = ra2
PORT ra3 = ra3
PORT ra4 = ra4

400 PORT ra5 = ra5
PORT rc0 = rc0
PORT rc1 = rc1
PORT rc2 = rc2
PORT rc3 = rc3

405 PORT rc4 = rc4
PORT rc5 = rc5
PORT RST = sys_rst_s
PORT CNTRL = net_command

END
410

BEGIN buffers
PARAMETER INSTANCE = buff
PARAMETER HW_VER = 1.00.a
BUS_INTERFACE BUFF_MUX_PORT = buff_to_mux

415 BUS_INTERFACE BUFF_RD_0_PORT = buff_rd_0
BUS_INTERFACE BUFF_RD_1_PORT = buff_rd_1
BUS_INTERFACE BUFF_RD_2_PORT = buff_rd_2
BUS_INTERFACE BUFF_RD_3_PORT = buff_rd_3
BUS_INTERFACE BUFF_RD_4_PORT = buff_rd_4

420 BUS_INTERFACE BUFF_RD_5_PORT = buff_rd_5
PORT rd0 = rd0
PORT rd1 = rd1
PORT rd2 = rd2
PORT rd3 = rd3

425 PORT rd4 = rd4
PORT rd5 = rd5

END

BEGIN opb_zbt_controller
430 PARAMETER INSTANCE = ZBT_CTRL_1

PARAMETER HW_VER = 1.00.a
PARAMETER C_BASEADDR = 0xf0000000
PARAMETER C_HIGHADDR = 0xf00fffff
PARAMETER C_EXTERNAL_DLL = 1

435 PARAMETER C_ZBT_ADDR_SIZE = 20
BUS_INTERFACE SOPB = mb_opb_1
BUS_INTERFACE DESIGN_BUFF_PORT = buff_rd_0
BUS_INTERFACE DESIGN_MUX_PORT = mux_design_0

END
440

BEGIN opb_zbt_controller
PARAMETER INSTANCE = ZBT_CTRL_2
PARAMETER HW_VER = 1.00.a
PARAMETER C_BASEADDR = 0xf0000000

445 PARAMETER C_HIGHADDR = 0xf00fffff
PARAMETER C_EXTERNAL_DLL = 1
PARAMETER C_ZBT_ADDR_SIZE = 20
BUS_INTERFACE SOPB = mb_opb_2
BUS_INTERFACE DESIGN_BUFF_PORT = buff_rd_1

450 BUS_INTERFACE DESIGN_MUX_PORT = mux_design_1
END

BEGIN opb_zbt_controller
PARAMETER INSTANCE = ZBT_CTRL_3

455 PARAMETER HW_VER = 1.00.a
PARAMETER C_BASEADDR = 0xf0000000
PARAMETER C_HIGHADDR = 0xf00fffff
PARAMETER C_EXTERNAL_DLL = 1
PARAMETER C_ZBT_ADDR_SIZE = 20

460 BUS_INTERFACE SOPB = mb_opb_3
BUS_INTERFACE DESIGN_BUFF_PORT = buff_rd_2
BUS_INTERFACE DESIGN_MUX_PORT = mux_design_2

END

465 BEGIN opb_zbt_controller
PARAMETER INSTANCE = ZBT_CTRL_4
PARAMETER HW_VER = 1.00.a
PARAMETER C_BASEADDR = 0xf0000000
PARAMETER C_HIGHADDR = 0xf00fffff

470 PARAMETER C_EXTERNAL_DLL = 1
PARAMETER C_ZBT_ADDR_SIZE = 20
BUS_INTERFACE SOPB = mb_opb_4
BUS_INTERFACE DESIGN_BUFF_PORT = buff_rd_3
BUS_INTERFACE DESIGN_MUX_PORT = mux_design_3

475 END

BEGIN opb_zbt_controller
PARAMETER INSTANCE = ZBT_CTRL_5
PARAMETER HW_VER = 1.00.a

480 PARAMETER C_BASEADDR = 0xf0000000
PARAMETER C_HIGHADDR = 0xf00fffff
PARAMETER C_EXTERNAL_DLL = 1
PARAMETER C_ZBT_ADDR_SIZE = 20
BUS_INTERFACE SOPB = mb_opb_5

485 BUS_INTERFACE DESIGN_BUFF_PORT = buff_rd_4
BUS_INTERFACE DESIGN_MUX_PORT = mux_design_4

END
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BEGIN fsl_v20
490 PARAMETER HW_VER = 2.00.a

PARAMETER INSTANCE = FIFO_MB_1_Out_1
PARAMETER C_EXT_RESET_HIGH = 0
PARAMETER C_ASYNC_CLKS = 0
PARAMETER C_IMPL_STYLE = 1

495 PARAMETER C_USE_CONTROL = 0
PARAMETER C_FSL_DWIDTH = 32
PARAMETER C_FSL_DEPTH = 512
PORT FSL_Clk = sys_clk_s
PORT SYS_Rst = net_design_rst

500 END

BEGIN fsl_v20
PARAMETER HW_VER = 2.00.a
PARAMETER INSTANCE = FIFO_MB_2_Out_1

505 PARAMETER C_EXT_RESET_HIGH = 0
PARAMETER C_ASYNC_CLKS = 0
PARAMETER C_IMPL_STYLE = 1
PARAMETER C_USE_CONTROL = 0
PARAMETER C_FSL_DWIDTH = 32

510 PARAMETER C_FSL_DEPTH = 512
PORT FSL_Clk = sys_clk_s
PORT SYS_Rst = net_design_rst

END

515 BEGIN fsl_v20
PARAMETER HW_VER = 2.00.a
PARAMETER INSTANCE = FIFO_MB_1_Out_2
PARAMETER C_EXT_RESET_HIGH = 0
PARAMETER C_ASYNC_CLKS = 0

520 PARAMETER C_IMPL_STYLE = 1
PARAMETER C_USE_CONTROL = 0
PARAMETER C_FSL_DWIDTH = 32
PARAMETER C_FSL_DEPTH = 512
PORT FSL_Clk = sys_clk_s

525 PORT SYS_Rst = net_design_rst
END

BEGIN fsl_v20
PARAMETER HW_VER = 2.00.a

530 PARAMETER INSTANCE = FIFO_MB_1_Out_3
PARAMETER C_EXT_RESET_HIGH = 0
PARAMETER C_ASYNC_CLKS = 0
PARAMETER C_IMPL_STYLE = 1
PARAMETER C_USE_CONTROL = 0

535 PARAMETER C_FSL_DWIDTH = 32
PARAMETER C_FSL_DEPTH = 512
PORT FSL_Clk = sys_clk_s
PORT SYS_Rst = net_design_rst

END
540

BEGIN fsl_v20
PARAMETER HW_VER = 2.00.a
PARAMETER INSTANCE = FIFO_MB_3_Out_1
PARAMETER C_EXT_RESET_HIGH = 0

545 PARAMETER C_ASYNC_CLKS = 0
PARAMETER C_IMPL_STYLE = 1
PARAMETER C_USE_CONTROL = 0
PARAMETER C_FSL_DWIDTH = 32
PARAMETER C_FSL_DEPTH = 512

550 PORT FSL_Clk = sys_clk_s
PORT SYS_Rst = net_design_rst

END

BEGIN fsl_v20
555 PARAMETER HW_VER = 2.00.a

PARAMETER INSTANCE = FIFO_MB_1_Out_4
PARAMETER C_EXT_RESET_HIGH = 0
PARAMETER C_ASYNC_CLKS = 0
PARAMETER C_IMPL_STYLE = 1

560 PARAMETER C_USE_CONTROL = 0
PARAMETER C_FSL_DWIDTH = 32
PARAMETER C_FSL_DEPTH = 512
PORT FSL_Clk = sys_clk_s
PORT SYS_Rst = net_design_rst

565 END

BEGIN fsl_v20
PARAMETER HW_VER = 2.00.a
PARAMETER INSTANCE = FIFO_MB_1_Out_5

570 PARAMETER C_EXT_RESET_HIGH = 0
PARAMETER C_ASYNC_CLKS = 0
PARAMETER C_IMPL_STYLE = 1
PARAMETER C_USE_CONTROL = 0
PARAMETER C_FSL_DWIDTH = 32

575 PARAMETER C_FSL_DEPTH = 512
PORT FSL_Clk = sys_clk_s
PORT SYS_Rst = net_design_rst

END

580 BEGIN fsl_v20
PARAMETER HW_VER = 2.00.a
PARAMETER INSTANCE = FIFO_MB_1_Out_6

PARAMETER C_EXT_RESET_HIGH = 0
PARAMETER C_ASYNC_CLKS = 0

585 PARAMETER C_IMPL_STYLE = 1
PARAMETER C_USE_CONTROL = 0
PARAMETER C_FSL_DWIDTH = 32
PARAMETER C_FSL_DEPTH = 512
PORT FSL_Clk = sys_clk_s

590 PORT SYS_Rst = net_design_rst
END

BEGIN fsl_v20
PARAMETER HW_VER = 2.00.a

595 PARAMETER INSTANCE = FIFO_MB_1_Out_7
PARAMETER C_EXT_RESET_HIGH = 0
PARAMETER C_ASYNC_CLKS = 0
PARAMETER C_IMPL_STYLE = 1
PARAMETER C_USE_CONTROL = 0

600 PARAMETER C_FSL_DWIDTH = 32
PARAMETER C_FSL_DEPTH = 512
PORT FSL_Clk = sys_clk_s
PORT SYS_Rst = net_design_rst

END
605

BEGIN fsl_v20
PARAMETER HW_VER = 2.00.a
PARAMETER INSTANCE = FIFO_MB_1_Out_8
PARAMETER C_EXT_RESET_HIGH = 0

610 PARAMETER C_ASYNC_CLKS = 0
PARAMETER C_IMPL_STYLE = 1
PARAMETER C_USE_CONTROL = 0
PARAMETER C_FSL_DWIDTH = 32
PARAMETER C_FSL_DEPTH = 512

615 PORT FSL_Clk = sys_clk_s
PORT SYS_Rst = net_design_rst

END

BEGIN fsl_v20
620 PARAMETER HW_VER = 2.00.a

PARAMETER INSTANCE = FIFO_MB_1_Out_9
PARAMETER C_EXT_RESET_HIGH = 0
PARAMETER C_ASYNC_CLKS = 0
PARAMETER C_IMPL_STYLE = 1

625 PARAMETER C_USE_CONTROL = 0
PARAMETER C_FSL_DWIDTH = 32
PARAMETER C_FSL_DEPTH = 512
PORT FSL_Clk = sys_clk_s
PORT SYS_Rst = net_design_rst

630 END

BEGIN fsl_v20
PARAMETER HW_VER = 2.00.a
PARAMETER INSTANCE = FIFO_MB_1_Out_10

635 PARAMETER C_EXT_RESET_HIGH = 0
PARAMETER C_ASYNC_CLKS = 0
PARAMETER C_IMPL_STYLE = 1
PARAMETER C_USE_CONTROL = 0
PARAMETER C_FSL_DWIDTH = 32

640 PARAMETER C_FSL_DEPTH = 512
PORT FSL_Clk = sys_clk_s
PORT SYS_Rst = net_design_rst

END

645 BEGIN fsl_v20
PARAMETER HW_VER = 2.00.a
PARAMETER INSTANCE = FIFO_MB_4_Out_1
PARAMETER C_EXT_RESET_HIGH = 0
PARAMETER C_ASYNC_CLKS = 0

650 PARAMETER C_IMPL_STYLE = 1
PARAMETER C_USE_CONTROL = 0
PARAMETER C_FSL_DWIDTH = 32
PARAMETER C_FSL_DEPTH = 512
PORT FSL_Clk = sys_clk_s

655 PORT SYS_Rst = net_design_rst
END

BEGIN fifo_if_ctrl
PARAMETER INSTANCE = CTRL_MB_1_FIFOs

660 PARAMETER HW_VER = 1.00.a
PARAMETER C_BASEADDR = 0xc0800000
PARAMETER C_HIGHADDR = 0xc080000f
PARAMETER C_AB = 8
PARAMETER C_FIFO_WRITE = 2

665 PARAMETER C_FIFO_READ = 0
BUS_INTERFACE FIFO_WRITE_1 = FIFO_MB_1_Out_9
BUS_INTERFACE FIFO_WRITE_2 = FIFO_MB_1_Out_10
BUS_INTERFACE SLMB = DBUS_MB_1

END
670

BEGIN bram_block
PARAMETER INSTANCE = BRAM1_MB_1
PARAMETER HW_VER = 1.00.a
BUS_INTERFACE PORTA = BUS_DCTRL_BRAM1_MB_1

675 BUS_INTERFACE PORTB = BUS_PCTRL_BRAM1_MB_1
END
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BEGIN lmb_bram_if_cntlr
PARAMETER INSTANCE = DCTRL_BRAM1_MB_1

680 PARAMETER HW_VER = 1.00.b
PARAMETER C_MASK = 0xff000000
PARAMETER C_BASEADDR = 0x00000000
PARAMETER C_HIGHADDR = 0x0000ffff
BUS_INTERFACE SLMB = DBUS_MB_1

685 BUS_INTERFACE BRAM_PORT = BUS_DCTRL_BRAM1_MB_1
END

BEGIN lmb_bram_if_cntlr
PARAMETER INSTANCE = PCTRL_BRAM1_MB_1

690 PARAMETER HW_VER = 1.00.b
PARAMETER C_MASK = 0xff000000
PARAMETER C_BASEADDR = 0x00000000
PARAMETER C_HIGHADDR = 0x0000ffff
BUS_INTERFACE SLMB = PBUS_MB_1

695 BUS_INTERFACE BRAM_PORT = BUS_PCTRL_BRAM1_MB_1
END

BEGIN bram_block
PARAMETER INSTANCE = BRAM2_MB_1

700 PARAMETER HW_VER = 1.00.a
BUS_INTERFACE PORTA = BUS_DCTRL_BRAM2_MB_1
BUS_INTERFACE PORTB = BUS_PCTRL_BRAM2_MB_1

END

705 BEGIN lmb_bram_if_cntlr
PARAMETER INSTANCE = DCTRL_BRAM2_MB_1
PARAMETER HW_VER = 1.00.b
PARAMETER C_MASK = 0xff000000
PARAMETER C_BASEADDR = 0x00010000

710 PARAMETER C_HIGHADDR = 0x00017fff
BUS_INTERFACE SLMB = DBUS_MB_1
BUS_INTERFACE BRAM_PORT = BUS_DCTRL_BRAM2_MB_1

END

715 BEGIN lmb_bram_if_cntlr
PARAMETER INSTANCE = PCTRL_BRAM2_MB_1
PARAMETER HW_VER = 1.00.b
PARAMETER C_MASK = 0xff000000
PARAMETER C_BASEADDR = 0x00010000

720 PARAMETER C_HIGHADDR = 0x00017fff
BUS_INTERFACE SLMB = PBUS_MB_1
BUS_INTERFACE BRAM_PORT = BUS_PCTRL_BRAM2_MB_1

END

725 BEGIN bram_block
PARAMETER INSTANCE = BRAM1_MB_2
PARAMETER HW_VER = 1.00.a
BUS_INTERFACE PORTA = BUS_DCTRL_BRAM1_MB_2
BUS_INTERFACE PORTB = BUS_PCTRL_BRAM1_MB_2

730 END

BEGIN lmb_bram_if_cntlr
PARAMETER INSTANCE = DCTRL_BRAM1_MB_2
PARAMETER HW_VER = 1.00.b

735 PARAMETER C_MASK = 0xff000000
PARAMETER C_BASEADDR = 0x00000000
PARAMETER C_HIGHADDR = 0x00007fff
BUS_INTERFACE SLMB = DBUS_MB_2
BUS_INTERFACE BRAM_PORT = BUS_DCTRL_BRAM1_MB_2

740 END

BEGIN lmb_bram_if_cntlr
PARAMETER INSTANCE = PCTRL_BRAM1_MB_2
PARAMETER HW_VER = 1.00.b

745 PARAMETER C_MASK = 0xff000000
PARAMETER C_BASEADDR = 0x00000000
PARAMETER C_HIGHADDR = 0x00007fff
BUS_INTERFACE SLMB = PBUS_MB_2
BUS_INTERFACE BRAM_PORT = BUS_PCTRL_BRAM1_MB_2

750 END

BEGIN bram_block
PARAMETER INSTANCE = BRAM1_MB_3
PARAMETER HW_VER = 1.00.a

755 BUS_INTERFACE PORTA = BUS_DCTRL_BRAM1_MB_3
BUS_INTERFACE PORTB = BUS_PCTRL_BRAM1_MB_3

END

BEGIN lmb_bram_if_cntlr
760 PARAMETER INSTANCE = DCTRL_BRAM1_MB_3

PARAMETER HW_VER = 1.00.b
PARAMETER C_MASK = 0xff000000
PARAMETER C_BASEADDR = 0x00000000
PARAMETER C_HIGHADDR = 0x00003fff

765 BUS_INTERFACE SLMB = DBUS_MB_3
BUS_INTERFACE BRAM_PORT = BUS_DCTRL_BRAM1_MB_3

END

BEGIN lmb_bram_if_cntlr
770 PARAMETER INSTANCE = PCTRL_BRAM1_MB_3

PARAMETER HW_VER = 1.00.b
PARAMETER C_MASK = 0xff000000
PARAMETER C_BASEADDR = 0x00000000
PARAMETER C_HIGHADDR = 0x00003fff

775 BUS_INTERFACE SLMB = PBUS_MB_3
BUS_INTERFACE BRAM_PORT = BUS_PCTRL_BRAM1_MB_3

END

BEGIN bram_block
780 PARAMETER INSTANCE = BRAM1_MB_4

PARAMETER HW_VER = 1.00.a
BUS_INTERFACE PORTA = BUS_DCTRL_BRAM1_MB_4
BUS_INTERFACE PORTB = BUS_PCTRL_BRAM1_MB_4

END
785

BEGIN lmb_bram_if_cntlr
PARAMETER INSTANCE = DCTRL_BRAM1_MB_4
PARAMETER HW_VER = 1.00.b
PARAMETER C_MASK = 0xff000000

790 PARAMETER C_BASEADDR = 0x00000000
PARAMETER C_HIGHADDR = 0x00007fff
BUS_INTERFACE SLMB = DBUS_MB_4
BUS_INTERFACE BRAM_PORT = BUS_DCTRL_BRAM1_MB_4

END
795

BEGIN lmb_bram_if_cntlr
PARAMETER INSTANCE = PCTRL_BRAM1_MB_4
PARAMETER HW_VER = 1.00.b
PARAMETER C_MASK = 0xff000000

800 PARAMETER C_BASEADDR = 0x00000000
PARAMETER C_HIGHADDR = 0x00007fff
BUS_INTERFACE SLMB = PBUS_MB_4
BUS_INTERFACE BRAM_PORT = BUS_PCTRL_BRAM1_MB_4

END
805

BEGIN bram_block
PARAMETER INSTANCE = BRAM1_MB_5
PARAMETER HW_VER = 1.00.a
BUS_INTERFACE PORTA = BUS_DCTRL_BRAM1_MB_5

810 BUS_INTERFACE PORTB = BUS_PCTRL_BRAM1_MB_5
END

BEGIN lmb_bram_if_cntlr
PARAMETER INSTANCE = DCTRL_BRAM1_MB_5

815 PARAMETER HW_VER = 1.00.b
PARAMETER C_MASK = 0xff000000
PARAMETER C_BASEADDR = 0x00000000
PARAMETER C_HIGHADDR = 0x00007fff
BUS_INTERFACE SLMB = DBUS_MB_5

820 BUS_INTERFACE BRAM_PORT = BUS_DCTRL_BRAM1_MB_5
END

BEGIN lmb_bram_if_cntlr
PARAMETER INSTANCE = PCTRL_BRAM1_MB_5

825 PARAMETER HW_VER = 1.00.b
PARAMETER C_MASK = 0xff000000
PARAMETER C_BASEADDR = 0x00000000
PARAMETER C_HIGHADDR = 0x00007fff
BUS_INTERFACE SLMB = PBUS_MB_5

830 BUS_INTERFACE BRAM_PORT = BUS_PCTRL_BRAM1_MB_5
END
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Appendix B
MSS File for M-JPEG Encoder Five
Processors Homogeneous Embedded System

1 PARAMETER VERSION = 2.2.0

BEGIN OS
PARAMETER OS_NAME = standalone

5 PARAMETER OS_VER = 1.00.a
PARAMETER PROC_INSTANCE = MB_1
END

BEGIN PROCESSOR
10 PARAMETER DRIVER_NAME = cpu

PARAMETER DRIVER_VER = 1.00.a
PARAMETER HW_INSTANCE = MB_1
PARAMETER COMPILER = mb-gcc
PARAMETER ARCHIVER = mb-ar

15 END

BEGIN DRIVER
PARAMETER DRIVER_NAME = opbarb
PARAMETER DRIVER_VER = 1.02.a

20 PARAMETER HW_INSTANCE = mb_opb_1
END

BEGIN DRIVER
PARAMETER DRIVER_NAME = generic

25 PARAMETER DRIVER_VER = 1.00.a
PARAMETER HW_INSTANCE = fin_ctrl_P1
END

BEGIN DRIVER
30 PARAMETER DRIVER_NAME = generic

PARAMETER DRIVER_VER = 1.00.a
PARAMETER HW_INSTANCE = clock_cycle_counter_P1
END

35 BEGIN OS
PARAMETER OS_NAME = standalone
PARAMETER OS_VER = 1.00.a
PARAMETER PROC_INSTANCE = MB_2
END

40
BEGIN PROCESSOR
PARAMETER DRIVER_NAME = cpu
PARAMETER DRIVER_VER = 1.00.a
PARAMETER HW_INSTANCE = MB_2

45 PARAMETER COMPILER = mb-gcc
PARAMETER ARCHIVER = mb-ar
END

BEGIN DRIVER
50 PARAMETER DRIVER_NAME = opbarb

PARAMETER DRIVER_VER = 1.02.a
PARAMETER HW_INSTANCE = mb_opb_2
END

55 BEGIN DRIVER
PARAMETER DRIVER_NAME = generic

PARAMETER DRIVER_VER = 1.00.a
PARAMETER HW_INSTANCE = fin_ctrl_P2
END

60
BEGIN DRIVER
PARAMETER DRIVER_NAME = generic
PARAMETER DRIVER_VER = 1.00.a
PARAMETER HW_INSTANCE = clock_cycle_counter_P2

65 END

BEGIN OS
PARAMETER OS_NAME = standalone
PARAMETER OS_VER = 1.00.a

70 PARAMETER PROC_INSTANCE = MB_3
END

BEGIN PROCESSOR
PARAMETER DRIVER_NAME = cpu

75 PARAMETER DRIVER_VER = 1.00.a
PARAMETER HW_INSTANCE = MB_3
PARAMETER COMPILER = mb-gcc
PARAMETER ARCHIVER = mb-ar
END

80
BEGIN DRIVER
PARAMETER DRIVER_NAME = opbarb
PARAMETER DRIVER_VER = 1.02.a
PARAMETER HW_INSTANCE = mb_opb_3

85 END

BEGIN DRIVER
PARAMETER DRIVER_NAME = generic
PARAMETER DRIVER_VER = 1.00.a

90 PARAMETER HW_INSTANCE = fin_ctrl_P3
END

BEGIN DRIVER
PARAMETER DRIVER_NAME = generic

95 PARAMETER DRIVER_VER = 1.00.a
PARAMETER HW_INSTANCE = clock_cycle_counter_P3
END

BEGIN OS
100 PARAMETER OS_NAME = standalone

PARAMETER OS_VER = 1.00.a
PARAMETER PROC_INSTANCE = MB_4
END

105 BEGIN PROCESSOR
PARAMETER DRIVER_NAME = cpu
PARAMETER DRIVER_VER = 1.00.a
PARAMETER HW_INSTANCE = MB_4
PARAMETER COMPILER = mb-gcc

110 PARAMETER ARCHIVER = mb-ar
END
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BEGIN DRIVER
PARAMETER DRIVER_NAME = opbarb

115 PARAMETER DRIVER_VER = 1.02.a
PARAMETER HW_INSTANCE = mb_opb_4
END

BEGIN DRIVER
120 PARAMETER DRIVER_NAME = generic

PARAMETER DRIVER_VER = 1.00.a
PARAMETER HW_INSTANCE = fin_ctrl_P4
END

125 BEGIN DRIVER
PARAMETER DRIVER_NAME = generic
PARAMETER DRIVER_VER = 1.00.a
PARAMETER HW_INSTANCE = clock_cycle_counter_P4
END

130
BEGIN OS
PARAMETER OS_NAME = standalone
PARAMETER OS_VER = 1.00.a
PARAMETER PROC_INSTANCE = MB_5

135 END

BEGIN PROCESSOR
PARAMETER DRIVER_NAME = cpu
PARAMETER DRIVER_VER = 1.00.a

140 PARAMETER HW_INSTANCE = MB_5
PARAMETER COMPILER = mb-gcc
PARAMETER ARCHIVER = mb-ar
END

145 BEGIN DRIVER
PARAMETER DRIVER_NAME = opbarb
PARAMETER DRIVER_VER = 1.02.a
PARAMETER HW_INSTANCE = mb_opb_5
END

150
BEGIN DRIVER
PARAMETER DRIVER_NAME = generic
PARAMETER DRIVER_VER = 1.00.a
PARAMETER HW_INSTANCE = fin_ctrl_P5

155 END

BEGIN DRIVER
PARAMETER DRIVER_NAME = generic
PARAMETER DRIVER_VER = 1.00.a

160 PARAMETER HW_INSTANCE = clock_cycle_counter_P5
END

BEGIN DRIVER
PARAMETER DRIVER_NAME = generic

165 PARAMETER DRIVER_VER = 1.00.a
PARAMETER HW_INSTANCE = host_zbt_main
END

BEGIN DRIVER
170 PARAMETER DRIVER_NAME = generic

PARAMETER DRIVER_VER = 1.00.a
PARAMETER HW_INSTANCE = host_design_controller
END

175 BEGIN DRIVER
PARAMETER DRIVER_NAME = generic
PARAMETER DRIVER_VER = 1.00.a
PARAMETER HW_INSTANCE = multiplexer
END

180
BEGIN DRIVER
PARAMETER DRIVER_NAME = generic
PARAMETER DRIVER_VER = 1.00.a
PARAMETER HW_INSTANCE = buff

185 END

BEGIN DRIVER
PARAMETER DRIVER_NAME = generic
PARAMETER DRIVER_VER = 1.00.a

190 PARAMETER HW_INSTANCE = ZBT_CTRL_1
END

BEGIN DRIVER
PARAMETER DRIVER_NAME = generic

195 PARAMETER DRIVER_VER = 1.00.a
PARAMETER HW_INSTANCE = ZBT_CTRL_2
END

BEGIN DRIVER
200 PARAMETER DRIVER_NAME = generic

PARAMETER DRIVER_VER = 1.00.a
PARAMETER HW_INSTANCE = ZBT_CTRL_3
END

205 BEGIN DRIVER
PARAMETER DRIVER_NAME = generic

PARAMETER DRIVER_VER = 1.00.a
PARAMETER HW_INSTANCE = ZBT_CTRL_4
END

210
BEGIN DRIVER
PARAMETER DRIVER_NAME = generic
PARAMETER DRIVER_VER = 1.00.a
PARAMETER HW_INSTANCE = ZBT_CTRL_5

215 END

BEGIN DRIVER
PARAMETER DRIVER_NAME = generic
PARAMETER DRIVER_VER = 1.00.a

220 PARAMETER HW_INSTANCE = FIFO_MB_1_Out_1
END

BEGIN DRIVER
PARAMETER DRIVER_NAME = generic

225 PARAMETER DRIVER_VER = 1.00.a
PARAMETER HW_INSTANCE = FIFO_MB_2_Out_1
END

BEGIN DRIVER
230 PARAMETER DRIVER_NAME = generic

PARAMETER DRIVER_VER = 1.00.a
PARAMETER HW_INSTANCE = FIFO_MB_1_Out_2
END

235 BEGIN DRIVER
PARAMETER DRIVER_NAME = generic
PARAMETER DRIVER_VER = 1.00.a
PARAMETER HW_INSTANCE = FIFO_MB_1_Out_3
END

240
BEGIN DRIVER
PARAMETER DRIVER_NAME = generic
PARAMETER DRIVER_VER = 1.00.a
PARAMETER HW_INSTANCE = FIFO_MB_3_Out_1

245 END

BEGIN DRIVER
PARAMETER DRIVER_NAME = generic
PARAMETER DRIVER_VER = 1.00.a

250 PARAMETER HW_INSTANCE = FIFO_MB_1_Out_4
END

BEGIN DRIVER
PARAMETER DRIVER_NAME = generic

255 PARAMETER DRIVER_VER = 1.00.a
PARAMETER HW_INSTANCE = FIFO_MB_1_Out_5
END

BEGIN DRIVER
260 PARAMETER DRIVER_NAME = generic

PARAMETER DRIVER_VER = 1.00.a
PARAMETER HW_INSTANCE = FIFO_MB_1_Out_6
END

265 BEGIN DRIVER
PARAMETER DRIVER_NAME = generic
PARAMETER DRIVER_VER = 1.00.a
PARAMETER HW_INSTANCE = FIFO_MB_1_Out_7
END

270
BEGIN DRIVER
PARAMETER DRIVER_NAME = generic
PARAMETER DRIVER_VER = 1.00.a
PARAMETER HW_INSTANCE = FIFO_MB_1_Out_8

275 END

BEGIN DRIVER
PARAMETER DRIVER_NAME = generic
PARAMETER DRIVER_VER = 1.00.a

280 PARAMETER HW_INSTANCE = FIFO_MB_1_Out_9
END

BEGIN DRIVER
PARAMETER DRIVER_NAME = generic

285 PARAMETER DRIVER_VER = 1.00.a
PARAMETER HW_INSTANCE = FIFO_MB_1_Out_10
END

BEGIN DRIVER
290 PARAMETER DRIVER_NAME = generic

PARAMETER DRIVER_VER = 1.00.a
PARAMETER HW_INSTANCE = FIFO_MB_4_Out_1
END

295 BEGIN DRIVER
PARAMETER DRIVER_NAME = generic
PARAMETER DRIVER_VER = 1.00.a
PARAMETER HW_INSTANCE = CTRL_MB_1_FIFOs
END
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300
BEGIN DRIVER
PARAMETER DRIVER_NAME = bram
PARAMETER DRIVER_VER = 1.00.a
PARAMETER HW_INSTANCE = DCTRL_BRAM1_MB_1

305 END

BEGIN DRIVER
PARAMETER DRIVER_NAME = bram
PARAMETER DRIVER_VER = 1.00.a

310 PARAMETER HW_INSTANCE = PCTRL_BRAM1_MB_1
END

BEGIN DRIVER
PARAMETER DRIVER_NAME = bram

315 PARAMETER DRIVER_VER = 1.00.a
PARAMETER HW_INSTANCE = DCTRL_BRAM2_MB_1
END

BEGIN DRIVER
320 PARAMETER DRIVER_NAME = bram

PARAMETER DRIVER_VER = 1.00.a
PARAMETER HW_INSTANCE = PCTRL_BRAM2_MB_1
END

325 BEGIN DRIVER
PARAMETER DRIVER_NAME = bram
PARAMETER DRIVER_VER = 1.00.a
PARAMETER HW_INSTANCE = DCTRL_BRAM1_MB_2
END

330
BEGIN DRIVER
PARAMETER DRIVER_NAME = bram
PARAMETER DRIVER_VER = 1.00.a
PARAMETER HW_INSTANCE = PCTRL_BRAM1_MB_2

335 END

BEGIN DRIVER
PARAMETER DRIVER_NAME = bram
PARAMETER DRIVER_VER = 1.00.a

340 PARAMETER HW_INSTANCE = DCTRL_BRAM1_MB_3
END

BEGIN DRIVER
PARAMETER DRIVER_NAME = bram

345 PARAMETER DRIVER_VER = 1.00.a
PARAMETER HW_INSTANCE = PCTRL_BRAM1_MB_3
END

BEGIN DRIVER
350 PARAMETER DRIVER_NAME = bram

PARAMETER DRIVER_VER = 1.00.a
PARAMETER HW_INSTANCE = DCTRL_BRAM1_MB_4
END

355 BEGIN DRIVER
PARAMETER DRIVER_NAME = bram
PARAMETER DRIVER_VER = 1.00.a
PARAMETER HW_INSTANCE = PCTRL_BRAM1_MB_4
END

360
BEGIN DRIVER
PARAMETER DRIVER_NAME = bram
PARAMETER DRIVER_VER = 1.00.a
PARAMETER HW_INSTANCE = DCTRL_BRAM1_MB_5

365 END

BEGIN DRIVER
PARAMETER DRIVER_NAME = bram
PARAMETER DRIVER_VER = 1.00.a

370 PARAMETER HW_INSTANCE = PCTRL_BRAM1_MB_5
END
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