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Chapter

Introduction

Nowadays, modern embedded applications are becoming complex. Such complex embedded
applications lead to a single processor embedded system architecture can no longer meet the
performance requirements of these applications. Therefore, in order to meet the performance
requirements of the complex applications, the emerging embedded system platforms are in-
creasingly becoming multiprocessor architectures. Fortunately, the Moore’s law peediots

nential growthover time of the number of transistors that can be integrated in an IC. It predicts
that chips in 2010 will count over 4 billion transistors, operating in the multi-GHz range [1].
Thus, the modern embedded System-on-Chip platforms have enough resources to support tc
map the modern complex applications onto multiprocessor architectures.

Because of the fact which has been discussed above, several challenges emerge. The firs
challenge is how to specify an application. The suitable specification format of applications
which makes the mapping of these applications onto multiprocessor architectures easy is paral-
lel model of computation. But at present, applications that need to execute on embedded system
architectures are typically specified using a sequential model of computation, such as sequen-
tial programs written in C or Matlab. What is needed is a methodology or tool that can exploit
inherent parallelism available in the applications and convert the sequential specifications into
parallel specifications.

The second challenge is how to design multiprocessor embedded systems. There are severa
issues in this challenge. The first issue is most of the current design methodologies and tools
are based on Register Transfer Level (RTL) and most of the designers create such level by
hand. Because complexity of multiprocessor embedded system architectures, the RTL level is
too low to design such system and these methodologies for creating multiprocessor embedded
system architectures are error-prone and time consuming. Therefore, a methodology and tech-
niques which can systematically and automatically design multiprocessor embedded systems
are needed. The second issue is the modern application always include several processes. |
we map the processes of an application onto the homogeneous architecture which means we
map the processes of an application onto the same type of components, maybe some of the
processes can not meet the performance requirements. We need to map the processes onto tf
suitable components which are the different types. Therefore, in order to meet the performance
requirements of the processes of an application, an embedded system should be heterogeneot
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architecture. The third issue is some of the processes of an application maybe very complex.

If we map a complex process onto a single component, the process may not meet the required
performance. In such case, we need to map the complex process onto several components in
order to meet the required performance. These several components form a sub-network on an
embedded system platform. Therefore we call the system hierarchical architecture. Therefore,

an embedded system also should be hierarchical architecture.

The third challenge is the applications which are mapped onto embedded system platforms
always need to communicate with the outside world. The challenge is how to make an efficient
interface of an embedded system with the outside world.

This thesis focuses on the second, third challenges discussed above. The efficient solutions to
these two challenges are presented. We propose a methodology implemented in a tool called
EspAM for systematic and automated multiprocessor embedded system design. Also, we prove
that it is possible to implement an embedded system as heterogeneous and hierarchical architec-
ture systematically and automatically using te&PAM technology. We implement an efficient
interface of an embedded system with the outside world.

In Section 1.1, detailed problem description is given. In Section 1.2, the methodology and
techniques which are used to solve the problems described in Section 1.1 are presented. In
Section 1.3, related work is discussed. The contributions of this thesis are stated in Section 1.4.
Finally, in Section 1.5, the organization of this thesis are described.

1.1 Problem Description

Due to the complexity of modern applications, such as high throughput multimedia, imaging
and digital signal processing which usually include complicated algorithms, a single proces-
sor embedded system architecture on an embedded system platform is inadequate. In order to
meet the required performance for such complex applications, multiprocessor embedded sys-
tem architectures have to be implemented on embedded system platforms. Therefore, exploit-
ing parallelism available in such applications is important for current embedded system design.
However, most of the applications are usually specified using the sequential model of computa-
tion, such as sequential programs written in C or Matlab. The sequential model of computation
makes an application be easy to reason about a program, as only a single memory and a sin-
gle thread of control need to be considered. But such sequential model of computation can
not exploit the internal parallelism which is available in an application. This means mapping
such application onto a multiprocessor embedded system architecture is difficult because the
way the application is specified does not match the way the multiprocessor embedded system
architecture operates. Thus, the suitable specification format of the applications which makes
the mapping of the applications onto the multiprocessor embedded system architectures easy is
the parallel model of computation.

Currently, the task of mapping the complex applications which are specified in sequential model
of computation onto the multiprocessor embedded system platforms is usually done by hand.
This means this mapping task depends much on the expertise of the designers and it is error-
prone and time consuming. Therefore, a methodology and tool that can exploit inherent par-
allelism available in the complex applications and convert the sequential specifications into
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parallel specifications is needed. For example Gb@1PAAN tool [2] can automatically trans-
forms an application which is specified in sequential model of computation into the abstract
concurrent model which consists of several concurrent tasks making the task-level parallelism
available in an application explicit.

Now another problem emerges which is how to efficiently and effectively map the concurrent
model of the applications onto the multiprocessor embedded system platforms in a systematic
and automated way. In the realm of modern embedded system, most of the design and imple-
mentation methodology are still based on Register Transfer Level (RTL) platform/application
descriptions which are created manually, such as very high speed integrated circuit hardware
description language (VHDL) and C language. Such methodologies were effective in the past.
Due to the complexity of the modern applications and platforms which are used in many of to-
day’s new system designs, the traditional design methodology is inadequate now. Creating such
RTL descriptions of the complex multiprocessor platforms is error-prone and time-consuming.
Moreover, the complexity of high-end, computationally intensive applications in the realm of
high throughput multimedia, imaging, and digital signal processing enlarges the difficulties
associated with the traditional hand-coded RTL design. Furthermore, using traditional logic
simulation to verify a large design represented in RTL is computationally expensive and ex-
tremely slow. From what have been discussed above, we can conclude that using the RTL
system specification as a starting point of multiprocessor embedded system design methodol-
ogy is the bottleneck. Although the RTL system specification has the advantage that the state
of the art synthesis tools can use it as an input to automatically implement a system, we believe
that a system should be specified at a higher level of abstraction called System-level. However,
the embedded system design methodology which moves up from the detailed RTL specification
to a more abstract System-level specification opens a gap which wiengdgdimentation Gap
Indeed, on the one hand the RTL system specification is very detailed and close to an imple-
mentation, thereby allowing an automated system synthesis path from RTL system specification
to implementation. This is obvious if we consider the current commercial synthesis tools where
the RTL-to-netlist synthesis is very well developed and efficient. On the other hand, the com-
plexity of today’'s embedded systems forces us to move to higher levels of abstraction when
designing a embedded system, but currently we do not have mature methodologies, techniques.
and tools to go back from the high-level specification to an implementation. Therefore, the
Implementation Gaas to be closed by devising a systematic and automated way to convert
effectively and efficiently a System-level specification to a RTL-level specification.

From what have been discussed above, it is clear that in order to map a complex application
onto a multiprocessor embedded system platform, the application has to be transformed into
an abstract concurrent model which consists of several concurrent processes. At present, mul-
tiprocessor embedded systems as homogeneous architectures can no longer meet the appl
cations’ requirements. An embedded system as homogeneous architecture means all of the
concurrent processes of an application are executed by the same type of components on ar
embedded system platform. For example, all the processes of an application are executed by
the same type of processor cores. The problem is that different types of processes are suit-
able for being executed by different types of components on an embedded system platform.
For example, it is better to use the types of processor cores which are good at floating point
computation to execute the processes which contain the floating point computation. And the
other example is that it is better to use the dedicated hardware IP cores to execute the most
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complicated processes of the applications in order to reach the good performance of execution
time. Therefore, an embedded system as heterogeneous architecture has to be implemented in
order to meet the requirement performances of various applications. The problem is how to im-
plement an embedded system as heterogeneous architecture systematically and automatically.
What's more, an application always consists of several processes and some of the processes of
an application maybe very complex. If we map a complex process onto a single component,
the process may not meet the required performance. In such case, we need to map the com-
plex process onto several components in order to meet the required performance. These several
components form a sub-network on an embedded system platform. Therefore we call the sys-
tem hierarchical architecture. Thus, such an embedded system as hierarchical architecture also
has to be implemented. The problem is how to implement an embedded system as hierarchical
architecture systematically and automatically.

The applications of modern embedded systems in the realm of high throughput multimedia,
imaging, and digital signal processing, always need to exchange the data with the outside
world. Thus modern embedded systems need an interface of an embedded system with the
outside world. If the interface of an embedded system with the outside world is not efficient,
that will intensely restrict embedded systems to reach the high performances. Due to this rea-
son, an efficient interface of an embedded system with the outside world must be implemented
to let the applications which are mapped onto the embedded system platforms can efficiently
communicate with the outside world. The problem is how to construct an efficient interface of
an embedded system with the outside world.

1.2 Solution Approach

Based on the problems which have been described above, the general description of the solution
approaches for these problems is given in this section.

1.2.1 Closing the Implementation Gap

First in order to successfully close theplementation Gapetween th&ystem-levedpecifica-
tion of multiprocessor systems and tR&L-levelspecification of multiprocessor systems, we
have developed a tool callésPam (Embedded System-level Platform synthesis and Applica-
tion Mapping). This tool can systematically and automatically converSgtstem-levedpecifi-
cation to theRTL-levelspecification.EspPAM allows the designers to specify a multiprocessor
embedded system at a high level of abstracti®ystem-levgl then it refines such specifica-
tion and systematically and automatically convert this specificatiofRiblalevelspecification.
Figure 1.1 shows our system design flow which includegieam tool.

In Figure 1.1, we see that there are three levels of specifications in our system design flow. They
areSystem-levedpecificationRTL-levelspecification an@Gate-levekpecification.

The System-levedpecification consists of three parts which Biatform SpecificationAppli-
cation SpecificatiomndMapping SpecificatianPlatform Specificatiospecifies the topology
of a platform using our system level platform model which includes generic parameterized sys-
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Figure 1.1: System design flow.

tem componentsApplication Specificatiospecifies an application as a Kahn Process Network
(KPN) which is a network of concurrent processes communicating via FIFO channels. Such
KPN specification reveals the task-level parallelism available in an application. In order to mi-
grate from a sequential specification of an application to an equivalent KPN specification, we
use theCompAAN compiler [2] [3] [4] which automates the transformation of Matlab code
into KPN specification. The applications th@oMPAAN can handle as the input have to be
specified as parameterized static affine nested loop programs, which is a subset of the Matlab
languageMapping Specificatiospecifies the relation between all processes and FIFO channels
in Application Specificatioand all components iRlatform Specification

In Figure 1.1, theSystem-levetpecification is the input to thEspAM tool. In our case, be-
sides one-to-one mapping [FESPAM also supports many-to-one mapping. That means the
number of processor componentsHtatform Specificatiowan be less or equal to the number
of processes ipplication SpecificationIn other words, one or more than one processes in
Application Specificatiosan be mapped onto one processoPiatform SpecificationFor the
channels inApplication Specificatiomnd the FIFO components Platform Specificationwe

still consider one-to-one mapping. This means that one chanigiptication Specifications
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mapped onto one FIFO componenBlatform Specificatioand one FIFO component has only
one channel mapped onto it. Therefore, in our case we need all of three specifidalatiorm
SpecificationApplication SpecificatioandMapping Specificatioas the input oEspPAM tool.

Our EspAM tool systematically and automatically convertSgstem-levespecification to a
RTL-levelspecification thereby closing theplementation Gagescribed in Section 1.1. First,
EspPAM constructs a platform instance accordingPiatform Specificatiorand runs a consis-
tency check on this instance. This platform instance is an abstract model and at this step no
information about the target physical platform is taken into account. Such platform instance
consists of generic parameterized system components. SeEspdMm refines the abstract
platform model to an elaborate parameterized RTL model which is ready for an implementation
on a target physical platform. FinallgsPAM generates program code for each processor on the
multiprocessor embedded system platform accordirgpialication SpecificatioandMapping
Specification Our EspAM tool will be described in detail in Chapter 2.

The output ofEsPAM is a RTL-levelspecification of an embedded system which consists of
four parts —Platform topology descriptigrtHardware description of IP core$rogram code

for processorsand Auxiliary information Platform topology descriptiogives in great detail
description of a multiprocessor platforndardware description of IP coremcludes all pre-
defined IP cores and reconfigurable IP cores which are usethiform topology descriptian
Program code for processorontains the program source code for each processor component
on a multiprocessor platfornEsPAM can generate the program source code in C/C++ language
for each processor component according to the behavior of the corresponding prdgesk-in
cation Specification Auxiliary informationincludes supply files which give tight control of

the overall specifications, such as defining precise timing requirements and prioritizing signal
constrains.

A commercial synthesizer can be used to converiRi&-levelspecification of an embedded
system to th&ate-levekpecification of an embedded system. In the bottom part of Figure 1.1,

we see that such commercial synthesizer can be used to generate the target platform gate-level
netlist which is actually the system implementation.

1.2.2 Heterogeneous and Hierarchical Architecture Implementation

In order to meet the requirement performances of various applications an embedded system as
heterogeneous and hierarchical architecture has to be implemented systematically and automat-
ically. In this thesis, we give the procedure which explains how to implement systematically
and automatically an embedded system as heterogeneous and hierarchical architecture which
contains processor components and a dedicated hardware IP core. In our case, the processor
components use FIFOs to communicate with each other. In order to make the dedicated hard-
ware IP core can communicate with the processor components, the dedicated hardware IP core
should has the FIFO input and output interfaces. The dedicated hardware IP core can be de-
signed by hand. But this method is error-prone and time consuming. In our case, we use the
L AURA tool [6] which has been developed at the Leiden Embedded Research Center (LERC) to
generate the dedicated hardware IP core which contains the FIFO input and output interfaces.
In this heterogeneous and hierarchical architecture, we use the dedicated hardware IP core to
execute the most complicated process of an application repetitively and use the processor com-
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ponents to execute the other processes of an application in order to reach the good performance
of execution time. In this way, we can prove that it is possible to implement systematically
and automatically an embedded system as heterogenous and hierarchical architecture using th
EspaM technology.

1.2.3 Interface of an Embedded System with the Outside World Con-
struction

As we have presented in Section 1.1, we need to construct an efficient interface of an embedded
system which can make the applications which are mapped onto the embedded system platforms
can communicate with the outside world efficiently. In our case, we have constructed an efficient

interface to make embedded systems can communicate with the outside world by using several
memories. Our interface uses the memories as the buffers to exchange data between embedde
systems and the outside world. First embedded systems or the outside world writes data to the
memories, then the outside world or embedded systems read data from the memories. Because
embedded systems and the outside world may have different data transfer speeds, by using the
memories as the buffers to exchange data embedded systems and the outside world do not nee
to wait for each other. In this way, we can speed up data transfer between embedded systems
and the outside world. As we have discussed before, the embedded systems are becoming
multiprocessor architecture. If we just use one memory as buffer to exchange data between an
embedded system and the outside world, the processors of an embedded system cannot acce:
to the memory concurrently. This means that every time just one processor can exchange data
with the outside world. This is not efficient. Thus we use several memories as the buffers to

exchange data between embedded systems and the outside world. In this way, each processc
of an embedded system can access to one of the memories. This means the processors c
an embedded system can exchange data with the outside world concurrently. By using several
memories, we also can speed up data transfer between embedded systems and the outside worls

1.3 Related Work

Mapping application to architecture systematically and automatically has been widely studied
in the research community. The closest work to our work isltherA tool [6] which has

been developed at the Leiden Embedded Research Center (LERCI.AUR tool accepts

the Kahn Process Network (KPN) specification and transforms the KPN specification together
with predefined non-programmable IP cores into design implementations described as synthe-
sizable VHDL. The KPN specification is automatically generate@€bywrPAAN from the Mat-

lab code. The IP cores are needed preemptively as they implement the functionality of the
functions used in the initial Matlab code. However, &sPAaM tool map the KPN Specification
together with Platform Specification and Mapping Specification onto multiprocessor platforms.
The functions used in the initial Matlab code can be mapped to programmable processor cores
and run on top of them as software, which gives much more flexibility in the system imple-
mentation. An automatic logic synthesis method targeted for high-performance asynchronous
FPGA (AFPGA) architectures has been described in [7]. This method transforms sequential
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programs as well as high-level descriptions of asynchronous circuits into fine-grain asynchro-
nous process netlists suitable for an AFPGA. The resulting circuits are inherently pipelined,
and can be physically mapped onto an AFPGA with standard partitioning and place-and-route
algorithms. The input to the synthesis is a sequential program written in CHP notation which
is a hardware description language. Their automated synthesis of asynchronous computations
is limited onto an pipelined AFPGA architecture. In contrast, in our design methodology, more
abstract programming languages are supported, e.g., C and Matlab. Besides the pipelined ar-
chitecture, more flexible parallel system architectures can be mapped to the target platform. In
Philips Research Laboratory, a top-down design methodology with various abstraction levels
called C-HEAP [8] is introduced which starts with a high-level executable specification and
converges towards a silicon implementation. A major task in the design process is to ensure
that all components (hardware and software) communicate with each other correctly. In their
design methodology, seven abstraction levels that are traversed throughout the design process
have been identified. They propose a heterogenous multi-processor architecture template based
on distributed shared memory and present an efficient and transparent protocol for communi-
cation and (re)configuration. Our design methodology is similar to this. There are four levels
in our design flow, e.g., application level, system level, RTL level and Gate level. We traverse
them from application level to system level usi@®MPAAN tool, from system level to RTL

level using outEspPAM tool then to Gate level using a commercial synthesis tool. Another ma-

jor difference is that our platform model uses distributed memory instead of a shared memory.
Another similar work which is focus on synthesis of application specific multiprocessor System-
on-Chip architectures for process networks of streaming applications has been presented in [9].
In their methodology, they map the channels of the KPN model onto shared memories. There-
fore, possible data communication conflicts need to be estimated and taken into account in the
mapping process. On the contrary, in our methodology, the communication is distributed over
hardware FIFO buffers. There is no notion of a shared memory that has to be accessed by
multiple processors. Therefore, resource contention does not occur.

Many research works have been done for architecture development for embedded system in or-
der to meet the required performance. A microcode-based microarchitecture has been described
in [10]. They propose a microarchitecture based on reconfigurable hardware emulation to allow
high-speed reconfiguration and execution. They implement a microarchitecture on the Virtex

Il Pro with the embedded PowerPC 405 serving as the core processor. On the contrary, in our
case we implement systematically and automatically the embedded system as heterogeneous
and hierarchical architecture which contains different types of components in the embedded
system, such as processors and dedicated hardware IP cores. A next generation architecture
for heterogeneous embedded systems has been presented in [11]. In their methodology, the
Software Communications Architecture (SCA), a mandatory specification for Software Radio
implementations by the Joint Tactical Radio System (JTRS), defines a Common Object Request
Broker Architecture (CORBA) based component model for building portable applications in a
heterogeneous environment. They use the SCA revisions to address the key scalable embedded
processing issue — interchangeability of software and heterogeneous hardware components. In
our case, the heterogeneous and hierarchical architecture contains the programmable proces-
sors, which are used to execute the software programs, and dedicated hardware IP cores. This
heterogeneous and hierarchical architecture is able to meet the required performance of vari-
ous applications. A heterogeneous evolutional architecture has been described in [12]. In they
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methodology, heterogeneous architecture means the architecture involves some combination of
several single styles. They believe that the heterogenous architecture they need is that one grouy
of components can be aggregated to form a subsystem in a particular architectural style, while
another group of components can form a second subsystem in a completely different architec-
tural style. Our heterogeneous and hierarchical architecture is similar to this. The difference
is that our heterogeneous and hierarchical architecture means the components which form a
subsystem also can be completely different types.

1.4 Research Contributions

The main research contributions of this thesis are:

e The gap between th®ystem-levedpecification of multiprocessor systems and .-
level specification of multiprocessor systems has been successfully closed. In this the-
sis, we present our design methods and techniques for mapping applications onto multi-
processor platforms. We also introduce &#PAM tool which allows the system design-
ers to specify a multiprocessor system at a high level of abstract®ystem-levedpec-
ification in a short amount of time and it can systematically and automatically convert a
System-levedpecification to & TL-levelspecification for a multiprocessor platform.

e We have proved that it is possible to implement systematically and automatically an em-
bedded system as heterogeneous and hierarchical multiprocessor architecture using the
EspPaM technology. We give the procedure which explains how to implement system-
atically and automatically an embedded system as heterogeneous and hierarchical ar-
chitecture which contains processor components and dedicated hardware IP core. With
the heterogeneous architecture, different processes of an application can be executed by
different types of components on an embedded system platform. With the hierarchical
architecture, the complex process of an application can be mapped onto several compo-
nents which compose a sub-network on an embedded system platform. By systematically
and automatically implementing an embedded system as heterogeneous and hierarchical
architecture, it is easy to meet the requirement performances of various applications.

e We have developed an efficient interface of an embedded system with the outside world
using several memories. With this interface, the applications which are mapped onto
the embedded system platforms can efficiently exchange data with the outside world via
several memories.

1.5 Thesis Organization

The organization of the following part of this thesis is described as follows. Chapter 2 intro-
duces our system design methodology and gives a detailed descript@®ai tool we have
developed. In this chapter, first the application model is introduced. Second, the platform model
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and platform synthesis is presented. Third, the mapping techniques are described. Fourth, pro-
gramming multiprocessor platforms is explained. Finally, project generation for Xilinx Platform
Studio XPs) [13] is introduced.

Chapter 3 proves that it is possible to implement an embedded system as heterogeneous and
hierarchical architecture systematically and automatically. First, we give a brief introduction to
what we mean as heterogeneous and hierarchical architecture. Second, we give the procedure
which explains how to implement an embedded system as heterogeneous and hierarchical archi-
tecture thereby proving that it is possible to implement an embedded system as heterogeneous
and hierarchical architecture systematically and automatically.

Chapter 4 introduces the implementation of an efficient interface of an embedded system with
the outside world. First, we describe the target FPGA platform. Second, the components includ-
ing in the interface are introduced. Third, the steps about how to malkestbvem automatically

generate our interface when it maps applications onto multiprocessor platforms are presented.

In Chapter 5 two case studies are presented. The first one is mapping the M-JPEG encoder
application onto a multiprocessor embedded system platform with homogeneous architecture.
The second one is mapping the M-JPEG encoder application onto a multiprocessor embedded
system platform with heterogenous and hierarchical architecture. The analysis of the results
obtained from the experiments is also given in these case studies.

In Chapter 6 a tutorial on how to map the M-JPEG encoder application onto an embedded
system platform with heterogenous and hierarchical architecture usir@gaki@AAN/ESPAM
tools and the commercial synthesis tool — Xilinx Platform Stuie ) is presented.

In the last chapter, the summary and conclusions are given. The suggestions for the future work
are also presented in this chapter.



Chapter 2

Embedded System-level Platform Synthesis
and Application Mapping

In this chapter, a detailed description of our system design methodology which is implemented
in our ESPAM tool — Embedded System-level Platform Synthesis and Application Mapping is
presented. The structure of our system design flow has already been shown in Figure 1.1. In
Figure 1.1, we can see that the input of @sPAM tool is theSystem-levedpecification:Ap-
plication SpecificationPlatform Specificatiomnd Mapping Specification The output of our
EspAM tool is theRTL-levelspecification:Platform topology descriptigrHardware descrip-

tion of IP cores Program code for processond Auxiliary information By describing our
system design methodology we explain how BE&PAM tool bridges thdmplementation Gap
between the&System-levedpecification of an embedded system andRfA¢.-levelspecification

of this embedded system.

In Section 2.1, we introduce the Kahn Process Networks (KPN) model of computation which
is used for theApplication SpecificationWe also explain th&€omPAAN tool that converts a
sequential specification of an application to an equivalent KPN specification. In Section 2.2,
the platform model is described first and an example Bledform Specificatiofs given. Then

the synthesis of a platform is explained in detail. In Section 2.3, the mapping procedure which
is used to bind the application and platform models together is described. Also, an example is
given to explain clearly this procedure. Section 2.4 explains how to generate program code for
each processor on a platform. Section 2.5 describes the mechanism of project generation for
Xilinx Platform Studio XP9).

2.1 Application Model

As discussed in Chapter 1, the suitable specification format for applications which makes the
mapping of the applications onto multiprocessor embedded system architectures easy is the par-
allel model of computation. Therefore, exploiting parallelism available in such applications is
important in embedded system design. In &sPAM design methodology, we use the Kahn
Process Network [14] (KPN) model of computation Bypplication SpecificationWe use the
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CoMPAAN tool [2] to automatically transform an application which is specified in sequential
model of computation into KPN model of computation making the task-level parallelism avail-
able in an application explicit.

2.1.1 Kahn Process Networks

We believe that the Kahn Process Network model is an appropriate parallel model of computa-
tion for Application SpecificationThe reason is that in order to use parallel resources available
in a multiprocessor platform, we need to program them in a way that we exploit distributed con-
trol and distributed memory. Kahn Process Networks inherently express applications in terms
of distributed control and memory.

The KPN model of computation [14] assumes a network of concurrent autonomous processes
that communicate in a point-to-point fashion over unbounded FIFO channels, Uudimckang-
readsynchronization primitive. Each process in the network is specified as a sequential program
that executes concurrently with other processes. A simple example of the KPN model is shown
in Figure 2.1. There are three processes in this KPN model. They are processes P1, P2, and P3.
These three processes are connected by the FIFO channels CH1, CH2, and CH3. In Figure 2.1
we see that process P1 first reads data from its input port, executes some computations and then
writes the resulting data to processes P2 and P3 via CH1 and CH2 respectively. Process P2 first
reads data from CH1, executes some computations and then writes the resulting data to process
P3 via CH3. Process P3 first reads data from CH2 and CH3, executes some computations and
then writes the resulting data to its output port.

l read
execute
write
write

read read
execute read

write execute
write

Figure 2.1: A simple KPN model.

The KPN has the following favorable characteristics [15]:

e The KPN model is deterministic, which means that irrespective of the schedule chosen to
evaluate the network, always the same input/output relation exists. This gives us a lot of
scheduling freedom that we can exploit when mapping processes to hardware or software.
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e The inter-process synchronization is done by a blocking read. This is a very simple syn-
chronization protocol that can be realized easily and efficiently in hardware and software.

e Processes run autonomously and synchronize via the blocking read. When mapping
processes on hardware like an FPGA, you get autonomous islands on the FPGA that
are only synchronized via blocking read.

e As control is completely distributed to the individual processes, there is no global sched-
uler present. As a consequence, partitioning a KPN over a number of reconfigurable
components such as microprocessors is a simple task.

e As the exchange of data has been distributed over the FIFOs, there is no notion of a global
memory that has to be accessed by multiple processes. Therefore, resource contention
does not occur.

Due to the characteristics of the KPN described above, we believe that the KPN parallel process-
ing model matches our system design methodology very well and the mapping of KPN specifi-
cations onto our multiprocessor platforms can be done in a systematic and automated way using
our Espamtool.

2.1.2 TheCoMPAAN tool

Nowadays, most of the applications are written using a sequential model of computation. The
sequential model of computation makes it easy to reason about an application, as only a single
memory and a single thread of control need to be considered. But such sequential model of
computation can not exploit the inherent parallelism available in an application. In order to
automatically transform the application which is specified in sequential model of computation
into KPN model of computation making the task-level parallelism available in an application
explicit, we use th&€€omMPAAN tool chain [2] [3] [4].

ComPAAN fully automates the transformation of Matlab code into Kahn Process Network
(KPN). The applicationsCoMPAAN can handle, have to be specified as parameterized sta-
tic affine nested loop programs, which is a subset of the Matlab languageCdmeaaN tool
consists of three tools. The first tool transforms the initial Matlab code into single assignment
code (SAC), which resembles the dependence graph (DG) of the initial nested loop program.
The second tool converts the SAC into a Polyhedral Reduced Dependence Graph (PRDG) data
structure, which is a compact mathematical representation of the DG in terms of polyhedra.
The third tool converts the PRDG into a process network by associating a process with each
node of the PRDG. The parallel processes communicate with each other according to the data-
dependency given in the DG.

2.2 Platform Model and Synthesis

Here we introduce the platform model and synthesis in our system design methodology. In our
EspAM tool, the platform model is an abstract model of a multiprocessor platform onto which
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we map a KPN specification. Such abstract model is constructed by using a set of generic
parameterized components. In tBePAM tool there are four groups of generic parameterized
components which are listed below. These components are generic parameterized modules that
can specify a large number of concrete components.

e Processing Component€urrently, our system level platform model supports only one
type of processing component, namely a programmable processor. It has several parame-
ters such atype number of 1/0O portsspeedetc.

e Memory Componentdwo types of memory components are defined and supported. One
is used for specifying the processors’ local program and data memories and the other is
so called "Communication Memory”. It is used to specify data communication storage
(buffer) between processors. Important memory component parametdasparsize
number of 1/0 ports

e Communication ComponentBhey are a point-to-point network, a crossbar switch, and a
shared bus. These components specify the network topology of a multiprocessor platform.

e Auxiliary ComponentsThis group consists of two components, namely a controller and
a link. The controller component is used to specify an interface between processing,
memory, and communication components (if necessary). The link component is used to
connect any two components in our system level platform model.

Using our platform model, the embedded system designer can easily construct many alterna-
tive multiprocessor platforms by instantiating generic parameterized components from the plat-
form model and interconnecting these components. Each component in the platform model has
several parameters which need to be set when such component has to be instantiated. Each
parameter of generic component in the platform model has a range of values and the range is
determined by resource limitations of the physical platform technology onto which our multi-
processor platforms are implemented. For example, if we use the Xilinx Virtexll-Pro FPGA
as the physical platform technology onto which our multiprocessor platforms are implemented,
the parametetypeof the Processing Componentan be set tdMicroBlazeandPowerPCwhich

are the two types of processor supported by Xilinx. Moreover, each platform specification can
have manyMicroBlaze Processing Componeriist it cannot have more than folowerPC
Processing Componengscording to the resource limitations of the Xilinx Virtexll-Pro FPGA.

In order to guarantee correct-by-construction automated platform synthesis and implementa-
tion, ESPAM tool runs a consistency check on the platform specification which is specified by
the designer. The consistency check includes checking whether the connections between plat-
form components are correct and whether the parameter values of the platform components are
set correctly. Moreover, the designer can leave parameter values undefined andekARe

tool to set them automatically in the model refinement and synthesis procedure.

In the EspAM tool, we use XML format for a platform specification because it is an easy way

to specify a platform instance using the platform model. Figure 2.2 shows an example of a

platform specification. In Figure 2.2 we see that there are three processiBsl;-MB_2 and

MB_3 in this platform specification and the types of these three processors Me@Blaze

We also set the size of the data memory and program memory for each processor. In this plat-
form specification, we do not have to specify the memory structures, interface controllers, and
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<platform name="myPlatform">

<processor name="MB_1" type="MB" data_memory="16384" program_memory="8192">
</processor>

<processor name="MB_2" type="MB" data_memory="16384" program_memory="8192">
</processor>

<processor name="MB_3" type="MB" data_memory="16384" program_memory="8192">
</processor>

</platform>

Figure 2.2: An example of the platform specification.

communication and synchronization protocols. @&sPAM tool automatically specifies these

in the platform synthesis which is described as follows. First, our tool instantiate the processing
and the communication components following the platform specification. Second, it automati-
cally attaches memories to each processor. In our case, one or two (data and program) memory
modules have to be instantiated as the local memories along with each processor and the mem:-
ory controllers have to be instantiated as the interfaces between each processor and its local
memories. The memory generation is controlled by parameters within the platform specifica-
tion. For example, in Figure 2.2 we have specified the size of the three processors’ memories
such as the data memories and the program memories. The size of the data memories and the
program memories which are generated for the three processors are controlled by the parame-
ters which are specified in Figure 2.2. Third, our tool automatically synthesizes, instantiates,
and connects all necessary communication memories and communication controllers to allow
efficient and safe data communication and synchronization between the components. In our
case, a FIFO buffer has to be instantiated for each channel in the KPN model. A bus has to be
instantiated for a connection between any two components of processor, FIFO, FIFO controller,
memory and memory controller. Finally, our tool sets proper values of the parameters of each
component.

In ESPAM, a communication memory is organized as FIFO buffers. This organization is be-
cause: 1) The applications which we map onto our multiprocessor platforms are specified as
KPNs where the data communication is realized via FIFO channels; 2) the inter-processor syn-
chronization in a platform can be implemented in a very simple and efficient way by blocking
read/write operations on empty/full FIFO buffers. When a processor has to write data to its
local communication memory, it first checks if there is room in the corresponding FIFO. If the
FIFO is full, the processor blocks. Otherwise, it sends the data to this FIFO buffer. When a
processor has to read from a communication memory, it first checks if there is any data in the
corresponding FIFO. The processor blocks if the FIFO is empty, otherwise it reads the data.
This mechanism which is described above is catlletkingread/write. There are two methods

to implement théblockingread/write. The first method is that some processors have dedicated
embedded hardware that can be used to stall the processors. The second method is that th
blocking is realized in software by executing empty loops. There are different advantages in
each of the methods. For the first one, tilecking read/write implemented in hardware is
faster than the second method in which tilecking read/write is implemented in software.

For the second one, thdockingread/write implemented in software is more general than the
first method in which thélockingread/write is implemented in hardware because the different
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processors are stalled in hardware in different ways. In our case, we use both of the methods to
implement theéblockingread/write.

2.3 Mapping of Application Model onto Platform Model

In Figure 1.1, there is a specification nanMdpping Specificatiom the System-levedpecifi-

cation of ourEspAM tool. Based on th&lapping Specificationour ESPAM tool executes the
mapping process which is a process of binding the application and platform models together. In
the Mapping Specificatigrthe relation between the channels and processes igpkcation
Specificatiorand all the components in titatform Specificatiolis given.

Currently, ourEsPAM tool supports two types of mapping. They ame-to-oneanapping and
many-to-onemapping. One-to-onemapping means that: 1) the number of processing com-
ponents in thePlatform Specifications equal to the number of processes in Aplication
Specification Each process is mapped onto only one processor and each processor has only
one process mapped onto it; 2) the number of communication memoriesattierm Spec-
ificationis equal to the number of channels in thpplication SpecificationA channel in the
Application Specificatioms mapped onto a communication memory in Platform Specifi-
cationand each communication memory has only one channel mapped onto it, so that all the
connections are point-to-point connectiomdany-to-onemapping means that: 1) the number

of processing components in tRéatform Specifications less than the number of processes in
the Application SpecificationTwo or more processes are mapped onto only one processor; 2)
the number of communication memories in Platform Specificatioms still equal to the num-

ber of channels in th&pplication SpecificatianA channel in theApplication Specificatioins
mapped onto a communication memory in Blatform Specificatiomnd each communication
memory has only one channel mapped onto it. Therefore, in order to obtain different alternative
implementations for an application we just need to changé>tadorm Specificatiomnd the
Mapping Specificatioof this application.

Figure 2.3 shows an example of both thee-to-oneandmany-to-onenapping processes. The

top part of Figure 2.3 shows th&pplication Specificatiof this example. There are three
processes in this KPN model. They are processes P1, P2, and P3. These three processes are
connected by the FIFO channels CH1, CH2, and CH3. The left part of Figure 2.3 shows the
one-to-onanapping process. The middle-left part of Figure 2.3 showdtadorm Specifica-

tion and theMapping Specificatioffor the one-to-onemapping. In thePlatform Specification

of the one-to-onemapping, we see that there are three processti8-1, MB_2 and MB_3

in this platform specification and the types of these three processors aleceaiBlaze We

also set the size of the data memory and program memory for each processor. The number
of the processors is equal to the number of processes iAgp#cation Specificatianin the
Mapping Specificationwe see that process P1 is mapped onto procédBot, process P2 is
mapped onto processbiB_2, process P3 is mapped onto proceddBr 3. Notice that mapping

of channels is not specified in tiapping SpecificationThis is not necessary because each
communication memory (CM) may has only one channel mapped onto it according to the def-
inition of the one-to-onemapping. Therefore, each channel in thgplication Specificatiomns
mapped onto a communication memory which is organized as FIFO buffer with standard FIFO
input and output interface signals. We use Fast Simplex Link (FSL) to connect a FIFO buffer
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Platform Specification
<platform name="myPlatform">

<processor name="MB_1" type="MB"
data_memory="16384" program_memory="8192">
<Iprocessor>

<processor name="MB_2" type="MB"
data_memory="16384" program_memory="8192">
<lprocessor>

<processor name="MB_3" type="MB"
data_memory="16384" program_memory="8192">

<mapping name="myMapping">|

Mapping Specification

<processor name="MB_1">
<process name="P1" />
<Iprocessor>

<processor name="MB_2">
<process name="P2" />
</processor>

<processor name="VB_3">
<process name="P3" />

Platform Specification

<platform name="myPlatform">

<processor name="MB_1" type="MB"
data_memory="16384" program_memory="8192">
</processor>

<processor name="MB_2" type="MB"
data_memory="32768" program_memory="16384">
</processor>

<mapping name="myMapping">|

Mapping Specification

<processor name="MB_1">
<process name="P1" />
<Iprocessor>

<processor name="MB_2">
<process name="P2" />
<process name="P3" />
<Iprocessor>

<Iprocessor> <Iprocessor> <Iplatform> </mapping>
</platform> </mapping>
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Figure 2.3: An example aine-to-onemapping ananany-to-onenapping.

to a MicroBlazeprocessor. In Section 2.2, we explained tEstrAM automatically attaches
memories to each processor. In this example, data (DM) and program (PM) memory modules
are instantiated as local memories along with each processor and the memory controllers (MC)
are instantiated as interfaces between each processor and its local memories. The size of the
memories is controlled by parameters within flatform Specification The final elaborate
platform of theone-to-onemapping example is shown in the bottom-left part of Figure 2.3.

The right part of Figure 2.3 shows tmeany-to-onanapping process. The middle-right part
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of Figure 2.3 shows thBlatform Specificatiomnd theMapping Specificatiofor the many-to-
onemapping. In thePlatform Specificationwe see that there are two processoiB-1 and

MB_2 in this Platform Specificatiomnd the types of these two processorsMreroBlaze We

also set the size of the data memory and program memory for each processorPlattben
Specificationwe see that the number of the processors is less than the number of processes in
the Application Specificatianin the Mapping Specificationwe see that process P1 is mapped
onto processoMB_1, process P2 and process P3 are mapped onto prodé&a@r Notice

that mapping of channels is also not specified inNtapping SpecificatianThe reason is the
same as in thene-to-onanapping. OuiESPAM also automatically attaches data and program
memory and memory controllers to each processor. The size of the memories is controlled by
parameters within thBlatform SpecificationThe final elaborate platform of theany-to-one
mapping example is shown in the bottom-right part of Figure 2.3.

2.4 Programming Multiprocessor Platforms

The synthesized multiprocessor platform has to be programmed in order to execute an appli-
cation. Programming the multiprocessor platform means generating program code for each
processor in the platform using high level programming languages like C/C++.

In this thesis we use the MicroBlaze soft processor core as the processor in multiprocessor plat-
forms. The MicroBlaze soft processor core is programmed by GNU tools that generate standard
Executable and Linkable Format (ELF) [16] [17]. The MicroBlaze GNU tools include mb-gcc
compiler, mb-as assembler and mb-Id loader/linker, which can compile GNU compatible C/C++
source files to build ELF executable files. Our methodology implemented iEsreMm tool

is able to generate program code for MicroBlaze processors. We use the software engineer-
ing technique called/isitor [18] to generate C program code for each MicroBlaze processor.
The brief explanation of the program code generation for each processor follows. As discussed
earlier, we model an application as a Kahn Process Network (KPN) and map processes of the
KPN onto the processors of a multiprocessor platform. Therefore, the processors must be pro-
grammed according to the behaviors of the corresponding processes in the KPN. The process in
the KPN is specified as a sequential program that executes concurrently with other processes. In
the KPN specification, such sequential program is modeled as a syntax tree [19]. The advantage
of a syntax tree representation is that a sequential program is modeled at an abstract level that
is independent on a specific programming language. Thus, it is easy to convert a syntax tree
representation into a program specified in any high level programming language. A syntax tree
gives a valid execution order between function calls which have to be executed inside a process.
It completely defines the internal behavior of the process. Then we use the software engineering
technique called/isitor to traverse a syntax tree and to generate program code. The program
code can be expressed in any programming language for which a compiler support exists for
the processors used in a platform. We use the MicroBlaze soft processor core as the processor
in multiprocessor platforms and the MicroBlaze GNU tools include mb-gcc compiler, mb-as
assembler and mb-Id loader/linker, which can compile GNU compatible C/C++ source files to
build ELF executable files. Therefore, we use gtor technique to traverse a syntax tree and

to generate C program code.
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2.5 Project Generation for Xilinx Platform Studio

In this section, we introduce the methodology implementelSrAM to generate Xilinx Plat-

form Studio KP9) projects. Xilinx Platform StudioXPs) is a system design Integrated De-
velopment Environment (IDE) that supports open interfaces making tool integration easy and
painless and it is used to develop Xilinx Embedded Development Kit (EDK) - based system
designs XpPsprovides a common fully integrated hardware/software development environment
that supports the complete range of Xilinx’s processor solutidmsis the graphical user inter-

face technology that integrates all of the processes from design entry to design debug and verifi-
cation. Embedded Development Kit (EDK) is a series of software tools for designing embedded
processor systems on programmable logic, and supports the IBM PowerPC hard processor core
and the Xilinx MicroBlaze soft processor core. Including in the EDK, the scalable Platform
Studio enables designers to easily develop, integrate and debug their entire embedded system
In this thesis, we mainly use the configurable MicroBlaze embedded soft processor core. The
MicroBlaze embedded soft core is a reduced instruction set computer (RISC) optimized for
implementation in Xilinx field programmable gate arrays (FPGAS). It is highly configurable,
allowing users to select a specific set of features required by their design. As the MicroBlaze is
a soft processor core, the number of processors we can implement on a given FPGA is only lim-
ited by the size of the FPGA itself. Due to this reason, the MicroBlaze embedded soft processor
core is suitable for constructing our multiprocessor embedded systems.

However, directly using Xilinx Platform StudioX(Ps) to design a multiprocessor embedded
system is extremely time-consuming and the parallelism implicit in an application can only be
depicted manually. Due to these reasons, generation of a complex multiprocessor embedded
system inXpPs takes lots of time. In order to reduce the design time, Xiwes tool can be

used as a back-end tool of oEsPAM tool. Our ESPAM tool can systematically synthesize a
platform and automatically generate all necessary files fotesproject according t®latform
SpecificationApplication SpecificatiomndMapping Specificatiomhich are shown in Figure

1.1. Therefore, using olESPAM tool as the front-end tool andpPstool as the back-end tool

a designer can design a multiprocessor embedded system on a specific FPGA board efficiently
and effectively.

2.5.1 Introduction to XPs Project Specification

In a Xilinx Platform Studio KPS project, all of the project information is stored in four
files: Xilinx Microprocessor Project (XMP) file [20], Microprocessor Hardware Specification
(MHS) file [20], Microprocessor Software Specification (MSS) file [20] and User Constraint
File (UCF) [21]. An Xilinx Microprocessor Project (XMP) file is the top-level project file for

an EDK design. It stores the project options. A Microprocessor Hardware Specification (MHS)
file defines the configuration of an embedded processor system including buses, peripherals,
processors, connectivity, and address space. A Microprocessor Software Specification (MSS)
file contains directives for customizing libraries, drivers, and file systems. An User Constraint
File (UCF) contains pin information for the physical implementation in a selected FPGA device.

An Xilinx Microprocessor Project (XMP) file includes the XMP version number, the location
of MHS and MSS files, the FPGA architecture family and the device type for whiclX Hse
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hardware tool flow needs to run and the software setting for this project.

A Microprocessor Hardware Specification (MHS) file defines the hardware component used in
a platform as well as the connections between these components. A MHS file defines the con-
figuration of an embedded processor system, and includes the following: 1) Bus architecture;
2) Peripherals; 3) Processor; 4) Connectivity; 5) Address space. A MHS file uses the following
format at the beginning of a component definiti@EGIN peripheralname The BEGINkey-

word signifies the beginning of a new peripheral. It uses the following format for assignment
commands:command name = valudt uses the following format to end a peripheral defini-
tion: END. There are three assignment commandsBUE INTERFACE 2) PARAMETER3)

PORT

A Microprocessor Software Specification (MSS) file contains directives for customizing oper-
ating systems (OS), libraries, and drivers. A MSS file has a dependency on a MHS file. The
keywords that are used in a MSS file are as folloBEGIN, ENDandParameter TheBEGIN
keyword starts a driver, processor, or file system definition block. The begin keyword should
be followed bydriver, processoor filesyskeywords. TheEND keyword signifies the end of a
definition block. A MSS file has a simpleme = valudormat for most statements. TiRara-
meterkeyword is required before every such NAME, VALUE pairs. The format for assigning a
value to a parameter garameter name = valudf the parameter is within hegin-endblock,

it is a local assignment, otherwise it is a global (system level) assignment.

An User Constraint File (UCF) contains pin information for the physical implementation in
a selected FPGA device. It contains constrains such as FPGA pin locations, timing, FPGA
resource specification and I/O standards.

2.5.2 Project Suite Generation

Our EspaM tool can systematically synthesize a platform and automatically generate all neces-
sary files for anX Psproject according t&latform SpecificatiorApplication Specificatioand
Mapping Specificatiothat have been discussed before. The project suite is shown in Figure
2.4,

It includes thesystem.xmpsystem.mhsystem.msfles andcode etg data pcoresdirectories.

The system.xmpsystem.mhssystem.ms#fles are the MHS, MSS, XMP files of the project
which have been discussed above. Intbdedirectory, the software program code files for
processors are stored. In the top level ofecbdedirectory, there are two files namadx func.h
MemoryMap.hThey are the common files for all of the processors. dinrefunc.hfile declares

read and write primitives and wrappers of all function calls in the initial code of an applica-
tion. TheMemoryMap.Hile specifies physical addresses of the components in a platform. The
program code for each processor is stored in the corresponding subdirectory named after the
processors. Thetcdirectory stores the optional files for tiePsimplementation tools. There

are four files in this directorybitgen.ut bitgen spartan3.utfast runtime.optanddownload In

the data directory, the UCF file is stored. According to different FPGA boards, several UCF
files are generated by otisPAM tool. Thepcoresdirectory stores the customized IP cores for
the EDK project. This is th&sPAM library of components depicted in Figure 1.1.
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<PROJECT_SUITE>
|--- system.xmp

|--- system.mhs

|--- system.mss

|--- code/: software program code

|-=mmmmmee aux_func.h

[----mmm- MemoryMap.h

R P_1/: program code for processor P_1
[ P_1.cpp

[ P_2/: program code for processor P_2
[ P_2.cpp

|--- etc/: optional files for implementation tools
[ bitgen.ut

[+ bitgen_spartan3.ut

[---=mm--- fast_runtime.opt

[--------- download.cmd

|--- data/: UCF files

[ system.ucf

[ system_ADMXRCII.ucf

[-=mmmeem system-default.ucf

|-==mmmm- system-zbt.ucf

|--- pcores/: customized IP cores for the EDK project
[—— buffers_v1 00_a/

[— cb_wrapper_v1_00_a/

[— fifo_if_ctrl_v1l_00_a/

[mmmmmmmnnn fin_ctrl_vl_00_a/

[— host_design_ctrl_v1_00_a/

[ LMB_VB_CTRL_v1_00_a/

[— mux_v1l_00_a/

[E— myCLKRST_v1_00_a/

[— opb_zbt_controller_v1_00_a/

—— VB_Wrapper_v1_00_a/

[— zbt_main_v1 00 a/

Figure 2.4: The project suite automatically generated byEmpam tool.

2.5.3 Visitor Pattern Mechanism

In this section, first we briefly introduce thdsitor Patternand then we explain th¥isitor
Patternmechanism which has been used in BgiPAM tool to generate th& Psproject.

The Visitor Pattern[18] represent an operation to be performed on the elements of an object
structure. TheVisitor Patternlets we define a new operation without changing the classes of
the elements on which it operates. TWsitor Patternturns the tables on our object-oriented
model and creates an external class to act on data in other classes. This is useful if there are &
fair number of instances of a small number of classes and we want to perform some operation
that involves all or most of them. There are several participants iNigi®r Pattern 1) Visitor
declares a Visit operation for each clas€oihcreteElemeni the object structure. Zyoncrete-

Visitor implements each operation declared\isitor. 3) Elementdefines an Accept operation

that takes a/isitor as an argument. 4JoncreteElemenmplements an Accept operation that
takes aVisitor as an argument. S)bjectStructurecan enumerate its elements, may provide

a high-level interface to allow th¥isitor to visit its elements and may either be a composite

or a collection such as a list or a set. The implementation oMkior Patternis described

as follows: EachObjectStructurewill have an associateWisitor class. This abstradtisitor

class declares¥isitConcreteElemertdperation for each class GoncreteElemerdefining the
ObjectStructure Each Visit operation on th¥isitor declares its argument to be a particular
ConcreteElemengallowing theVisitor to access the interface of tioncreteElemerdirectly.
ConcreteElementlasses override each Visit operation to implement visitor-specific behavior
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for the correspondin@oncreteElemertlass.

The visitor classes hierarchy in o&sPAM tool is shown in Figure 2.5. We use thasitor
technique which has been introduced above to generate all necessary fileXfes project.

Visitor
PNVisitor StatementVisitor MappingVisitor PlatformVisitor
-_prefix:String
+visitComponent(x:ProcessNetwork) +visitComponent(x:Mapping)
+visitComponent(x:Process) A +visitComponent(x:MFifo) A
+visitComponent(x:Gate) +visitComponent(x:MProcess)
+visitComponent(x:Channel) +visitComponent(x:MProcessor)
A XpsStatementVisitor
-_CExpVisitor: CExpressionVisitor
-_mapping:Mapping XpsMemoryMapVisitor

CDPNVisitor -7PYOCESSZCDPFOCESS

-_mapping:Mapping

+visitStatment(x:RootStatement)
+visitStatment(x:ForStatement)

.. . . +. isi
+visitComponent(x:CDProcessNetwork) | | +visitStatment(x:IfStatement) +5iz;2:/|§rn?ox;¥1':rip()>\</'ﬂ:roin )
+visitComponent(x:CDProcess) +visitStatment(x:ElseStatement) i itToS’t)rin Hex.(xImPiF:n %ormat'int)
+visitComponent(x:CDInGate) +visitStatment(x:OpdStatement) g 9 Hitly :
+visitComponent(x:CDOUtGate) +visitStatment(x:AssignStatement)
+visitComponent(x:CDChannel) +visitStatment(x:ControlStatement)

Y +visitStatment(x:FifoMemoryStatement)

MhsVisitor
XpsNetworkVisitor -_fifoList:Vector

-_mapping:Mapping

— +visitComponent(x:Platform)
+visitComponent(x:CDProcessNetwork) +visitComponent(x:MicroBlaze)

+visitComponent(x:MultiFifo)
+visitComponent(x:Fifo)

+visitComponent(x:BRAM)
+visitComponent(x:MemoryController)

XpsProcessVisitor +visitComponent(x:MultiFifoController)
-_mapping:Mapping +visitComponent(x:FifosController)
-_fifoReadWriteApi:String +visitComponent(x:Crossbar)

+visitComponent(x:ZBTMemoryController)
+visitComponent(x:Uart)
-_digitToStringHex(xInt:int, format:int)
-_greaterPowerOf Two(xInt:int)

+visitComponent(x:CDProcessNetwork)
+xpsProcess(x:CDProcess)
-_writeFunctionArguments(x: CDProcess)
-_writeIncludes(x:CDProcess)
-_writeMain(x:CDProcess)
-_writeChannelTypes()
-_writeParameter(x:CDProcessNetwork)
-_writeOperations() MssVisitor

+visitComponent(x:Platform)

XmpVisitor +visitComponent(x:MicroBlaze)
+visitComponent(x:Fifo)
-_mapping:Mapping +visitComponent(x:MemoryController)
+visitComponent(x:FifosController)
+visitComponent(x:ZBTMemoryController)
+visitComponent(x:Uart)

+visitComponent(x:CDProcessNetwork)

FifoCtrlVisitor

-_coreName:String
-_moduleName:String
-_moduleDir:String
-_paoFile:String
-_mpdFile:String
-_hdIFile:String

+FifoCtriVisitor()
+visitComponent(x:Platform)
-_writeHdIFile()

-_writeMpdFile()

-_writePaoFile()
-_digitToStringHex(xInt:int, format:int)

Figure 2.5: The visitor classes hierarchy in t&PAM tool.

In Figure 2.5, the top level in our visitor classes hierarchy is an interface class vadleat
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which is defined to traverse the data model. The data model includes all of the information
which is given byPlatform SpecificatiopApplication SpecificatioandMapping Specification

Four classe®NVisitor, StatementVisitorMappingVisitorand PlatformVisitorimplement the
interface class. Th@NVisitor class is an abstract class for a visitor that is used to generate
a Process Network description. TB¢atementVisitoclass is an abstract class for a visitor to
traverse a processor’s syntax tree. MegppingVisitorclass is an abstract class for a visitor that

is used to generate Mapping information. TRlatformVisitorclass is an abstract class for a
visitor that is used to generate a Platform description.

CDPNVisitoris an abstract class that exteRfdVisitorclass and it is used to generate Compaan
Dynamic Process Network (CDPN) description. Three concrete classes XgrsidtworkVis-

itor, XpsProcessVisitoand XmpVisitorextend abstract clas8DPNVisitor XpsNetworkVisitor

class is used to copy all of the predefined IP cores and the other necessary project files such as
optional files and UCF files which have been introduced in Section 2.5.2 inkPaiproject.
XpsNetworkVisitorclass is also used to call thé§psProcessVisitoclass. XpsProcessVisitor

class is used to generate the global program codadikgfunc.hand it is also used to call the
XpsStatementVisitan order to traverse the syntax tree of each processor to generate program
code for each processotmpVisitorclass is used to generate the Xilinx Microprocessor Project
(XMP) file for an XPs project.

The concrete class nam&gsStatementVisitarhich extends abstract claSsatementVisitois
used to traverse the syntax tree of each processor and generate C code for each processor.

The concrete class nam&gpsMemoryMapVisitowhich extends abstract clatappingVisitor
is used to generate the global program codeMiganoryMap.h

Three concrete classes namdbsVisitor, MssVisitorand FifoCtrlVisitor extend abstract class
PlatformVisitor. MhsVisitorclass is used to generate Microprocessor Hardware Specification
(MHS) file for an XPs project. MssVisitorclass is used to generate Microprocessor Software
Specification (MSS) file for aiX Ps project. FifoCtrlVisitor class is used to generate a custom
IP core named Fifo Controller for adpsproject.
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Chapter

Embedded System as Heterogeneous and
Hierarchical Architecture

In this chapter, we introduce an embedded system as heterogeneous and hierarchical architec
ture and prove that it is possible to implement systematically and automatically an embedded
system as heterogeneous and hierarchical architecture usigg®ha@ technology. In Chapter

2 we explained that an application always consists of several concurrent processes and these
processes can be mapped onto the components on an embedded system platform. An embec
ded system as homogeneous architecture means the processes of an application are mappe
onto the same type of components on an embedded system platform such as the same type o
processors. However, as we know different types of components are suitable for implementing
different types of processes. For example, some types of processors do not support floating
point computation, this means if we map the processes which include the floating point compu-
tation onto such types of processors, the processors will spend a lot of time to evaluate floating
point computation and the results will not be good enough. But if we map the floating point
computation processes onto the processors or the dedicated hardware IP cores which suppor
the floating point computation, it will save a lot of time and the results will be much better. Due

to similar reasons an embedded system as heterogeneous architecture has to be implemente
in order to meet the required performance of various applications. The problem is how to im-
plement an embedded system as heterogeneous architecture systematically and automatically
What's more, an application always consists of several processes and some of the processes o
the application maybe very complex. If we map a complex process onto a single component,
the process may not meet the required performance. In such case, we need to map the comple
process onto several components in order to meet the required performance. These several com
ponents form a sub-network on an embedded system platform. Therefore we call the system
hierarchical architecture. Thus, an embedded system as hierarchical architecture also has to be
implemented. The problem is how to implement an embedded system as hierarchical architec-
ture systematically and automatically. In this chapter, we give the procedure to explain how
to implement an embedded system as heterogeneous and hierarchical architecture in order tc
prove that it is possible to implement systematically and automatically an embedded system as
heterogeneous and hierarchical architecture using#rmam technology.

This chapter is organized as follows. In Section 3.1, we first give a general introduction to an
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embedded system as heterogeneous and hierarchical architecture. In this section, we give an
example to describe the structure of the heterogeneous and hierarchical architecture and explain
the differences between the homogeneous architecture and the heterogeneous and hierarchical
architecture. In Section 3.2, we give the procedure that explains how to implement an embed-
ded system as heterogeneous and hierarchical architecture using Xilinx Virtexll FPGA as the
physical platform in order to prove that it is possible to implement systematically and auto-
matically an embedded system as heterogeneous and hierarchical architecture Usarptihe
technology.

3.1 Introduction to Heterogeneous and Hierarchical Archi-
tecture

As described above, an embedded system as homogeneous architecture means that all of the
components which compose an embedded system platform are of the same type. For example,
if an embedded system platform is a multiprocessor embedded system platform, a homoge-
neous architecture means all of the processors on the platform have the same attributes. Due
to the complexity of modern applications, such as high throughput multimedia, imaging and
digital signal processing which usually include complicated algorithms, an embedded system
as homogeneous architecture is no longer suitable for modern applications. As what have been
explained earlier, in order to meet the required performance of various applications we need to
implement systematically and automatically an embedded system as heterogeneous and hierar-
chical architecture.

Figure 3.1 give examples which describe the structures of a homogeneous architecture, and a
heterogeneous and hierarchical architecture. In the top of Figure 3.1, there is an example of
a homogeneous architecture. This example is a multiprocessor embedded system. It consists
of five processors and all of the processors are of the same type. They use a communication
structure to communicate with each other. This means all of the processes of an application are
mapped onto the same type of components. Because only one type of processors is not suitable
for different kinds of processes, such homogeneous architecture is difficult to meet the required
performance of various processes.

In the middle of Figure 3.1, there is an example of a heterogeneous and hierarchical architecture.
This architecture includes different types of components — four different types of processors
and one dedicated hardware IP core. They also use a communication structure to communicate
with each other. That means the processes of an application can be mapped onto different types
of components which are suitable for different types of processes of an application. Moreover,

it is better to map the process which is the most complicated or which runs most frequently
onto the dedicated hardware IP core. Because the process which is executed by a dedicated
hardware IP core is much faster than the process which is executed by the software program of
a processor. Thus, by using an embedded system as heterogeneous architecture, an application
can reach higher performances. The bottom part of Figure 3.1 shows what we call hierarchical
architecture in this example. The hierarchical architecture shows that the dedicated hardware IP
core is not a single component. The dedicated hardware IP core is a sub-network which consists
of four different hardware components — HW1, HW2, HW3 and HW4. The sub-network of
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Homogeneous Architecture

I 11717

Communication Structure

~

Heterogeneous and
Hierarchical Architecture

P1 P2 P3 P4 | | HW

I I 1 &1

Communication Structure

HW2

TN
SN

HWS3

HW4

Figure 3.1: The structures of a homogeneous architecture, and a heterogeneous and hierarchice
architecture.

the four hardware components implement the complex process of an application. This means
we map the complex process of an application onto several components in order to meet the
required performance. These several components form a sub-network on the embedded systen
platform. Therefore we call the system hierarchical architecture. In the next section, we will
prove that it is possible to implement systematically and automatically an embedded system as
heterogeneous and hierarchical architecture using#rmam technology.
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3.2 Heterogeneous and Hierarchical Architecture Implemen-
tation

In this section, we prove that it is possible to implement systematically and automatically an
embedded system as heterogeneous and hierarchical architecture u&sgAlvtechnology.

In this section we use an example to explain how to implement an embedded system as hetero-
geneous and hierarchical architecture in order to prove that it is possible to implement system-
atically and automatically an embedded system as heterogeneous and hierarchical architecture
using theEspAM technology. This example maps the same application onto two architectures
— one is a homogeneous architecture and the other is a heterogeneous and hierarchical archi-
tecture. Also, we compare the application performances between these two architectures. This
section is organized as follows. In Section 3.2.1, we create a system with an embedded system
as homogeneous architecture. In Section 3.2.2, we create a system with an embedded system
as heterogeneous and hierarchical architecture which has the same functionality with the sys-
tem in 3.2.1. In Section 3.2.3, we do some tests on the system with the embedded system as
heterogeneous and hierarchical architecture and compare the results with the system with the
embedded system as homogeneous architecture.

3.2.1 Creating a System with Homogeneous Architecture

In this section, we use olESPAM tool to automatically generate a system with homogeneous
architecture. This system is used to implement the Discrete Cosine Transform (DCT). Many
digital image and video compression applications usually use the Discrete Cosine Transform
(DCT) as the transform coding step [22]. Firstimages are always spatially divided into blocks,
usually 8x8 pixels. Then DCT can process each block which includes 8x8 pixels. In our case,
the system uses Xilinx Virtexll FPGA as the physical platform. The architecture of the system
is shown in Figure 3.2.

MB1 - - MB2 - MB3

FIFO1 FIFO2

Figure 3.2: The system with homogeneous architecture.

This system includes thrédicroBlazeprocessors — MB1, MB2 and MB3 and two FIFOs —
FIFO1 and FIFO2. Processor MB1 first generates the initial block and then writes the block
to processor MB2 using FIFO1. Processor MB2 first reads the block from FIFO1, applies the
DCT on this block and then writes the resulting block to processor MB3 using FIFO2. Processor
MB3 first reads the resulting block from FIFO2 and then writes the resulting block to an off-chip
memory. The main software code of these three processors is shown in Figure 3.3.

In Figure 3.3 we see that in our case we use an image which is in 4:2:2 YUV format. Thus the
image block includes four 8x8 sub-blocks — Y1 sub-block, Y2 sub-block, Ul sub-block and
V1 sub-block. In order to transfer the data between the processors, we use the FIFO compo-
nents. TheMicroBlazeprocessor gets data from other processor via a hardware FIFO buffer
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0 int main () {

TBlocks blocks = {
5

}

writeFSL(0, &blocks, (sizeof(blocks)+(sizeof(blocks)%4)+3)/4);
10

} /I main
MB1

0 int main () {
TBlocks blocks_in;

TBlocks blocks_out;

5

DCT dct;

readFSL(0, &blocks_in, (sizeof(blocks_in)+(sizeof(blocks_in)%4)+3)/4);
10 dct.main(blocks_in, blocks_out);

writeFSL(0, &blocks_out, (sizeof(blocks_out)+(sizeof(blocks_out)%4)+3)/4);
15 } /I r.‘r.1.ain

MB2

0 int main () {

volatile long *complmage = (volatile long *)0xf0000000;

TBlocks blocks;

5
readFSL(0, &blocks, (sizeof(blocks)+(sizeof(blocks)%4)+3)/4);
for(int k = 0; k < 64; k += 1) {

10 complmage[k] = (volatile long) blocks.Y1.pixel[K];
complmagelk+64] = (volatile long) blocks.Y2.pixel[k];
complmage[k+64 *2] = (volatile long) blocks.U1.pixel[K];
complmagel[k+64 3] = (volatile long) blocks.V1.pixel[K];

15 }

} /I main
MB3

Figure 3.3: The main software code of the three processors.

using a read primitive and sends data to other processor via a hardware FIFO buffers using a
write primitive. Because the hardware FIFO buffers in our platform are bounded, the read/write
operation is blocking. In our example, we use Fast Simplex Link (FSL) [23] bus to communi-
cate with the FIFO buffers. The code in Figure 3.3 show that weremseFSLand writeFSL
functions to implement the blocking read/write FIFO mechanism. The FSL primitives imple-
ment the blocking read/write mechanism in hardware controlled byMiwoBlaze specific
assembly instructions, namgbut andget[24]. TheMicroBlazespecific assembly instructions

are shown in Figure 3.4. TheadFSLandwriteFSLfunctions are the wrappers for these as-
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sembly instructions which are shown in Figure 3.5. The varipbkdenotes a port number for

a FSL bus of aMicroBlazeprocessor. The variablelueis used to store the data to be read or
written. The variabléen denotes the length (measured in 32-bit words) of the data to be read or
written. When performing the read operatioriVicroBlazeprocessor gets data from one of its
FSL input ports and stores data into the varialdkie When performing the write operation,

the MicroBlazeprocessor puts data stored in the varialdkieto one of its FSL output ports.

0  #define microblaze_bread_datafsl(val, id) \
asm(’get %0, %1” : "=d” (##vali##) @ 'm” (rfsl#fid##))

#define microblaze_bwrite_datafsl(val, id)
asm("put %0, %1” : "=d” (##val##) : "m” (rfsl##id##))

Figure 3.4: TheMicroBlazespecific FSL bus read/write assembly instructions.

0  #define readFSL(pos, value, len) \

do {\
int i; O\
for (i = 0; i < len; i++)
microblaze_bread_datafsI(((volatile int +) value)[i], pos); \
5 } while(0)

#define writeFSL(pos, value, len) \

do {\
int i; 0\
10 for (i = 0; i < len; i++)
microblaze_bwrite_datafsI(((volatile int *) value)[i], pos); \
} while(0)

Figure 3.5: TheMicroBlazeFSL bus read/write primitives.

When we ran the system in Figure 3.2 which is an embedded system with homogeneous ar-
chitecture, we found out that the time performance of the DCT process is not very good. The
reason is that in this homogeneous architecture the DCT process is run as softwavé-on a
croBlazeprocessor. Itis hard for the system to reach the good time performance by running the
software DCT process on the processor.

3.2.2 Creating a system with Heterogeneous and Hierarchical Architec-
ture

In this section, we introduce the procedure to create a system with embedded system as het-
erogeneous and hierarchical architecture. This system has the same functionality as the system
presented in Section 3.2.1. Itis also used to implement the Discrete Cosine Transform (DCT).
The architecture of this system is shown in the top part of Figure 3.6. We see that this hetero-
geneous and hierarchical architecture also includes three components. The difference between
this system and the system of homogeneous architecture is that we use a dedicated hardware
IP core to implement the Discrete Cosine Transform (DCT). In this system, there aMiiwo
croBlazeprocessors — MB1 and MB3 which have the same function as the MB1 and MB3
processors of the system which has been explained in Section 3.2.1. Instead of processor MB2
in the system explained in Section 3.2.1, we use a dedicated hardware IP core to implement the
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DCT process. Therefore this system is a heterogeneous architeMic®Blazeprocessors

use FIFOs to communicate with each other. In order to make the dedicated hardware IP core
can communicate witMicroBlazeprocessors, the dedicated hardware IP core should has the
FIFO input and output interfaces. In Figure 3.6 we see that the dedicated hardware IP core uses
the FIFO input interface to read data from FIFO1, and uses the FIFO output interface to write
data to FIFO2. The data flow of this system is: processor MBL1 first generates the initial block
and then writes the block to the hardware IP core using FIFO1. The hardware IP core first reads
the block from FIFO1, applies the DCT on this block and then writes the resulting block to
processor MB3 using FIFO2. Processor MB3 first reads the resulting block from FIFO2 and
then writes the resulting block to an off-chip memaory.

In order to create the system which has been described above, the first step we need to do is tc
generate the dedicated hardware IP core which can implement the DCT process. In general, we
can design this dedicated hardware IP core by hand. But this method is error-prone and time
consuming. In our case, we use theuRrA tool [6], which has been developed at the Leiden
Embedded Research Center (LERC), to generate this dedicated hardware IP core which contains
the FIFO input and output interfaces. There is a tool chain célledPAAN/LAURA that allows

us to map fast and efficiently applications written in Matlab onto reconfigurable platforms. In
this chain, first the Matlab code is converted automatically to executable Kahn Process Network
(KPN) specification. Then the tool calléchuRA accepts this specification and transforms the
specification into design implementations described as synthesizable VHDL. With the help of
LAURA, we can fast prototype the DCT process directly in hardware — synthesizable VHDL
code.

The bottom part of Figure 3.6 shows the sub-network of the hardware IP core for the DCT
process which is generated by theuRrA tool. This sub-network includes four components

— Node 1(ND1), Node 2(ND2), Node 3(ND3), and Node 4(ND4). They use the FIFO
components to communicate with each other. However, this sub-network of the hardware IP
core for the DCT process each time can only process one image block which includes four 8x8
sub-blocks — Y1 sub-block, Y2 sub-block, U1 sub-block and V1 sub-block. We need to use
a reset signal of this sub-network to repetitively reset the sub-network in order to execute the
DCT process for many image blocks. The architecture which shows how we use the reset signal
is shown in the middle of Figure 3.6. When the sub-network finishes processing the DCT for
one image block, it sends a stop signal to Flipflopl. Flipflopl is used to store the stop signal.
There is a logic element which is used to delay the stop signal for a certain timeéColheer
component in the middle of Figure 3.6 is this logic element. Then Flipflop2 is set by the stop
signal to start the sub-network of the hardware IP core for the DCT process. This system is a
hierarchical architecture, because there are three components on this embedded system platforr
— two MicroBlazeprocessors — MB1, MB3 and one dedicated hardware IP core for the DCT
process, and the dedicated hardware IP core for the DCT process is a sub-network on this
embedded system platform which includes four components — Node 1(NNode 2(ND2),

Node 3(ND3) and Node 4(ND4). What's more, this sub-network is reset repetitively to apply

the DCT operation on many image blocks.

Because we use Xilinx Platform StudiX®$s) as a back-end tool of oUéspAM tool, after

we have got the hardware — synthesizable VHDL code of the DCT process, we still need to
generate the pcore of the DCT process in order to make this hardware IP core can be used in
XPs. There are two directories namddtaandhdl in the pcore directory of the DCT process.
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Figure 3.6: The heterogeneous and hierarchical architecture with one dedicated hardware IP
core for the DCT process.

We need to generate two files for the pcore of the DCT process which are storeddatshe
directory: a Microprocessor Peripheral Definition (MPD) file [25] and a Peripheral Analyze
Order (PAO) file [25]. The MPD file defines the interface of the DCT and the PAO file contains
a list of HDL files that are needed for synthesis, and defines the analyze order for compilation.
The VHDL source code files of the DCT process are stored inthalirectory. The main
contents of the MPD file and the PAO file are shown in Figure 3.7. In the MPD file the ports
RD_CLK, RD_EN, RD.CONTROL. RD_.DATA and RD_EXISTSare used to read data from a
FIFO. The portSVR CLK, WR EN, WR CONTROLWR DATAandWR FULL are used to write

data to a FIFO. The po&TATUSs used to indicate that the DCT processes are finished. The
port CLK andRSTare the clock signal and reset signal. In the PAO file we have all the VHDL
files that are needed for the DCT process and the analyze order for compilation. We can see that
the top level of the DCT process is the VHDL file calléck Thus all the top level architecture
information of the DCT process is stored in this file. The pcore for the DCT process can be
found in the CVS repository:

docs/students/WeiZhong/experiment/DCTpcore.zip

When we finish generating the pcore of the DCT process, based on the system with homoge-
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0 BEGIN kpn

## Peripheral Options

5 ## Bus Interfaces
BUS_INTERFACE BUS = SFSL, BUS_STD = FSL, BUS_TYPE = SLAVE
BUS_INTERFACE BUS = MFSL, BUS_STD = FSL, BUS_TYPE = MASTER

## Generics for VHDL or Parameters for Verilog
10
## Ports
PORT RD_CLK = FSL_S_Clk, DIR = out, SIGIS = CLK, BUS = SFSL
PORT RD_EN = FSL_S_Read, DIR = out, BUS = SFSL
PORT RD_CONTROL = FSL_S_Control, DIR = in, BUS = SFSL
15 PORT RD_DATA = FSL_S Data, DIR = in, VEC = [31:0], BUS = SFSL, ENDIAN = LITTLE
PORT RD_EXISTS = FSL_S_Exists, DIR = in, BUS = SFSL
PORT WR_CLK = FSL_M_CIk, DIR = out, SIGIS = CLK, BUS = MFSL
PORT WR_EN = FSL_M_Write, DIR = out, BUS = MFSL
PORT WR_CONTROL = FSL_M_Control, DIR = out, BUS = MFSL
20 PORT WR_DATA = FSL_M_Data, DIR = out, VEC = [31:0], BUS = MFSL, ENDIAN = LITTLE
PORT WR_FULL = FSL_M_Full, DIR = in, BUS = MFSL

PORT STATUS = ", DIR = O
PORT CLK = ", DIR = |
PORT RST = ™, DIR =1

25
END

MPD file

0 lib kpn_vl 00 _a counter vhdl
lib kpn_vl_00_a decode_5 vhdl
lib kpn_v1_00_a fifo_cam_cntrl_c vhdl
lib kpn_v1_00_a fifo_cam_cntrl_p vhdl

5 lib kpn_vl_00_a dct vhdl

PAO file

Figure 3.7: The main contents of the MPD file and the PAO file of the pcore for the DCT
process.

neous architecture which has been created in Section 3.2.1, we just need to copy the pcore of
the dedicated hardware IP core for the DCT process to the system and replace the processol
MB2 with this dedicated hardware IP core for the DCT process in the system by hand. It is
possible for ourEspPaM tool to automatically implement the work which is described above.

In this thesis, we just focus on showing the procedure about how to implement systematically
and automatically an embedded system as heterogeneous and hierarchical architecture. The
implementation in oUESPAM tool is straightforward and it is out of the scope of this thesis.
After this step, we have already finish creating the system with heterogeneous and hierarchical
architecture.

3.2.3 Testing the System with Heterogeneous and Hierarchical Architec-
ture

In this section, we explain how to test the system and compare the performance of this system
with the performance of the system which is the homogeneous architecture.
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0 int main () {

TBlocks blocks = {
5
}
for (int i = 0; i < 6; i++) {
10
writeFSL(0, &blocks, (sizeof(blocks)+(sizeof(blocks)%4)+3)/4);
}
15
} /I main
MB1
0 int main () {
volatile long *complmage = (volatile long *)0xfO000000;
TBlocks blocks;
5
for (int i = 0; i < 6; i++) {
readFSL(0, &blocks, (sizeof(blocks)+(sizeof(blocks)%4)+3)/4);
10 for(int k = 0; k <64, k += 1) {
complmagelk + i * 64 * 4] = (volatile long) blocks.Y1.pixel[k];
complmagelk + 64 + i * 64 * 4] = (volatile long) blocks.Y2.pixel[K];
complmagelk + 64 *2 + i * 64 * 4] = (volatile long) blocks.U1.pixel[k];
15 complmage[k + 64 *3 + i * 64 » 4] = (volatile long) blocks.V1.pixel[k];
}
}
20
} /I main

MB3

Figure 3.8: The main code of MB1 and MB3 for testing many image blocks.

In order to compare the performances of the two systems, we use the same image block which
is used in the system with homogeneous architecture in the system with heterogeneous and hier-
archical architecture. We use MB1 to generate the image block and send this image block to the
dedicated hardware IP core for the DCT process. When the hardware IP core finishes, it sends
the resulting data to MB3 and then MB3 writes the data to the off-chip memory. This procedure

is almost the same as the procedure which is done in Section 3.2.1. The only difference is that
in this procedure we use the dedicated hardware IP core instdddioBlazeprocessor to do

the DCT process. As a result, we can get the correct resulting data and we find that this system
with heterogeneous and hierarchical architecture needs less time to do the DCT process than the
system which is the homogeneous architecture. Using the dedicated hardware IP core for the
DCT process the system with heterogeneous and hierarchical architecture can get better time
performance than the system with homogeneous architecture.

The other test we need to do is to test whether the system with heterogeneous and hierarchical
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architecture can do the DCT process for more than one image blocks. Thus we need to change
the software code of MB1 and MB3 to send several image blocks to the dedicated hardware IP
core for the DCT process and receive the resulting image blocks from the dedicated hardware IP
core for the DCT process. The main code of MB1 and MB3 which has been changed is shown
in Figure 3.8. In Figure 3.8 we see that MB1 sends 6 image blocks to the dedicated hardware
IP core for the DCT process and MB3 receives 6 resulting image blocks from the dedicated
hardware IP core for the DCT process and writes the 6 resulting image blocks to the off-chip
memory. The test result shows that we can get 6 correct resulting image blocks. This means
the system with heterogeneous and hierarchical architecture can do the DCT process with more
than one image blocks. After these two tests, we have proven that it is possible to implement
systematically and automatically an embedded system as heterogeneous and hierarchical ar
chitecture and this heterogeneous and hierarchical architecture can get better performance thar
the homogeneous architecture. A more complex system with heterogeneous and hierarchical
architecture example is given in Chapter 5.
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Chapter I

Interface of an Embedded System with the
Outside World

Applications of modern embedded systems, such as the high throughput multimedia, imaging,
and digital signal processing, always need to exchange data with the outside world. Due to
this reason an efficient interface of an embedded system with the outside world is necessary for
modern embedded system. In this chapter, we explain how to construct an efficient interface
by using several memories and the approach about how to makestvem tool be able to

automatically generate the interface when it maps an application onto a multiprocessor platform.

In Section 4.1, we describe the target FPGA platform which our interface of an embedded
system with the outside world is based on. In Section 4.2, we explain the construction of the
interface and introduce the components included in the interface. In Section 4.3, the approach
about how to mak&spPAaM automatically generate our interface when it maps an application
onto a multiprocessor platform is presented.

4.1 Target FPGA platform

The target FPGA platform on which we implement our interface of an embedded system with
the outside world is the ADM-XRC-II board that is developed by Alpha Data Parallel Systems
Ltd [26]. The ADM-XRC-II is a high performance PCI Mezzanine Card (PMC) format device
designed for supporting development of applications using the Virtex-1l series of FPGAs from
Xilinx. The architecture of the ADM-XRC-II board is shown in Figure 4.1.

The ADM-XRC-II supports high performance PCI operations without the need to integrate
proprietary cores into the FPGA. A PLX PCI9656 provides a rich set of PCI resources including
two high-speed DMA controllers. We can use this PCI interface to communicate with outside
host processors via the PCI bus. The features of the ADM-XRC-II board are listed below:

e Physically compatible to IEEE P1386 Common Mezzanine Card standard

e High performance PCI and DMA controllers
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Figure 4.1: The architecture of the ADM-XRC-II board.

Local bus speeds of up to 66MHz
Six banks of 256k/512kx32/36 ZBT SSRAM

User clock programmable between 0.5MHz and 100MHz

User front panel adapter with up to 146 free 10 signals

User rear panel PMC connector with 64 free 10 signals

Supports 3.3V and 5V PCI signalling levels (VI/O)

From the specification, we see that this FPGA board has six banks of ZBT SSRAM which are
off-chip memories. This type of off-chip memory is the Zero Bus Turnaround (ZBT) SSRAM
that employs high-speed, low-power CMOS designs using an advanced CMOS process. These
SSRAMs are optimized for 100 percent bus utilization, eliminating any turnaround cycles for
READ to WRITE, or WRITE to READ, transitions. All synchronous inputs pass through reg-
isters controlled by a positive-edge-triggered single clock input (CLK). Our interface uses these
six banks ZBT SSRAM which are off-chip memories to communicate with the outside world.

In order to make the processors in a multiprocessor platform can access the off-chip ZBT SS-
RAM, we need to develop a custom controller to connect the processor to the off-chip ZBT
SSRAM which is introduced in the next section.

4.2 Structure of the Interface of an Embedded System with
the Outside World

In this section, we introduce the construction of an interface of an embedded system with the
outside world by using several off-chip memories. The block diagram of the interface is shown
in Figure 4.2. In Figure 4.2, we show that the interface of an embedded system with the outside
world consists of four main parts — Host Interface, Function Design, Multiplexer and Buffer.
The Function Design is a multiprocessor system which is used to implement different types
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of embedded system applications. Besides these four main parts, our interface still need two
connection parts. One connection part is a custom controller for a processor in the Function
Design to connect to the off-chip ZBT SSRAM which is the bld&Xkin Figure 4.2. The other
connection part includes two components which are used to transfer control signals and status
signals between the Host Interface and the Function Design which are theB#a@oid block

B3in Figure 4.2. All components included in the interface are introduced one by one in Section
4.2.1 to Section 4.2.5. The more detailed explanation about the components included in the
interface is given in [27].

As described above, this interface can be used to communicate data between embedded sys
tems and the outside world, such as an outside host processor, via the off-chip memories. For
example, this interface can be used in this way: first an outside host processor, such as Pentium
can store data in the off-chip memories using the Host Interface. Then an application which has
been mapped onto an embedded system platform, which is the Function Design, can read the
data from the off-chip memories using the custom controllB &nd execute the tasks. At

last, when the application finishes the tasks it can store the resulting data in the off-chip memo-
ries using the custom controlle81) and the outside host processor can read the resulting data
back from the off-chip memories using the Host Interface.
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Figure 4.2: An interface of an embedded system with the outside world.
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4.2.1 Host Interface

The Host Interface component uses PCI interface PLX 9656 to connect to an outside host
processor, such as Pentium, with a PCI bus. An outside host processor uses the Host Inter-
face component to write data to the off-chip ZBT SSRAMs and read data from the off-chip
ZBT SSRAMs. The Host Interface component generates control signals to tell the Multiplexer
component which part (the outside host processor or the Function Design component) needs to
be connected to the off-chip ZBT SSRAMs. It also generates control signals to tell the Func-
tion Design component to start running and receive status signals from the Function Design
component that indicates that the Function Design component has already finished the tasks.

In order to be able to use the Host Interface component iX as project, we need to cre-

ate a pcore for the Host Interface component. We creatketeainvl 00_a directory that
includes all the files which the pcore of the Host Interface component requires, such as a
Microprocessor Peripheral Definition (MPD) file, a Peripheral Analyze Order (PAO) file and
VHDL source code files. In order to make the Host Interface component connectivity inter-
face simpler, we add some bus interfaces in the MPD file. The main code of the MPD file
of the Host Interface component is shown in Figure 4.3. As Figure 4.3 shows, we add a
bus namedHOSTMUX_PORTto bundle the signals that the Host Interface component uses
to connect to the Multiplexer component and add the buses na@ST BUFF_0_PORT,
HOSTBUFF_1 PORT HOSTBUFF_2 PORT HOSTBUFF_3_ PORT HOSTBUFF 4 PORT,
andHOSTBUFF_5_PORTto bundle the signals that the Host Interface component uses to con-
nect to the Buffer component. The p@OMMAND.REGis used to send control signals to the
Multiplexer component or the Function Design component. The PBSIGNSTATREGIs

used to receive status signals from the Function Design component.

4.2.2 Multiplexer

The function of the Multiplexer component is to switch signals from the Host Interface compo-
nent or signals from the Function Design component according to the control signals given
by the Host Interface component. We need to create a pcore for the Multiplexer compo-
nent. We create enuxv1 00 a directory that includes all the files and directories which the
pcore of the Multiplexer component requires, such as a Microprocessor Peripheral Definition
(MPD) file, a Peripheral Analyze Order (PAO) file and VHDL source code files. We also
need to add some bus interfaces in the MPD file of the Multiplexer component in order to
make the Multiplexer component connectivity interface simpler. The main code of the MPD
file of the Multiplexer component is shown in Figure 4.4. As Figure 4.4 shows, we add a
bus namedMUX_ HOSTPORTto bundle the signals that the Multiplexer component uses to
connect to the Host Interface component. We add the buses nsitd¥dDESIGNO_PORT,
MUX_DESIGN1 PORT MUX_DESIGN2 PORT, MUX DESIGN3_PORT MUX_DESIGN4_PORT,
andMUX_DESIGN5_PORTto bundle the signals that the Multiplexer component uses to con-
nect to the Function Design component and add a bus néné&d BUFF_PORTto bundle

the signals that the Multiplexer component uses to connect to the Buffer component. The port
CNTRLIs used to receive control signals from the Host Interface component. In the MPD file
of the Multiplexer component we also add a parameter naxhBtlUX which is used to tell the
Multiplexer component how many multiplexer units it needs to generate. The maximum value
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0 BEGIN zbt _main

## Peripheral Options

5 ## Bus Interfaces

BUSINTERFACE BUS HOSMUXPORT, BUSSTD = TRANSPARENT, BUSYPE = UNDEF

BUSINTERFACE BUS = HOSBUFFO_PORT, BUSSTD = TRANSPARENT, BUSYPE = UNDEF
BUSINTERFACE BUS = HOSBUFF1_PORT, BUSSTD = TRANSPARENT, BUSYPE = UNDEF
BUSINTERFACE BUS = HOSBUFF2_PORT, BUSSTD = TRANSPARENT, BUSYPE = UNDEF

10 BUSINTERFACE BUS = HOSBUFFE3_PORT, BUSSTD = TRANSPARENT, BUSYPE = UNDEF
BUSINTERFACE BUS = HOSBUFF4_PORT, BUSSTD = TRANSPARENT, BUSYPE = UNDEF
BUSINTERFACE BUS = HOSBUFFE5_PORT, BUSSTD = TRANSPARENT, BUSYPE = UNDEF
## Generics for VHDL or Parameters for Verilog

15
## Ports

20 PORT HData RO = RDI, DIR = I, VEC = [31:0], ENDIAN = LITTLE, BUS = HOST _BUFFO_PORT

PORT HData W0 = HDWO, DIR = O, VEC = [31:0], ENDIAN = LITTLE, BUS = HOST _MUXPORT
PORT HTristate 0 = H.TRIO, DIR = O, VEC = [31:0], ENDIAN = LITTLE, BUS = HOST -MUXPORT

PORT HRAO = HADO, DIR = O, VEC = [19:0], ENDIAN = LITTLE, BUS = HOST _MUXPORT
PORT HRCO = HCOO, DIR = O, VEC = [8:0], ENDIAN = LITTLE, BUS = HOST _MUXPORT
25 ..
PORT COMMAMREG = ", DIR = O, VEC = [31:0], ENDIAN = LITTLE
30 PORT DESIGNSTAT.REG = ", DIR = I, VEC = [31:0], ENDIAN = LITTLE
END

Figure 4.3: The main code of the MPD file of the Host Interface component.

of parameteN_MUX is 6.

4.2.3 Buffer

The function of the Buffer component is to transfer data between the ZBT SSRAM memory
and the Function Design component or the Host Interface component. We need to create a
pcore for the Buffer component. We creatéwaffersvl 00_a directory that includes all the

files and directories which the pcore of the Buffer component requires, such as a Microproces-
sor Peripheral Definition (MPD) file, a Peripheral Analyze Order (PAO) file and VHDL source
code files. We also need to add some bus interfaces in the MPD file of the Buffer component
in order to make the Buffer component connectivity interface simpler. The main code of the
MPD file of the Buffer component is shown in Figure 4.5. As Figure 4.5 shows, we add a
bus name®UFF_MUX_PORTto bundle the signals that the Buffer component uses to connect
to the Multiplexer component and the buses namedFF_RD_0_PORT, BUFF_RD_1 PORT,
BUFF_RD_2 PORT, BUFF_RD_3 PORT, BUFF_RD_4 PORT, andBUFF_RD_5_PORTto bun-

dle the signals that the Buffer component uses to connect to the Host Interface component or
the Function Design component.
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0 BEGIN mux

## Peripheral Options

5 ## Bus Interfaces

BUSINTERFACE BUS MUKOSTPORT, BUSSTD = TRANSPARENT, BUSYPE = UNDEF

BUSINTERFACE BUS
BUSINTERFACE BUS

MUBESIGN5_PORT, BUSSTD = TRANSPARENT, BUSYPE = UNDEF
MURBUFFEPORT, BUSSTD = TRANSPARENT, BUSYPE = UNDEF

BUSINTERFACE BUS = MURESIGNO_PORT, BUSSTD = TRANSPARENT, BUSYPE = UNDEF
BUSINTERFACE BUS = MURESIGN1_PORT, BUSSTD = TRANSPARENT, BUSYPE = UNDEF
BUSINTERFACE BUS = MUKESIGN2_PORT, BUSSTD = TRANSPARENT, BUSYPE = UNDEF
10 BUSINTERFACE BUS = MUKESIGN3_PORT, BUSSTD = TRANSPARENT, BUSYPE = UNDEF
BUSINTERFACE BUS = MUKESIGN4_PORT, BUSSTD = TRANSPARENT, BUSYPE = UNDEF

15 ## Generics for VHDL or Parameters for Verilog
PARAMETER MUX = 1, DT = integer

## Ports
PORT HDWO = HDWO, DIR = I, VEC = [31:0], ENDIAN = LITTLE, BUS = MUX  _HOSTPORT, DEFAULT = HDWO
20 PORT HTRIO = H_TRIO, DIR = I, VEC = [31:0], ENDIAN = LITTLE, BUS = MUX _HOSTPORT, DEFAULT = HTRIO
PORT HADO = HADO, DIR = I, VEC = [19:0], ENDIAN = LITTLE, BUS = MUX _HOSTPORT, DEFAULT = HADO
PORT HCOO = HCOO, DIR = I, VEC = [8:0], ENDIAN = LITTLE, BUS = MUX _HOSTPORT, DEFAULT = HCOO
PORT DDWO = DDW, DIR = I, VEC = [31:0], ENDIAN = LITTLE, BUS = MUX _DESIGNO_PORT, DEFAULT = DDW
25 PORT DTRIO = D_TRI, DIR = I, VEC = [31:0], ENDIAN = LITTLE, BUS = MUX _DESIGN.O_PORT, DEFAULT = DTRI
PORT DADO = DAD, DIR = I, VEC = [19:0], ENDIAN = LITTLE, BUS = MUX _DESIGNO_PORT, DEFAULT = DAD
PORT DCOO = DCO, DIR =1, VEC = [8:0], ENDIAN = LITTLE, BUS = MUX  _DESIGNO_PORT, DEFAULT = DCO

PORT DWO0O = DWO, DIR = O, VEC = [31:0], ENDIAN = LITTLE, BUS = MUX _-BUFFPORT, DEFAULT = DWO
30 PORT TRIO = TRIO, DIR = O, VEC = [31:0], ENDIAN = LITTLE, BUS = MUX  _BUFEPORT, DEFAULT = TRIO

PORT ra0 = "™, DIR = O, VEC = [19:0], ENDIAN = LITTLE
PORT rcO = ™, DIR = O, VEC = [8:0], ENDIAN = LITTLE

35 PORT CNTRL = "™, DIR = 1, VEC = [31:0], ENDIAN = LITTLE
END

Figure 4.4: The main code of the MPD file of the Multiplexer component.

4.2.4 Custom Memory Controller

The custom memory controller which is the bloBR in Figure 4.2 is used as an interface
between aMicroBlazeprocessor and the ZBT SSRAM. Because we choose the IBM’s On-chip
Peripheral Bus (OPB) [28] as the bus interface d¥lieroBlaze processor to connect to the
off-chip ZBT SSRAM, the custom memory controller translates the OPB bus protocol into the
ZBT SSRAM special protocol. In order to make our custom memory controller as a consistent
interface to connect ®licroBlazeprocessor to the ZBT SSRAM, we also write a wrapper for
our custom memory controller. Finally, we have got two VHDL files for our custom memory
controller —oph zbt controller_core.vhd(the core VHDL file) andphb zbt controller.vhd(the
wrapper VHDL file).

We need to create a pcore for our custom memory controller. We creptezbt controller v1 00_a
directory that includes all the files and directories which the pcore of the custom memory con-
troller requires, such as a Microprocessor Peripheral Definition (MPD) file, a Peripheral Ana-
lyze Order (PAO) file and VHDL source code files. We also need to add some bus interfaces
in the MPD file of the custom memory controller in order to make the custom memory con-
troller connectivity interface simpler. The main code of the MPD file of the custom memaory
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0 BEGIN buffers

## Peripheral Options

5 ## Bus Interfaces
BUSINTERFACE BUS BUFMMUXPORT, BUS_STD = TRANSPARENT, BUBYPE = UNDEF

BUSINTERFACE BUS BUFRDO_PORT, BUS_STD TRANSPARENT, BUBYPE UNDEF

BUSINTERFACE BUS = BUFRRD1._PORT, BUS_STD = TRANSPARENT, BUBYPE = UNDEF
BUSINTERFACE BUS = BUFRD2_PORT, BUS_STD = TRANSPARENT, BUBYPE = UNDEF

10 BUSINTERFACE BUS = BUFRRD3_PORT, BUS_STD = TRANSPARENT, BUBYPE = UNDEF
BUSINTERFACE BUS = BUFRD4_PORT, BUS_STD = TRANSPARENT, BUBYPE = UNDEF
BUSINTERFACE BUS = BUFIRRD5_PORT, BUS_STD = TRANSPARENT, BUBYPE = UNDEF
## Generics for VHDL or Parameters for Verilog

15
## Ports
PORT 10 = RDI, DIR = O, VEC = [31:0], ENDIAN = LITTLE, BUS = BUFF -RDO_PORT, DEFAULT = RO
PORT O0 = DWO, DIR = I, VEC = [31:0], ENDIAN = LITTLE, BUS = BUFF _MUXPORT
PORT TO = TRIO, DIR = I, VEC = [31:0], ENDIAN = LITTLE, BUS = BUFF _MUXPORT

20 PORT rd0 = "™, DIR = 10, VEC = [31:0], ENDIAN = LITTLE, THREE _STATE=FALSE, IOB_STATE=BUF
END

Figure 4.5: The main code of the MPD file of the Buffer component.

controller is shown in Figure 4.6. As Figure 4.6 shows, we add a bus n&@&dBto bundle

the signals that the custom memory controller uses to connect to the OPB bus, add a bus namec
DESIGNBUFF_PORTto bundle the signals that the custom memory controller uses to connect
to the Buffer component and a bus naniSIGNMUX_PORTto bundle the signals that the
custom memory controller uses to connect to the Multiplexer component.

4.2.5 Transfer Components

In order to transfer control signals and status signals between the Host Interface component
and the Function Design component, we need to develop two componehisctd compo-

nent which is the blociB2 in Figure 4.2 anchostdesignctrl component which is the block

B3 in Figure 4.2. Thdin_ctrl component is used to connect thestdesignctrl component

to MicroBlazeprocessors in the Function Design component using the Local Memory Buses
(LMB) [29]. When aMicroBlaze processor finishes its tasks, it sends a finish signal to the
hostdesignctrl component through then_ctrl component. Thdostdesignctrl component

is used to connect the Host Interface component to the Function Design component. The
function of thehostdesignctrl component is to send the start signal to the Function Design
component that is used to teéMicroBlaze processors to start to work. Thestdesignctrl
component is also used to collect all the finish signals seMflioyoBlazeprocessors through
thefin_ctrl components and when all of tiMicroBlazeprocessors have already sent the finish
signals to it, it will sent a final finish signal to the Host Interface component to tell an outside
host processor that the Function Design component has already finished the tasks. We neec
to create the pcores for tHe_ctrl component and thhostdesignctrl component. We cre-

ate afin_ctrl_v1.00.a directory that include all the files and directories which the pcore of the
fin_ctrl component requires, such as a MPD file, a PAO file and VHDL source code files and
a hostdesignctrl_v1 00.a directory that include all the files and directories which the pcore
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0 BEGIN opb_zbt _controller

## Peripheral Options

5 ## Bus Interfaces
BUSINTERFACE BUS
BUSINTERFACE BUS
BUSINTERFACE BUS

SOPB, BUSTD = OPB, BUSTYPE = SLAVE
DESIGNBUFFPORT, BUSSTD = TRANSPARENT, BUSYPE = UNDEF
DESIGNMMUXPORT, BUSSTD = TRANSPARENT, BUSYPE = UNDEF

10 ## Generics for VHDL or Parameters for Verilog

## Ports
PORT OPEClk = ™, DIR = IN, SIGIS = CLK, BUS = SOPB, DEFAULT =
15 PORT OPBERst = OPB_Rst, DIR = IN, BUS = SOPB, DEFAULT = OPB _Rst
PORT OPBABus = OPBABus, DIR = IN, VEC = [0:31], BUS = SOPB, DEFAULT = OPB _ABus
PORT OPBBE = OPBBE, DIR = IN, VEC = [0:3], BUS = SOPB, DEFAULT = OPB _BE
PORT OPERNW = OPRNW, DIR = IN, BUS = SOPB, DEFAULT = OPBRNW
PORT OPBelect = OPB _select, DIR = IN, BUS = SOPB, DEFAULT = OPB _select
20 PORT OPBsegAddr = OPB _segAddr, DIR = IN, BUS = SOPB, DEFAULT = OPB _seqgAddr
PORT OPBBus = OPBDBus, DIR = IN, VEC = [0:31], BUS = SOPB, DEFAULT = OPB _DBus
PORT ZBTDBus = S| DBus, DIR = OUT, VEC = [0:31], BUS = SOPB, DEFAULT = SI _DBus
PORT ZBTerrAck = Sl _errAck, DIR = OUT, BUS = SOPB, DEFAULT = S| _errAck
PORT ZBTretry = SI  _retry, DIR = OUT, BUS = SOPB, DEFAULT = S| _retry
25 PORT ZBTtoutSup = S| _toutSup, DIR = OUT, BUS = SOPB, DEFAULT = Sl _toutSup
PORT ZzBTxferAck = SI xferAck, DIR = OUT, BUS = SOPB, DEFAULT = SI _xferAck

30 PORT RQO DCO, DIR = O, VEC = [0:8], BUS = DESIGN _MUXPORT
PORT RAO DAD, DIR = OUT, VEC = [0:C _ZBT_.ADDRSIZE-1], BUS = DESIGN _MUXPORT
PORT RO = RD., DIR =1, VEC = [0:31], BUS = DESIGN -BUFEPORT

PORT RDD = DDW, DIR = O, VEC = [0:31], BUS = DESIGN _MUXPORT

PORT TRD = DTRI, DIR = O, VEC = [0:31], BUS = DESIGN _MUXPORT
35

END

Figure 4.6: The main code of the MPD file of the custom memory controller.

of the hostdesignctrl component requires, such as a MPD file, a PAO file and VHDL source
code files. The main code of the MPD files of tire ctrl component and the main code of the
MPD files of thehostdesignctrl component are shown in Figure 4.7 and Figure 4.8. As Figure
4.7 shows, in thdin_ctrl component we add a bus namgddMBto bundle the signals that the
fin_ctrl component uses to connect to the LMB bus. The @ifinOut is used to send the
finish signal to thenostdesignctrl component. As Figure 4.8 shows, in thestdesignctrl
component the po€ OMMAND REGis used to receive the control signals from the Host In-
terface component. The ports frdfiN_REGO to FIN_.REG 19 are used to receive the finish
signals from thdin_ctrl components. The poRSTOUT is used to reset the Function Design
component, in other words it is used to tell the Function Design component to start to work. The
port STATUSREG:is used to send the final finish signal to the Host Interface component to tell
an outside host processor that the Function Design component has already finished the tasks.
We also add a parameter namied=IN which is used to tell thénostdesignctrl component

how manyfin_ctrl components need to connect to it. The maximum number of the parameter
N_FIN is twenty.
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BEGIN fin _ctrl

## Peripheral Options

## Bus Interfaces
BUS_INTERFACE BUS = SLMB, BUS_TYPE = SLAVE, BUS_STD = LMB

## Generics for VHDL or Parameters for Verilog

## Ports

PORT LMECIk = "™, DIR = I, BUS = SLMB

PORT LMBERst = LMB_Rst, DIR = |, BUS = SLMB

PORT LMBABus = LMBABus, DIR = I, VEC = [0:(C _LMBAWIDTH-1)], BUS = SLMB

PORT LMBWriteDBus = LMB _WriteDBus, DIR = I, VEC = [0:(C _LMBDWIDTH-1)], BUS = SLMB
PORT LMBAddrStrobe = LMB _AddrStrobe, DIR = |, BUS = SLMB

PORT LMBReadStrobe = LMB _ReadStrobe, DIR = |, BUS = SLMB

PORT LMBANriteStrobe = LMB _WriteStrobe, DIR = |, BUS = SLMB

PORT LMBBE = LMBBE, DIR = I, VEC = [0:((C _LMBDWIDTH/8)-1)], BUS = SLMB

PORT SI.DBus = S| DBus, DIR = O, VEC = [0:(C _LMBDWIDTH-1)], BUS = SLMB
PORT SI.Ready = S| _Ready, DIR = O, BUS = SLMB

PORT SLFinOut = "™, DIR = O

END

Figure 4.7: The main code of the MPD files of tfire ctrl component.

BEGIN host _design _ctrl

## Peripheral Options

## Bus Interfaces

## Generics for VHDL or Parameters for Verilog
PARAMETER [RIN = 1, DT = integer

## Ports

PORT COMMAMREG = "™, DIR = |, VEC = [31:0], ENDIAN = LITTLE
PORT FINREGO = ™, DIR = |

PORT FIN.-REG19 = "™, DIR |

PORT RSIOUT = "™, DIR (6]
PORT STATUREG = ", DIR = O, VEC = [31:0], ENDIAN = LITTLE

END

Figure 4.8: The main code of the MPD files of thestdesignctrl component.

4.3 Generating the Interface of an Embedded System with

In Section 4.2, we introduced the structure of the interface of an embedded system with the
outside world. This interface can be used for data exchange between the embedded system ant
the outside world, such as an outside host processor, via the off-chip memories. In this section,

the Outside World

we explain the approach about how to make Es®AM tool be able to automatically generate
the interface when it maps an application onto a multiprocessor platform.

First, we need to add a new group of generic parameterized componentsPampberal Com-
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ponentsn the platform model of ouEsPAMtool. In thePeripheral Componentse need to add

our custom memory controller which is used as an interface betw@&inraBlazeprocessor

and the ZBT SSRAM. For the sake of making a processor communicate with an outside ter-
minal, in thePeripheral Componentse also need to add the UART (Universal Asynchronous
Receiver Transmitter) which can control the serial port of the FPGA board to communicate with
an outside terminal. Moreover, we need to add the OPB (IBM’s On-chip Peripheral Bus) port
which is used by our custom memory controller and the UART in the platform model. In order
to add such components in the platform model ofBspAMtool, we need to create a new class
namedPeripheral a new class name£BTMemoryControllewhich is the class for our custom
memory controller and it exten®eripheralclass, a new class namelhrt which is the class

for the Universal Asynchronous Receiver Transmitter and it also ex@enigheralclass, a new

class name®PBPortwhich is the class for the OPB port in the data model of6siPAM tool.

The second step is to modify the platform specification parser oEseam tool. In this step,

we need to modify the platform specification parser to make it parse the peripheral components
such as our custom memory controller and the UART when we specify such peripheral compo-
nents in a platform specification. The third step is to modifydisVisitorclass which is used

to generate a Microprocessor Hardware Specification (MHS) file foX maproject and our
MssVisitorclass which is used to generate a Microprocessor Software Specification (MSS) file
foranXPsproject. IntheMhsVisitorclass, first we generate the external port for our interface to
connect to the PCI bus in a MHS file. Second, every time we generate a processor component
in the MHS file we also generatefa_ctrl component. Third, we make théhsVisitorclass

visit the data model to get the information of our custom memory controllers and the UARTSs
and generate these two types of components in the MHS file. Fourth, when we generate our
custom memory controllers in the MHS file we also generate the Host Interface component, the
Multiplexer component, the Buffer component, andhlestdesignctrl component in the MHS

file. But the Host Interface component, the Multiplexer component, the Buffer component, and
thehostdesignctrl component are just generated once in the MHS file. IrMbsVisitorclass,

first every time we generate a processor component in a MSS file we also genérattrla
component. Second, we also make this class can visit the data model to get the information of
our custom memory controllers and the UARTs and generate these two types of components
in the MSS file. Third, when we generate our custom memory controllers in the MSS file we
also generate the Host Interface component, the Multiplexer component, the Buffer component,
and thehostdesignctrl component in the MSS file. But also the Host Interface component,
the Multiplexer component, the Buffer component, andrtbstdesignctrl component are just
generated once in the MSS file.

By implementing the steps explained above, &3PAM tool can automatically generate the
interface of an embedded system with the outside world when it maps an application onto a
multiprocessor platform. For example, when we give the platform specification shown in Figure
4.9, ourEspAM tool can automatically generate the interface. In this platform specification,
we specify threéMicroBlazeprocessorsNIB_1, MB_2 andMB_3), one UART RS232Uart_1)

and three custom memory controlle@BT_CTRL1, ZBT.CTRL2 andZBT_.CTRL3) which

are used as the interfaces between NheroBlazeprocessors and the ZBT SSRAMs. Each
processor has 16K data memory, 8K program memory and the OPBMBIril uses the link
mb.oph 1 to connect to th&BT CTRL1 andRS232Uart_1 via the OPB busMB_2 uses the

link mb.opb 2 to connect to th&BT CTRL2 via the OPB busMB_3 uses the linknb.oph 3
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<platform name="myPlatform">

<processor name="MB _1" type="MB" data_memory="16384" program_memory="8192">
<port name="OPB _1" type="OPBPort"/>
</processor>

<processor name="MB _2" type="MB" data_memory="16384" program_memory="16384">
<port name="OPB 2" type="OPBPort"/>
</processor>

<processor name="MB _3" type="MB" data_memory="8192" program_memory="8192">
<port name="OPB _3" type="OPBPort"/>
</processor>

<peripheral name="ZBT _CTRL1" type="ZBTCTRL" size="1000000">
<port name="I0 _1" type="OPBPort"/>
</peripheral>

<peripheral name="RS232  _Uart _1" type="UART" size="256">
<port name="UARTIO _1" type="OPBPort"/>
</peripheral>

<peripheral name="ZBT _CTRL2" type="ZBTCTRL" size="1000000">
<port name="I0 2" type="OPBPort"/>
</peripheral>

<peripheral name="ZBT _CTRL3" type="ZBTCTRL" size="1000000">
<port name="I0 _3" type="OPBPort"/>
</peripheral>

<link name="mb _opb_1">
<resource name="MB _1" port="OPB _1'/>
<resource name="ZBT _CTRL1" port="IO _1"/>
<resource name="RS232 _Uart _1" port="UARTIO _1"/>
</link>

<link name="mb _opb _2">
<resource name="MB _2" port="OPB _2"/>
<resource name="ZBT _CTRLZ2" port="I0 _2"/>
</link>

<link name="mb _opb _3">
<resource name="MB _3" port="OPB _3"/>
<resource name="ZBT _CTRL3" port="I0 _3"/>
</link>

</platform>

Figure 4.9: An example of a platform specification.

to connect to th&BT.CTRL 3 via the OPB bus. OuEsPAM tool automatically generates the

components which the interface needs, such as the Host Interface component, the Multiplexer

component, the Buffer component, fire ctrl components, and tHestdesignctrl component.
More complex example which generates the interface usingsaaM tool is given in Chapter

5.
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Chapter 5

Case Studies

In this chapter, we present two case studies. The first case study is about M-JPEG multiproces-
sor system with homogeneous architecture which is used to evaluate the design methodology
in our EspAaM tool presented in Chapter 2 and to validate the interface of an embedded system
with the outside world explained in Chapter 4. The second case study is about M-JPEG multi-
processor system with heterogeneous and hierarchical architecture which is used to validate the
procedure of implementing an embedded system as heterogeneous and hierarchical architectur
and to evaluate the heterogeneous and hierarchical architecture introduced in Chapter 3. Basec
on the results which are obtained from the experiments in these two case studies, we present ar
analysis and comments on these results.

5.1 M-JPEG Homogeneous Multiprocessor System

In this case study, we use a complex application, namely a modified Motion JPEG (M-JPEG)
encoder which is mapped onto multiprocessor embedded system platform with homogeneous
architecture. Just as the traditional M-JPEG encoder, this modified M-JPEG encoder com-
presses a sequence of video frames, using JPEG [30] [31] picture compression in each frame
of the video. This modified M-JPEG encoder processes video data which is in the 4:2:2 YUV
format.

Figure 5.1 shows the initial Matlab code of this M-JPEG encoder application. In line 1 to line 3,
it specifies the parameters which are naletinFramesVNumBlocksandHNumBlocks The
parameteNumFramestands for the number of frames to be processed and it ranges from 1 to
100. The paramet&fNumBlockstands for the vertical size of a frame in number &B83pixel
blocks and it ranges from 2 to 100. The parameétBlumBlocksstands for the horizontal size

of a frame in number of 88-pixel blocks and it ranges from 1 to 100. Lines 5-15 define some
types of data which are used in the code. Lines 17-23 initialize the luminance and chrominance
guantization table@Table3 and luminance and chrominance Huffman tabiiffTableAG

and so on. First, th¥ideolnMain()function divides the frames in YUV format inx8-pixel
blocks. Thus, every block is a 4:2:2 YUV block. After that each frame is compressed using
the standard JPEG compression algorithm. The Discrete Cosine Tran&Qm is applied
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on every 4:2:2 YUV block - line 30, followed by quantizatioQ)(and variable-length encoding
(VLE) - lines 31-34. FunctioVideoOut()in lines 35-36 is used to add the header information
to the compressed frame.

%typedef LuminanceHuffTableDC  THuffTablesDC;
%typedef ChrominanceHuffTableDC THuffTablesDC;
10 Y%typedef LuminanceHuffTableAC  THuffTablesAC;
11 %typedef ChrominanceHuffTableAC THuffTablesAC;

1  Y%parameter NumFrames 1 100;

2 Y%parameter VNumBlocks 2 100;

3 Y%parameter HNumBlocks 1 100;

4

5  %typedef Headerlnfo THeaderlInfo;
6 %typedef LuminanceQTable TQTables;
7  Y%typedef ChrominanceQTable TQTables;
8

9

12 Y%typedef LuminanceTablesInfo TTableslInfo;

13  %typedef ChrominanceTablesinfo TTablesInfo;

14  %typedef Packets TPackets;

15 %typedef Block TBlocks;

16

17 for k = 1:1:1,

18 [ LuminanceQTable, ChrominanceQTable,

19 LuminanceHuffTableDC,ChrominanceHuffTableDC,
20 LuminanceHuffTableAC,ChrominanceHuffTableAC,
21 LuminanceTablesInfo, ChrominanceTablesInfo
22 ] = DefaultTables();

23 end

24

25 for k = 1:1:NumFrames,
26 [ Headerlnfo ] = Videolninit();
27 for j = 1:1:VNumBlocks,

28 for i = 1:1:HNumBlocks,

29 [ Block ] = VideolnMain();

30 [ Block ] = DCT( Block );

31 [ Block T = Q( Block, LuminanceQTable, ChrominanceQTable );

32 [ Packets ] = VLE( Block,

33 LuminanceHuffTableDC,ChrominanceHuffTableDC,
34 LuminanceHuffTableAC,ChrominanceHuffTableAC );
35 [ dummy ] = VideoOut( HeaderInfo, LuminanceTablesInfo,

36 ChrominanceTablesInfo, Packets );

37 end

38 end

39 end

Figure 5.1: The initial Matlab code of the M-JPEG encoder application.

First, we need to convert the initial Matlab code which is shown in Figure 5.1 into a KPN spec-
ification. We use th&CoMPAAN tool [2] to automatically transform the Matlab code of the
M-JPEG encoder application which is specified in a sequential model of computation into a
KPN model of computation making the task-level parallelism available in the M-JPEG encoder
application explicit. The KPN of the M-JPEG encoder application which is generat€d by

PAAN is shown in Figure 5.2. In this KPN specification of the M-JPEG encoder application,
there are seven processesNB_1, ND_2, ND_3, ND_4, ND_5, ND_6 andND_7. ND_1 is the
DefaultTables(processND_2 is theVideolnInit() processND_3 is theVideolnMain()process.

ND_4 is the DCT() process.ND_5 is the Q() process.ND_6 is the VLE() process.ND_7 is

the VideoOut()process. In this case study, we conduct two experiments to evaluate the design
methodology in outEspAM tool and validate the interface of an embedded system with the
outside world.

In the first experiment, we map the M-JPEG encoder application onto the one-processor em-
bedded system platform shown in Figure 5.3. In this case, actually there is no task-level par-
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Figure 5.2: The KPN of the M-JPEG encoder application.
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Figure 5.3: One-processor embedded system platform for M-JPEG encoder application.

allelism exploited in this embedded system as this is the case in the initial Matlab program.
Based on the design methodology in &8PAM tool, we still need to write th@latform Spec-
ification and theMapping Specificatioshown in Figure 5.4 and Figure 5.5. In tRéatform
Specificationwe see that there are oMicroBlazeprocessorNIB_1) and two custom mem-

ory controllers ZBT.CTRL 1 andZBT.CTRL2) which are used as the interfaces between the
MicroBlazeprocessors and the ZBT SSRAMs in this embedded system platform. Because we
use the ADM-XRC-II board as the target FPGA platform, there are six banks of ZBT SSRAM
which are the off-chip memories on this FPGA board. ™ 1 uses the two custom mem-

ory controllers —ZBT.CTRL1 andZBT.CTRL2 to connect to two banks of ZBT SSRAM.
ZBT.CTRL1is used to read the initial video data from ZBT SSRAM &Rl CTRL 2 is used

to write the resulting video data to the ZBT SSRAM. We also set the data memory and program
memory ofMB_1 to 64K. In theMapping Specificationwe map all of the processes which
includeDefaultTables(process (NDL1), Videolninit() process (ND2), VideolnMain()process
(ND_3), DCT() process (ND4), Q() process (ND5), VLE() process (ND6) andVideoOut()
process (ND7) in the KPN specification which is shown in Figure 5.2 onto dfieroBlaze
processor —MB_1. In this experiment we use one video frame which size is<IZ8 pixels to
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test the M-JPEG encoder embedded system. In order to make the embedded system be able to
exchange video data with the outside world, we need to use the interface presented in Chapter 4
to communicate with an outside host processor and to store the video data in the off-chip mem-
ories. First, we use the outside host processor to store the video data in the first bank of ZBT
SSRAM. Then processdvB_1 uses the controlleZBT_CTRL1 to read the video data from

this bank and starts to execute the M-JPEG process on this video frame. When pritigdsor
finishes all of the tasks, it stores the resulting video data in the second bank of ZBT SSRAM
using controlleZBT_CTRL2. Finally, the outside host processor uses the interface to read back
the resulting video data from such bank of ZBT SSRAM.

0 <platform name="myPlatform">

<processor name="MB _1" type="MB" data_memory="64000" program_memory="64000">
<port name="OPB _1" type="OPBPort"/>
</processor>

<peripheral name="ZBT _CTRL1" type="ZBTCTRL" size="1000000">
<port name="I0 _1" type="OPBPort"/>
</peripheral>

10 <peripheral name="ZBT  _CTRL2" type="ZBTCTRL" size="1000000">
<port name="I0 _2" type="OPBPort"/>
</peripheral>

<link name="mb _opb_1">
15 <resource name="MB _1" port="OPB _1"/>
<resource name="ZBT _CTRL1" port="IO _1"/>
<resource name="ZBT _CTRLZ2" port="I0 _2"/>
</link>

20 </platform>

Figure 5.4:Platform Specificatioor one-processor embedded system platform.

0 <mapping name="myMapping">

<processor name="MB _1"
<process name="ND
<process name="ND

5 <process name="ND
<process name="ND
<process name="ND
<process name="ND
<process name="ND

10 </processor>

S
/>
/>
/>
/>
/>
/>

RV IR Y;
N uhRQNR

</mapping>
Figure 5.5:Mapping Specificatiofor one-processor embedded system platform.

In the second experiment, we map the M-JPEG encoder application onto a five-processor em-
bedded system platform shown in Figure 5.6. In this case, there are five parallel tasks which are
executed concurrently in this embedded system platform. Pladgorm Specificatiorand the
Mapping Specificatioffor this five-processor embedded system platform are shown in Figure
5.7 and Figure 5.8. In thBlatform Specificatioywe see that there are fikdicroBlazeproces-

sors MB_1, MB_2, MB_3, MB_4, andMB_5) and five custom memory controlle BT CTRL1,
ZBT.CTRL2, ZBT.CTRL3, ZBT.CTRL4, andZBT_CTRL5) which are used as the interfaces
between thévlicroBlazeprocessors and the ZBT SSRAMSs in this embedded system platform.
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Figure 5.6: Five-processor embedded system platform for M-JPEG encoder application.

In this platform, eacMicroBlazeprocessor uses one of the custom memory controllers to con-
nect to one bank of ZBT SSRAM on the target FPGA platform. W21 usesZBT CTRL 1to

read the initial video data from the ZBT SSRAM and ¥8_5 usesZBT CTRL5 to write the
resulting video data to the ZBT SSRAM. We also set the data memory size and program memory
size for each processor in tRéatform Specificationin theMapping Specificatiorwe mapDe-
faultTables(process (NDL1), VideolnInit() process (ND2) andVideolnMain()process (ND3)

onto processoMB_1, DCT() process (ND4) onto processoMB_2, Q() process (ND5) onto
processoMB_3, VLE() process (ND6) onto processoMB_4 andVideoOut()process (ND7)

onto processoMB_5. In this experiment we also use one video frame which size ix128

pixels to test the M-JPEG encoder embedded system. In order to make the embedded systen
be able to exchange video data with the outside world, we need to use the interface explained in
Chapter 4 to communicate with an outside host processor and to store the video data in the off-
chip memories. First, we use the outside host processor to store the video data in the first bank
of ZBT SSRAM using the interface. Then processtB_1 uses the controlleZBT CTRL1 to

read the video data from this bank of ZBT SSRAM and the dieroBlazeprocessors start to
execute the M-JPEG process on this video frame. When all of the five processors finish all of
the tasks, processtB_5 stores the resulting video data in the fifth bank of ZBT SSRAM using

the controllerZBT CTRLS5. Finally, the outside host processor uses the interface to read back
the resulting video data from this bank of ZBT SSRAM.

In these two experiments, we use one video frame which size ig 128 pixels to test these

two M-JPEG encoder embedded systems. The performances of these two M-JPEG encoder
embedded systems is shown in Figure 5.9. The frequency of the processors in this case study
is 100MHz. Comparing the performances of these two experiments, we see that the second
experiment which maps the M-JPEG encoder application onto five-processor embedded system
platform is about 2 times faster than the first experiment which maps the M-JPEG encoder appli-
cation onto one-processor embedded system platform. The first experiment uses one processo
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0 <platform name="myPlatform">

<processor name="MB _1" type="MB" data_memory="65536" program_memory="32768">
<port name="OPB _1" type="OPBPort"/>
</processor>
5 <processor name="MB 2" type="MB" data_memory="16384" program_memory="16384">
<port name="OPB 2" type="OPBPort"/>
</processor>
<processor name="MB _3" type="MB" data_memory="8192" program_memory="8192">
<port name="OPB _3" type="OPBPort"/>
10 </processor>
<processor name="MB _4" type="MB" data_memory="16384" program_memory="16384">
<port name="OPB _4" type="OPBPort"/>
</processor>
<processor name="MB 5" type="MB" data_memory="16384" program_memory="16384">
15 <port name="OPB 5" type="OPBPort"/>
</processor>

<peripheral name="ZBT _CTRL1" type="ZBTCTRL" size="1000000">
<port name="I0 _1" type="OPBPort"/>
20 </peripheral>
<peripheral name="ZBT _CTRL2" type="ZBTCTRL" size="1000000">
<port name="I0 2" type="OPBPort"/>
</peripheral>
<peripheral name="ZBT _CTRL3" type="ZBTCTRL" size="1000000">
25 <port name="I0 _3" type="OPBPort"/>
</peripheral>
<peripheral name="ZBT _CTRL4" type="ZBTCTRL" size="1000000">
<port name="I0 _4" type="OPBPort"/>
</peripheral>
30 <peripheral name="ZBT  _CTRL5" type="ZBTCTRL" size="1000000">
<port name="I0 5" type="OPBPort"/>
</peripheral>

<link name="mb _opb_1">

35 <resource name="MB _1" port="OPB _1"/>
<resource name="ZBT _CTRL1" port="I0 _1"/>
</link>

<link name="mb _opb _2">
<resource name="MB _2" port="OPB _2"/>
40 <resource name="ZBT _CTRL2" port="I0 _2"/>
</link>
<link name="mb _opb _3">
<resource name="MB _3" port="OPB _3"/>
<resource name="ZBT _CTRL3" port="I0 _3"/>
45  </link>
<link name="mb _opb_4">
<resource name="MB _4" port="OPB _4"/>
<resource name="ZBT _CTRL4" port="I0 _4"/>
</link>
50 <link nhame="mb _opb _5">
<resource name="MB 5" port="OPB 5'/>
<resource name="ZBT _CTRL5" port="I0 5"/>
</link>

55 </platform>

Figure 5.7:Platform Specificatiofor five-processor embedded system platform.

to execute the M-JPEG encoder application and the second experiment uses five processors
which run concurrently to execute the M-JPEG encoder application. Thus, the platform in the
second experiment should be 5 times faster than the first experiment theoretically. However,
in Figure 5.9 we see that actually the second experiment is just 2 times faster than the first ex-
periment. The first reason is that the tasks which are executed in each processor in the second
experiment are not balanced. Table 5.1 shows how many clock cycles and the utilization percent
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0 <mapping name="myMapping">

<processor name="MB _1">
<process name="ND _1" />
<process name="ND _2" />
5 <process name="ND _3" />
</processor>

<processor name="MB _2">
<process name="ND _4" />
10 </processor>

<processor name="MB _3">
<process name="ND 5" />
</processor>
15
<processor name="MB _4">
<process name="ND _6" />

</processor>
20 <processor name="MB 5">
<process name="ND _7" />
</processor>
</mapping>

Figure 5.8:Mapping Specificatiofor five-processor embedded system platform.

of each process, which is executed by one processor in the second experiment, need to take ir
order to process one block image which includes&ixels. We see that the processes which

are executed by the five processors are not balanced DUTE) process takes more than 50
percent of the whole time, but thédeolnMain()process just takes 4.1 percent andeoOut()
process just takes 0.7 percent of the whole time. Thus, in this cad@Gmé) process is the
bottleneck of the whole system. The second reason is that in the second experiment, the five
processors have to spend time in communicating with each other. In contrast, the first experi-
ment just includes one processor and it saves lots of time in the communication.
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Figure 5.9: The performances of the two M-JPEG encoder embedded systems.

Table 5.2 shows the device utilization summary for the second experiment. In this experiment,
the number indicates that 13 percent of the FPGA resources are used. However, we see thai
there are 123 out of 14RAMB16s0f the on-chip memories are used. This means 85 percent

of the on-chip memories are used. BecauddieroBlazeprocessor is a soft core, based on

the requirement of an application we can map the application onto any numbkcroBlaze
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Table 5.1: Cycles and utilization percentage of each process in experiment 2.

\ [[ VideoinMain [ DCT | Q [ VLE [ VideoOut ]
Cycles 10,837 135,036 | 68,314 | 49,683 1,727
Percentage(%) 4.1 50.8 25.7 18.7 0.7

processors embedded system platform. The only limitation is whether the target FPGA board
has enough on-chip memories and reconfigurable resources.

Table 5.2: Virtex2 xc2v6000: device utilization summary for experiment 2.

\ FPGA Resource [ Utilization [ % |
Number of MULT18X18s 15 out of 144 10%
Number of RAMB16s 123 out of 144 85%
Number of SLICEs 4664 out of 33792| 13%
Number of BUFGMUXs 2 out of 16 12%

In this case study, we verify the design methodology in BapAM tool by mapping the M-

JPEG encoder application onto two types of embedded system platform and compare the per-
formances of a multiprocessor embedded system with a single processor embedded system.
With the help of ourEsPAaM tool we can map an application onto a multiprocessor embedded
system platform easily and quickly. We prove that with mapping the same application onto a
multiprocessor embedded system gives better time performance compared a single processor
embedded system. We also validate the interface of our embedded systems with the outside
world explained in Chapter 4. In this case study, we find out that there are still several tasks
we need to do manually after the systenXasss project automatic generation using dgPAM

tool. The main tasks are related to the memory allocation. According to different applications,
we need to manually set the size of some FIFOs, the stack size of each processor or even the
data/program memory allocation of each processor. The other tasks are about importing the
implementations of function calls in processors and changing function calls in processors’ pro-
gram code and so on. All these custom tasks which we need to do manually will be explained
in Chapter 6.

5.2 M-JPEG Heterogeneous and Hierarchical Multiproces-
sor System

In this case study, we use the same application M-JPEG encoder, but we map this application
onto a multiprocessor embedded system platform with heterogeneous and hierarchical archi-
tecture which is shown in Figure 5.10. We see that this heterogeneous and hierarchical multi-
processor system includes fodicroBlazeprocessors and one dedicated hardware IP core for
the DCT() process in the M-JPEG encoder application.

In order to generate this multiprocessor embedded system, the first step is to convert the Matlab
code shown in Figure 5.1 to a KPN specification. We useGbelPAAN tool to automati-

cally transform the code to a KPN specification. Because of the NbaroBlaze processors
together with one dedicated hardware IP core, there are five parallel tasks which are executed
concurrently in this embedded system platform in this case. Thus, the second step is to write
thePlatform Specificatioand theMapping Specificatiofor a five-processor embedded system
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Figure 5.10: The multiprocessor embedded system platform with heterogeneous and hierarchi-
cal architecture for M-JPEG encoder application.

platform which are the same as Figure 5.7 and Figure 5.8. IRldiorm Specificationthere

are fiveMicroBlazeprocessorsNIB_1, MB_2, MB_3, MB_4, andMB_5) and five custom mem-

ory controllers ZBT.CTRL1, ZBT.CTRL2, ZBT.CTRL3, ZBT.CTRL4, andZBT.CTRLY5)

which are used as the interfaces betweenMiieroBlazeprocessors and the ZBT SSRAMS in

this embedded system platform. In thapping Specificatiorwe mapDefaultTables(process
(ND_1), VideolnInit()process (ND2) andVideolnMain()process (ND3) onto processdviB_1,

DCT() process (ND4) onto processaviB_2, Q() process (ND5) onto processaviB_3, VLE()
process (ND6) onto processoMB_4 and VideoOut()process (ND7) onto processoMB_5.

In the third step we use oUEsSPAM tool to map the M-JPEG encoder application onto this
five-processor embedded system platform. BecausP@iH) process has been mapped onto
processoMB_2, the fourth step is to use the dedicated hardware IP core f@@K) process

which was generated in Section 3.2.2 to replace proc@&4Ba2. The detailed steps of replacing
processoMB_2 with the dedicated hardware IP core for th€T() process will be explained

in Chapter 6. It is possible for owEsPAM tool to automatically implement the work which is
described above. In this thesis, we just focus on showing the procedure about how to implement
systematically and automatically an embedded system as heterogeneous and hierarchical archi
tecture. The implementation in o&sPAM tool is straightforward and it is out of the scope of

this thesis.

In this case study, we use one video frame which size is<128 pixels to test this M-JPEG
encoder heterogeneous and hierarchical embedded system. In order to make the embedde
system be able to exchange video data with the outside world, we still need to use the interface
which is explained in Chapter 4 to communicate with an outside host processor and to store
the video data in the off-chip memories. Figure 5.11 shows the performances of this M-JPEG
encoder heterogeneous and hierarchical embedded system together with the M-JPEG encode
homogeneous embedded systems — the one-processor embedded system and five-process
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embedded system. The frequency of the processors in this case study is 100MHz. In Figure 5.11
we see that the M-JPEG encoder heterogeneous and hierarchical embedded system is around
2 times faster than the five-processor homogeneous embedded system and it is around 4 times
faster than the one-processor homogeneous embedded system. In Table 5.1, we see that in
the five-processor homogeneous embedded system@i¢€) process is the bottleneck of the
system. In the five-processor homogeneous embedded systeBDCT (@ process takes 50.8
percent of the whole time and it is around 2 times slower thanifjgprocess which takes

25.7 percent of the whole time. For this heterogeneous and hierarchical embedded system,
Table 5.3 shows how many clock cycles and the utilization percent of each process, which is
executed by one processor or the dedicated hardware IP core, need to take in order to process
one block image. We see that tl) process takes the longest time in the processes of the
M-JPEG encoder application. TIg) process takes 50.3 percent of the whole time and now

it is the bottleneck of the system. Comparing with Q@ process, thd&CT() process takes
around 0 percent of the whole time. In the five-processor homogeneous embedded system the
DCT() process is the bottleneck of the whole system and it is around 2 times slower than the
Q() process, but in this heterogeneous and hierarchical embedded sysi@M pinecess is the
bottleneck of the whole system and comparing with @@ process théCT() process takes
around 0 percent of the whole time. Due to this reason the M-JPEG encoder heterogeneous and
hierarchical embedded system is 2 times faster than the five-processor homogeneous embedded
system. In Table 5.3, we also see that YHeE() process and th¥ideoOut()process in this

case take different clock cycles from th&E() process and theideoOut()process in the five-
processor homogeneous embedded system. The reason is that the precision of the resulting data
that we get from thdCT() process executed by the dedicated hardware IP core is different
from the the resulting data when tReCT() process is executed by tivicroBlazeprocessor.
Because the/LE() process and th¥ideoOut()process are sensitive to the precision of the
data, the clock cycles spent on theE() process and th¥ideoOut()process in this case are
different from theVLE() process and theéideoOut()process in the five-processor homogeneous
embedded system. Because WigeolnMain()process and th@() process are insensitive to the
precision of the data, the clock cycles spent on\tliezolnMain()process and th@() process

in this case are almost the same asVWiaeolnMain()process and th€() process in the five-
processor homogeneous embedded system.
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Figure 5.11: The performances of the three M-JPEG encoder embedded systems.

Table 5.4 shows the device utilization summary for this heterogeneous and hierarchical em-
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Table 5.3: Cycles and utilization percentage of each process.

\ [[ VideoinMain [ DCT [ Q [ VLE [ VideoOut |
Cycles 10,837 400 | 68,972 | 54,210 2,795
Percentage(%) 7.9 0.3 50.3 39.5 2

bedded system. We see that there are 111 out of 144 (77 peR&MB16swhich are the
on-chip memories used. This heterogeneous and hierarchical embedded system needs less or
chip memories than the five-processor homogeneous embedded system. The reason is that w
use a dedicated hardware IP core for EIHeT() process and it doesn’t need any data memories

or program memories comparing tdvacroBlazeprocessor.

Table 5.4: Virtex2 xc2v6000: device utilization summary.

\ FPGA Resource [ Utilization [ % |
Number of MULT18X18s 20 out of 144 13%
Number of RAMB16s 111 out of 144 7%
Number of SLICEs 5675 out of 33792| 16%
Number of BUFGMUXs 2 out of 16 12%

In this case study, we validate the procedure of implementing an embedded system as heteroge:
neous and hierarchical architecture and evaluate the heterogeneous and hierarchical architectur
introduced in Chapter 3. Also we compare the performances of the heterogeneous and hierar-
chical embedded system with the homogeneous embedded systems. We prove that it is possible
to implement systematically and automatically an embedded system as heterogeneous and hier
archical architecture, and with mapping the same application a heterogeneous and hierarchical
embedded system has better time performance comparing with a homogeneous embedded sys
tem. For this M-JPEG encoder application, we use a dedicated hardware IP coreD&@Tfe
process. Then th@() process becomes the bottleneck of the whole system. In Table 5.3, we
see that th&)() process and th¥LE() process take much longer time than WideolnMain()
process and/ideoOut()process. If we want to improve the time performance further, we have

to use dedicated hardware IP cores for@{gprocess and théLE() process. Then in such het-
erogeneous and hierarchical embedded system, we judflicgeBlazeprocessors to execute

the VideolnMain()process an&ideoOut()process and the other processes are all executed by
the dedicated hardware IP cores. In such case, we can get real-time performance.
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Chapter 6

Getting Started: Tutorial on Heterogeneous
and Hierarchical System Design

In this chapter, we give a tutorial with example of heterogeneous and hierarchical embedded
system design. This tutorial gives the detailed steps for how to design a heterogeneous and
hierarchical embedded system using @@mPAAN tool, our ESPAM tool and the commercial
synthesis tool Xilinx Platform Studio{ps). We use the M-JPEG encoder heterogeneous and
hierarchical embedded system presented in Section 5.2 to explain in detail the design steps. In
order to design the heterogeneous and hierarchical embedded system for the M-JPEG encode
application, first we need to use ti@®MPAAN tool and ourEspPAM tool to generate a five-
processor homogeneous embedded system for the M-JPEG encoder application and generat
systematically and automatically all of the necessary files akas project for the M-JPEG
encoder homogeneous embedded system. Then we need to charjesbiwject to hetero-
geneous and hierarchical embedded system manually. Finally, we impaoxtrkigroject into
XpPsand useXpPsto generate the final bitstream file which is used to configure the FPGA chip

to implement the M-JPEG encoder application.

This chapter is organized as follows. In Section 6.1, we explain how to generate gpgoject

with homogeneous embedded system for the M-JPEG encoder application. In Section 6.2, we
describe how to change th¥Ps project to heterogeneous and hierarchical embedded system
by hand. In Section 6.3 we explain how to import the project Xirsand useXPsto generate

the final bitstream file. In this section, we also describe how to use a software program in an
outside host processor to download the final bitstream file onto the target FPGA board and test
the heterogeneous and hierarchical embedded system to get the resulting data, and how to debu
the M-JPEG encoder heterogeneous and hierarchical embedded system.

6.1 Generation of Homogeneous Embedded System

In this section, we explain how to generateXamsproject with homogeneous embedded system
for the M-JPEG encoder application. First, we need to us€thi@PAAN tool to automatically
transform the initial Matlab code of the M-JPEG encoder application into KPN specification.
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Second, we need to create tRtatform Specificatiorand theMapping Specificatioffior this
five-processor homogeneous embedded system. Then, we ussram tool to automatically
generate all of the necessary files of)ans project for this M-JPEG encoder system. Finally,
we need to manually do some modifications in Xws project.

6.1.1 KPN Specification Generation Using th€ oMPAAN tool

In this section, we describe how to generate the KPN specification from the initial Matlab
code of the M-JPEG encoder application using@wavPAAN tool. The initial Matlab code of

the M-JPEG encoder application is shown in Figure 6.1. This M-JPEG encoder compresses a
sequence of video frames, using JPEG picture compression in each frame of the video. The
detailed explanation of this Matlab code was given in Section 5.1.

%typedef LuminanceHuffTableDC  THuffTablesDC;
%typedef ChrominanceHuffTableDC THuffTablesDC;
10 9%typedef LuminanceHuffTableAC  THuffTablesAC;
11 %typedef ChrominanceHuffTableAC THuffTablesAC;

1 %parameter NumFrames 1 100;

2 %parameter VNumBlocks 2 100;

3 %parameter HNumBlocks 1 100;

4

5  %typedef Headerinfo THeaderlInfo;
6  %typedef LuminanceQTable TQTables;
7  Y%typedef ChrominanceQTable TQTables;
8

9

12  %typedef LuminanceTablesInfo TTablesInfo;

13  %typedef ChrominanceTablesInfo TTablesInfo;

14 %typedef Packets TPackets;

15 9%typedef Block TBlocks;

16

17 for k = 1:1:1,

18 [ LuminanceQTable, ChrominanceQTable,

19 LuminanceHuffTableDC,ChrominanceHuffTableDC,
20 LuminanceHuffTableAC,ChrominanceHuffTableAC,
21 LuminanceTablesInfo, ChrominanceTablesInfo
22 ] = DefaultTables();

23 end

24

25 for k = 1:.1:NumFrames,
26 [ Headerinfo ] = Videolnlnit();

27 for j = 1:1:VNumBlocks,

28 for i = 1:1:HNumBlocks,

29 [ Block ] = VideolnMain();

30 [ Block ] = DCT( Block );

31 [ Block ] = Q( Block, LuminanceQTable, ChrominanceQTable );

32 [ Packets 1 = VLE( Block,

33 LuminanceHuffTableDC,ChrominanceHuffTableDC,
34 LuminanceHuffTableAC,ChrominanceHuffTableAC );
35 [ dummy ] = VideoOut( HeaderInfo, LuminanceTablesInfo,

36 ChrominanceTablesInfo, Packets );

37 end

38 end

39 end

Figure 6.1: The initial Matlab code of the M-JPEG encoder application.

In this Matlab code, we see that there are seven function calls n@efadltTables()VideolnInit()
VideolnMain() DCT(), Q(), VLE(), andVideoOut() When we use th€oMPAAN tool to gen-

erate the KPN specification, by default it generates a process for each function call in the initial
Matlab code. Thus, th€ompPAAN tool will generate seven processes in the KPN specifica-
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tion. Notice that theComMPAAN tool and ourEspAM tool do not deal with the implementations

of the function calls in the initial Matlab code, they just generate empty wrappers for these
function calls. In order to implement the M-JPEG encoder application irkthg we need

to change these empty wrappers which is explained in Section 6.1.3. We need to generate the
implementations for all of the function calls in the initial Matlab code. The needed data types
are declared in lines 5-15 lines in Figure 6.1 and the definitions of these data types are in the
file types.h The implementation dDefaultTables(function in line 22 is in fileControlinit.cpp

The implementations ofideolnlnit()function in line 26 and/ideolnMain()function in line 29

are in fileVideain.cpp The implementation oDCT() function in line 30 is in fileDCT.cpp

The implementation of() function in line 31 is in fileQ.cpp The implementation o¥/LE()
function in line 32 is in fileVLE.cpp The implementation o¥ideoOut()function in line 35 is

in file Videaout.cpp We need to manually import all of these files to ¥esproject which we

will generate later and this step will be explained in Section 6.3.1. The source files discussed
above can be found in the CVS repository :
docs/students/WeiZhong/experiment/MJPEG-Pentium.zip

1) matparser --input M JPEG.m --output M _JPEG.sac --compile --verbose -r
2) dgparser --input M JPEG.sac --output M JPEG --xml -r

3) panda --input M _JPEG.xml -c M JPEG.m --xml -Is --lms -RP -r

Figure 6.2: The three commands of tGeMPAAN tool.

We need to use three commands of ®eMPAAN tool to generate a KPN specification for

the M-JPEG encoder application. The three commands are shown in Figure 6.2. The first
command uses thé ATPARSERtool [32] to transform the initial Matlab code into a single as-
signment code (SAC), which resembles the dependence graph (DG) of the initial Matlab code.
The-- inputoption is followed by a filename that points to a file where the initial Matlab code

is stored. The- outputoption is followed by a filename that points to a file where results, for
example the SAC, need to be written. Thecompileoption tellsMATPARSERto convert the
Matlab code into a SAC. The verboseoption causedMATPARSER to produce information
messages showing the progress made in the conversion-r Tpgion applies a set of opti-
mizations on the solution tree which describes data dependencies. The optimizations include
removing redundant if/else statements, removing redundant index statements, and removing
redundant sub-graphs.

The second command uses bePARSERtool to convert the SAC into a Polyhedral Reduced
Dependence Graph (PRDG) data structure, which is a compact mathematical representation
of the DG in terms of polyhedra. The input option specifies the SAC file generated by
MATPARSER The-- outputoption specifies the output file where the PRDG data structure
will be stored. The- xml option specifies the format of the output file to be XML. Tie

option manipulates the parse tree. In particular, it removes control from the index statements.

The third command uses tfaNDA tool to convert the PRDG into a KPN process network [33]
[34]. The-- inputoption specifies the input PRDG XML file generated DgPARSER The

-c option describes a valid global schedule as a Matlab program for all the nodes in the PRDG
graph. The- xmloption specifies the format of the output file to be XML. Teeand-- Ims
options tellPANDA to select communication linearization model, since the communication is
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not always in order. For more details see [33] [34]. TR® option makes sure that the number

of data tokens which a producer process sends is the same as the number of tokens a consumer
process needs. For more details see [33] [34]. -Fraption optimizes the number of commu-
nication channels without decreasing the performance of the process network. It removes some
channels which start from one and the same process and end to another process.
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Figure 6.3: The KPN of the M-JPEG encoder application.

After executing the three commands described above, we can get the KPN specification in
XML format. The KPN of the M-JPEG encoder application which is generateGdyPAAN

is shown in Figure 6.3. In this KPN specification of the M-JPEG encoder application, there are
seven processes -ND_1, ND_2, ND_3, ND_4, ND_5, ND_6 andND_7. ND_1 is theDefaultTa-
bles()processND_2 is theVideolnlInit() processND_3 is theVideolnMain()processND_4 is
theDCT() processND_5is theQ() processND_6 is theVLE() processND_7 is theVideoOut()
process.

6.1.2 Generating Homogeneous Embedded System Using thepAm tool

In Figure 1.1, we see that the inputs of &gPAM tool areApplication SpecificatiorPlatform
SpecificatiorandMapping SpecificationThus, after we get the KPN specification which is the
Application Specificatiofrom the initial Matlab code of the M-JPEG encoder application using
the CoMPAAN tool, we still need to create thi@latform Specificatiomnd theMapping Specifi-
cation ThePlatform Specificatioand theMapping Specificatiofor the M-JPEG encoder five
processors homogeneous embedded system are shown in Figure 6.4 and Figure 6Patn the
form Specificationthere are fivéMicroBlazeprocessors\iB_1, MB_2, MB_3, MB_4, andMB_5)
and five custom memory controlle BET_CTRL 1, ZBT.CTRL2, ZBT.CTRL3, ZBT.CTRLA4,
andZBT_CTRLS5) which are used as the interfaces betweerMi@oBlazeprocessors and the
ZBT SSRAMs in this embedded system platform. In Mapping Specificationwe mapDe-
faultTables()process (NDL1), VideolnInit() process (ND2) andVideolnMain()process (ND3)
onto processoMB_1, DCT() process (ND4) onto processoMB_2, Q() process (ND5) onto
processoMB_3, VLE() process (ND6) onto processovB_4 andVideoOut()process (ND7)
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onto processoMB_5. The detailed description for theg&atform Specificatiomnd Mapping

Specificatiorare given in Section 5.1.
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<platform name="myPlatform">

<processor name="MB _1"
<port name="OPB _1"
</processor>
<processor name="MB
<port name="OPB
</processor>
<processor name="MB
<port name="OPB _3'
</processor>
<processor name="MB _4"
<port name="OPB _4"
</processor>
<processor name="MB
<port name="OPB
</processor>

on
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<peripheral name="ZBT
<port name="I0 _1"

</peripheral>

<peripheral name="ZBT
<port name="I0 _2"

</peripheral>

<peripheral name="ZBT
<port name="I0 _3"

</peripheral>

<peripheral name="ZBT
<port name="I0 _4"

</peripheral>

<peripheral name="ZBT
<port name="I0 5"

</peripheral>

<link name="mb _opb_1">
<resource name="MB
<resource name="ZBT
</link>

<link name="mb _opb_2">

type="MB" data
type="OPBPort"/>

type="MB" data
type="OPBPort"/>

type="MB" data

' type="OPBPort"/>

type="MB" data
type="OPBPort"/>

type="MB" data
type="OPBPort"/>

_1" port="OPB

_memory="65536" program

_memory="16384" program

_memory="8192" program

_memory="16384" program

_memory="16384" program

_CTRL1" type="ZBTCTRL" size="1000000">
type="OPBPort"/>

_CTRL2" type="ZBTCTRL" size="1000000">
type="OPBPort"/>

_CTRL3" type="ZBTCTRL" size="1000000">
type="OPBPort"/>

_CTRLA4" type="ZBTCTRL" size="1000000">
type="OPBPort"/>

_CTRL5" type="ZBTCTRL" size="1000000">
type="OPBPort"/>

1>
_CTRL1" port="10

17>

<resource name="MB _2" port="OPB _2"/>

<resource name="ZBT
</link>

<link name="mb _opb_3">

_CTRL2" port="10

2>

<resource name="MB _3" port="OPB _3"/>

<resource name="ZBT
</link>

<link name="mb _opb _4">

_CTRL3" port="I0

3>

<resource name="MB _4" port="OPB _4"/>

<resource name="ZBT
</link>

<link name="mb _opb_5">

_CTRL4" port="I0

4>

<resource name="MB 5" port="OPB 5"/>

<resource name="ZBT
</link>

</platform>

_CTRL5" port="10

5>

_memory="32768">

_memory="16384">

_memory="8192">

_memory="16384">

_memory="16384">

Figure 6.4:Platform Specificatiofor the five processors homogeneous embedded system.

When we get thé\pplication SpecificatiorPlatform SpecificatiomndMapping Specification
we can start to run oUESPAM tool to automatically generate all of the necessary files of the

XPs project for this M-JPEG encoder five-processor homogeneous embedded system. The

command of ouEsPAM tool we need to execute is shown in Figure 6.6.
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0 <mapping name="myMapping">

<processor name="MB _1">
<process name="ND _1" />
<process name="ND 2" />
5 <process name="ND _3" />
</processor>

<processor name="MB _2">
<process name="ND 4" />
10 </processor>

<processor name="MB _3">
<process name="ND 5" />
</processor>
15
<processor name="MB _4">
<process name="ND _6" />
</processor>

20 <processor name="MB 5">
<process name="ND _7" />
</processor>

</mapping>

Figure 6.5:Mapping Specificatiofor the five processors homogeneous embedded system.

espam --platform M _JPEG.pla --kpn M _JPEG.kpn --mapping M _JPEG.map --scheduler M _JPEG.m --xps
--libxps <libXPS> --debugger

Figure 6.6: The command of thespam tool.

By executing this command, olEsPAM tool can automatically generate all of the necessary
files of theXPsproject for this M-JPEG encoder five processors homogeneous embedded sys-
tem according to thépplication SpecificationPlatform Specificatiorand Mapping Specifi-
cation The-- platform option specifies thé&latform Specificatiorfile. The -- kpn option
specifies thé\pplication Specificatiofile. The-- mappingoption specifies thapping Spec-
ification file. The-- scheduleroption specifies a file which is used to describe a valid global
schedule among the processes inAlpplication SpecificatianThe-- xpsoption is used to tell

our EspAMtool to generate all necessary files ofXars project. The- libxpsoption specifies

a library that stores the predefined platform components used to generdtesamoject. An
XPsproject always consists of two parts. One part is generated at compile time, including the
XMP/MHS/MSS files, the program code for each processor in a platform and some custom IP
cores. The other part is a library which consists of predefined components that are common for
all projects, such as some common custom IP cores, the UCF file and some optional files for
XPsimplementation tools. We store this library in the CVS repository. ¥hieX PS> spec-

ifies the path to this library so that o&sPAM tool can copy and use it during the generation

of an XPs project suite. Currently, we use the following CVS repository path for this library:
...lespam/src/espam/libXPBhe-- debuggeroption is used to tell oUESPAM tool to generate
component used for debugging. We explain this debugging component in Section 6.3.3.

After we run this command of oUEsPAM tool, anXPs project for the M-JPEG encoder five-
processor homogeneous embedded system is generated. Figure 6.7 shoies fireject
directory hierarchy.

The system.xmpsystem.mhandsystem.ms#les are the corresponding XMP, MHS and MSS
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<PROJECT_ROOT>
|--- system.xmp
[--- system.mhs
|--- system.mss
|--- loader.exe
[--- etc/

R bitgen.ut
[ bitgen_spartan3.ut
[ fast_runtime.opt
[—— download.cmd

[--==mmmmmee- system.ucf

[— system _ADMXRCII.ucf
[— system-default.ucf

[-=-mmmmmmmeee system-zbt.ucf

[—— aux _func.h
[— MemoryMap.h
1

l.cpp
2/
_2.cpp
3/
_3.cpp
4/
A.cpp
5/
5.cpp
|--- pcores/
[— buffers v1.00_a/
[ cb_wrapper -v1_.00_a/
[—— clock _cycle _counter _v1_00_a/
[—— fifo dif _ctrl  _v1_00_a/
[— fin _ctrl  _v1_00_a/
[—— host _design _ctrl _v1_00_a/
[—— LMB _VB.CTRLv1_00_a/
————— mux _v1_00_a/
[ myCLKRST v1.00.a/
[—— opb _zbt _controller  _v1_00_a/
[ VB “Wrapper v1_00_a/
[ — zbt _main _v1_00_a/

Figure 6.7:XPsproject directory hierarchy for the M-JPEG encoder embedded system.

files which have been explained in Section 2.5.1. The MHS filsystem.mhand the MSS file

— system.mswhich are automatically generated by &spPAm tool are shown in Appendix A

and Appendix B. Théoader.exdile is a program used to download and run the bitstream file.
Theetcdirectory contains four files —bitgen.ut[35], bitgen spartan3.utfast runtime.op{35]
anddownload.cmdThey are the files with options for settingrsimplementation tools. The
data directory contains several UCF files according to the different FPGA devices. In our
case, we use thgystemADMXRCII.ucfUCF file which contains pin information for the phys-
ical implementation in the selected FPGA device. In¢bdedirectory, the software program
code files for processors are stored. In the top level otctuedirectory, there are two files
namedaux func.nand MemoryMap.h They are the common files for all of the processors.
The aux func.hfile declares read and write primitives and wrappers of all function calls in
the initial code of the application. THdemoryMap.Hile specifies physical addresses of the
components in the platform. The program code for each processors is stored in the correspond-
ing subdirectory named after the processors. pbteresdirectory contains all predefined IP
cores and the IP cores generated by BapAM tool. Thebuffersvl 00.a, fin_ctrl_v1.00.a,
hostdesignctrl v1 00_.a, muxv1 00.a, ophzbtcontroller vl 00.a andzbtmainv1 00.a are
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the IP cores for the interface of an embedded system with the outside world which have been
explained in Section 4.2. Thig&o_if _ctrl v1.00.a is the LMB FIFO controller. The detailed
description about this controller can be found in [5]. Thack cycle countervl 00 ais the IP

core for debugging. ThemyCLKRSTv1 00_ais the IP core which is used to generate the system
clock and reset and itis not used in our case. dtherrappervl 00_.a, LMB_VB_.CTRLv1.00.a
andVB_Wrappervl 00._a are the IP cores for the crossbar communication component and they
are not used in our case.

6.1.3 Custom Modification for the XpPs Project

After we get theX psproject which is automatically generated by &spPAM tool, we still need
to do some modifications for both the hardware and software inkthsproject.

Hardware Modification

As discussed in Section 5.1, the main purpose of the hardware modification is related to the
memory allocation. The main task for the memory allocation modification is the FIFOs size
adjustment. We need to adjust the size of the FIFOs in the MHS file. By defauEssuam tool
set 2048 bytes (51232) for each FIFO. The 512 is the data depth of a FIFO and the 32 is the
data width of a FIFO. Lines 496 and 497 of Appendix A show the example of FIFO size setting
in the MHS file. However, in the initial M-JPEG code, we find out that the size of structures
THuffTablesAC, THuffTablesD&dT TablesiInfds larger than 2048 bytes, all of which will be
put into certain FIFOs. Thus, the corresponding FIFOs’ size is not sufficient. We need to enlarge
the corresponding FIFOs’ size to 4096 bytes (1032) [5]. In the MHS file which is shown
in Appendix A, we need to enlarge the size of FIFAEO_MB_1_Out 4, FIFO_MB_1_0Out5,
FIFO_MB_1.0Out 6, FIFO_MB_1_Out 7, FIFO_MB_1_Out 9 and FIFO_MB_1_Out .10 to 4096
bytes. An example maodification of the size of FIFGFO_MB_1_Out 4 is shown in line 562 of
Figure 6.8. The other FIFOs’ size can be modified in the same way. Other task for the memory
allocation modification is the stack size adjustment of each processor which will be explained
in Section 6.3.1.
554 BEGIN fsl_v20
555 PARAMETER HW_VER = 2.00.a

PARAMETER INSTANCE =FIFO_MB_1.0Out 4

PARAMETER EXT.RESETHIGH = 0

PARAMETER BSYNCCLKS = 0

PARAMETER @VPL_STYLE =1
560 PARAMETER @SECONTROL = 0

PARAMETER €SLDWIDTH = 32

PARAMETER ESL.-DEPTH = 1024

PORT FSLCIk = sys clk _s

PORT SYSRst = net _design _rst
565 END

Figure 6.8: Set the size of FIFEIFO_MB_1_Out 4 to 4 Kbytes.

The second thing we need to modify is the UCF file name. Inddu@ directory of ourXps
project, there are several UCF files. When we import the projexrty the X Pswill automat-
ically recognize the UCF file which is namsegistem.ucfThus, we need to change the name of
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the UCF file which we need to use $gstem.ucdin thedatadirectory. In our case, the UCF file
we need in thelatadirectory issystemADMXRCII.ucf However, there is already a UCF file
namedsystem.ucih the datadirectory. We need to change the name of origsyatem.ucfile

to systemold.ucf then change the name gfstemADMXRCII.ucffile to system.ucf

The third thing we need to modify is related to fikest runtime.opt The XPsproject generated
by our EspAM tool is based orXPsversion 6.3, but later we will import ouXPs project to
XPsversion 7.1. When we import oxPsproject toXpPsversion 7.1 XpPswill automatically
upgradeXPs project to adapt to version 7.1. However just one th¥wms can not upgrade
automatically is in thefastruntime.optfile which is stored in theetc directory of ourXps
project. In thefastruntime.optfile there is an option for place and route namebwhich is
used to set the overall effort level. XiPsversion 6.3, it can be set to number 1 to 5. BuKips
version 7.1, it just can be set $td medandhigh. By default ourEspAMm tool set this option to
number 5. In our case, we need to manually change this numbesté to

Software Modification

The first thing for the software modification is that we need to copy all of the header files
which the program code for processors needs tactuedirectory of ourXps project. Also

we need to copy the implementation program code files for each processor’s program code to
the corresponding subdirectory named after the processors gotteglirectory. In our case,

we need to copgontrolinit.cppandVideain.cppfiles toP_1 subdirectoryDCT.cppfile to P_2
subdirectoryQ.cppfile to P_3 subdirectory)VLE.cppfile to P_4 subdirectory, an¥idea out.cpp

file to P_5 subdirectory. After this step, we still need to manually import all of these header files
and implementation program code files to ¥es project which will be explained in Section
6.3.1.

The second task we need to do is to add the function declarations and replace each empty
wrapper with a function call in each processor program code. As an example, the modified
program code of processBrl is shown in Figure 6.9. The bold lines in the code highlight the
modification which we need to do manually. In lines 26 and 27, we define two instaimces
andcinit. In lines 31, 59 and 66, we replace the empty wrappers with the actual function calls.
The program code of the other processors can be modified in the same way. In Figure 6.9, we
see that there is one more place we need to modify is in line 75. In line 75 we store a variable
to the ZBT memory which is used for debugging and it will be explained in Section 6.3.3.

The third thing we need to change is to modify e func.hfile. The modifiedauxfunc.h

file is shown in Figure 6.10. The bold lines in the code highlight the modification which we
need to do manually. In lines 6-11, we include all of the header files which are used in the
processors’ program code. In lines 28-30, we can change the three paramédersFrames
VNumBlockandHNumBlockdased on how many frames we need to process and the size of
the video frame. Because later we will use one video frame which size is1IZBpixels to test

the M-JPEG encoder embedded system, we set the paraNat@framedo 1, VNumBlocks

to 16 andHNumBIlockdo 8. Because we have already replaced the empty wrappers with the
actual function calls in program code of each processor, we need to comment the empty wrapper
declarations in lines 33-59.

The fourth thing we need to change is to modify iemoryMap.Hfile. The modifiedMem-
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0  #include "xparameters.h"
#include "stdio.h"
#include "stdlib.h"
#include "aux_func.h"
#include "MemoryMap.h"

int main () {

int clk_num;
10 =*clk_cntr = 0;

/I Input Arguments

/I Output Arguments
15 tCH_3 out_OND_1;
tCH_4 out_1IND_1;
tCH_6 out_2ND_1;
tCH_7 out_3ND_1;
tCH_8 out_4ND_1;
20 tCH_9 out_5ND_1;
tCH_11 out 6ND_1;
tCH_12 out_7ND_1;
tCH_10 out OND_2;
tCH_1 out_OND_3;
25
Video.in  vin(VNumBIlocks,2*HNumBlocks);
Controllnit cinit;

for( int k = ceill(1); k <= floorl(1 ); k += 1) {
30 /IDefaultTables(&out OND_1, &out_1IND_1, &out_2ND_1, &out_3ND_1, &out 4ND_1, &out_5ND_1, &out_6ND_1, &out_7ND_1) ;
cinit.main(out_-OND_1, out IND_1, out 2ND_1, out-3ND-1, out4ND_-1, out 5ND-1, out 6ND_1, out. 7ND_1);

writeFSL(ND_1_OG_2_CH_3, &out_OND_1, (sizeof(tCH_3)+(sizeof(tCH_3)%4)+3)/4);

35
writeFSL(ND_1_OG_3_CH_4, &out_1ND_1, (sizeof(tCH_4)+(sizeof(tCH_4)%4)+3)/4);
writeFSL(ND_1_OG_4_CH_6, &out_2ND_1, (sizeof(tCH_6)+(sizeof(tCH_6)%4)+3)/4);
40
writeFSL(ND_1_OG_5_CH_7, &out_3ND_1, (sizeof(tCH_7)+(sizeof(tCH_7)%4)+3)/4);
45 writeFSL(ND_1_OG_6_CH_8, &out_4ND_1, (sizeof(tCH_8)+(sizeof(tCH_8)%4)+3)/4);
writeFSL(ND_1_OG_7_CH_9, &out 5ND_1, (sizeof(tCH_9)+(sizeof(tCH_9)%4)+3)/4);
50
write(ND_1_OG_9_CH_11, &out_6ND_1, (sizeof(tCH_11)+(sizeof(tCH_11)%4)+3)/4);
write(ND_1_OG_10_CH_12, &out_7ND_1, (sizeof(tCH_12)+(sizeof(tCH_12)%4)+3)/4);
55
} /I for k
for( int k = ceill(1); k <= floorl(NumFrames ); k += 1) {
/IVideolninit(&out .OND.2) ;
vin.init(out .OND_2);
60
writeFSL(ND_2_OG_8_CH_10, &out_OND_2, (sizeof(tCH_10)+(sizeof(tCH_10)%4)+3)/4);
for( int j = ceill(1); j <= floorl(VNumBlocks ); j += 1) {
for( int i = ceill(1); i <= floorl(HNumBlocks ); i += 1) {
65 /IVideoInMain(&out -OND_3) ;
vin.main(out-OND_3);
writeFSL(ND_3_OG_1_CH_1, &out OND_3, (sizeof(tCH_1)+(sizeof(tCH_1)%4)+3)/4);
70 } 1l for i
} 1l for j
} 1 for k
clk_num = =*clk_cntr;
75 *(ZBT _-MEMORY) = (volatile long)clk _-num;
*FIN_SIGNAL = (volatile long)0x00000001;
} /I main

Figure 6.9: Modified program code of procesBot.

oryMap.hfile is shown in Figure 6.11. The bold lines in the code highlight the modification
which we need to do manually. In line 149 we need to add the physical address for our custom
memory controllers which are used as the interfaces betwedvitheBlazeprocessors and the

ZBT SSRAMs in this embedded system platform. The complete modified project can be found
in the CVS repository:
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#ifndef _ AUX_FUNC_H__
#define _ AUX_FUNC_H__

#include <math.h>
#include "mb_interface.h"

#include "Video_in.h"
#include "Video_out.h”
#include "Controllnit.n”
#include "DCT.h”
#include "Q.h"
#include "VLE.h"

typedef TBlocks tCH_1;
typedef TBlocks tCH_2;
typedef TQTables tCH_3;
typedef TQTables tCH_4;
typedef TBlocks tCH_5;
typedef THuffTablesDC tCH_6;
typedef THuffTablesDC tCH_7;
typedef THuffTablesAC tCH_8;
typedef THuffTablesAC tCH_9;
typedef THeaderInfo tCH_10;
typedef TTablesInfo tCH_11;
typedef TTablesInfo tCH_12;
typedef TPackets tCH_13;

/I Parameters

#define NumFrames 1
#define VNumBlocks 16
#define HNumBlocks 8

I
inline
void DefaultTables( tCH_3 *out_0, tCH_4 out_ 1, tCH_ 6 =out 2, tCH_7 =out 3, tCH_8 =out 4, tCH_ 9 =+out 5, tCH_11

}

inline
void  VideolnInit( tCH_10 xout 0 ) {

}

inline
void  VideoInMain( tCH_1 xout 0 ) {

}

inline
void DCT( tCH_1 in_0, tCH_2 *out 0 ) {
}

inline
void Q( tCH_2 in_0, tCH_3 in_1, tCH_4 in_2, tCH_5 *out 0 ) {
}

inline
void VLE( tCH_5 in_0, tCH_6 in_1, tCH_7 in_2, tCH_8 in_3, tCH_9 in_4, tCH_13 *out 0 ) {

}

inline

void VideoOut( tCH_10 in_0, tCH_11 in_1, tCH_12 in_2, tCH_13 in_3, char *out 0 ) {
}

*

#define min(a,b) ((a)<=(b))?(a):(b)
#define max(a,b) ((a)>=(b))?(a):(b)

65 ..

#endif

Figure 6.10: Modifiecaux func.hfile.

docs/students/WeiZhong/experimentIREG 5p.zip

6.2 Generation of Heterogeneous and Hierarchical Embed-

ded System

xout_6, tCH_12

*out_7 )

After we get theXps project with homogeneous embedded system for the M-JPEG encoder
application in Section 6.1, we can change tKiBs project to heterogeneous and hierarchical
embedded system.
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0  #ifndef _ MEMORYMAP_H_
#define _ MEMORYMAP_H_

#define PCTRL_BRAM1_MB_1 0x00000000 //read from PCTRL_BRAM1_MB_1 address for MB_1
5  #define PCTRL_BRAM1_MB_1 0x00000000 //write to PCTRL_BRAMI1_MB_1 address for MB_1

#define PCTRL_BRAM2_MB_1 0x00004000 //read from PCTRL_BRAM2_MB_1 address for MB_1

#define PCTRL_BRAM2_MB_1 0x00004000 //write to PCTRL_BRAM2_MB_1 address for MB_1
10 /IMB_1 FIFOs

#define ND_1_OG_9_CH_11 0xc0800000 //write to CDChannelCH_11 address for MB_1

/IMB_1 FIFOs
15 #define ND_1_OG_10_CH_12 0xc0800008 //write to CDChannelCH_12 address for MB_1

#define DCTRL_BRAM1_MB_1 0x00000000 //read from DCTRL_BRAM1_MB_1 address for MB_1

#define DCTRL_BRAM1_MB_1 0x00000000 //write to DCTRL_BRAM1_MB_1 address for MB_1
% #define DCTRL_BRAM2_MB_1 0x00004000 //read from DCTRL_BRAM2_MB_1 address for MB_1

#define DCTRL_BRAM2_MB_1 0x00004000 //write to DCTRL_BRAM2_MB_1 address for MB_1
25 #define ZBT_CTRL_1 0xf0000000 //read from ZBT_CTRL_1 address for MB_1

#define ZBT_CTRL_1 0xf0000000 //write to ZBT_CTRL_1 address for MB_1

/IMB_1 FIFOs
30 #define ND_3_OG_1_CH_1 0 //write to CDChannelCH_1 address for MB_1

/IMB_1 FIFOs
#define ND_1_OG_2_CH_3 1 //write to CDChannelCH_3 address for MB_1

35 /IMB_1 FIFOs
#define ND_1_OG_3 CH_4 2 //write to CDChannelCH_4 address for MB_1

/IMB_1 FIFOs

#define ND_1_OG_4 CH_6 3 //write to CDChannelCH_6 address for MB_1
40

/IMB_1 FIFOs

#define ND_1_OG_5_CH_7 4 //write to CDChannelCH_7 address for MB_1

/IMB_1 FIFOs
45 #define ND_1_OG_6_CH_8 5 //write to CDChannelCH_8 address for MB_1

/IMB_1 FIFOs
#define ND_1_OG_7_CH_9 6 //write to CDChannelCH_9 address for MB_1

50 /IMB_1 FIFOs
#define ND_2_OG_8 CH_10 7 //write to CDChannelCH_10 address for MB_1

#define ZBT_-MEMORY (volatile long *)0xf0000000

150 #define clk_cntr (volatile int *)0xf8000000
#define FIN_SIGNAL (volatile long *)0xf9000000
#endif

Figure 6.11: ModifiedMemoryMap.Hile.

The first step is that we need to copy the pcore foRI () process which has been described
in Section 3.2.2 to th@coresdirectory of ourXps project. Later we will introduce how to
use this dedicated hardware IP core to replaceMlioeoBlazeprocessor —MB_2 in the XPS
project of homogeneous embedded system which is also used to exect€Tieprocess.
The detailed steps for the pcore for tBET() process generation was given in Section 3.2.2.
The pcore for the DCT process can be found in the CVS repository:
docs/students/WeiZhong/experiment/DCTpcore.zip

In the second step we start to replace lieroBlaze processor —MB_2 in the XPs project

of homogeneous embedded system with the dedicated hardware IP coreD@ T)process.

In this step, we need to replace thH_2 with the dedicated hardware IP core for th€T()
process in the MHS file. First, we need to commkig_2 and the components which belong
to MB_2 in the MHS file. In the MHS file which is shown in Appendix A, we need to comment
PBUSMB_2 component in lines 99-10RBUS MB_2 component in lines 107-118&b.oph 2
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component in lines 115-121in_ctrl_P2 component in lines 123-13tJock cycle counterP2
componentin lines 133-14¥B_2 MicroBlazeprocessor in lines 142-155, tB&SINTERFACE
MUX_DESIGN1 PORT = muxdesignl of multiplexercomponent in line 390ZBT.CTRL2
componentin lines 441-45BRAM1MB_2 componentin lines 725-730CTRLBRAM1MB_2
component in lines 732-740 aRCTRLBRAM1MB_2 component in lines 742-750. Then we
need to add the dedicated hardware IP core forDd () process in the MHS file which is
shown in Figure 6.12.

BEGIN kpn

PARAMETER INSTANCE = KPN_DCT
PARAMETER HW_VER = 1.00.a
BUS_INTERFACE MFSL = FIFO_MB_2 Out_1
BUS_INTERFACE SFSL = FIFO_MB_1_Out_1
PORT STATUS = net_fin_signal_P2

PORT CLK = sys clk_s

PORT RST = net_design_rst

END

Figure 6.12: The dedicated hardware IP core forQ@&T () process in the MHS file.

In the third step, we need to remove thi_2 and the components which belonghtB_2 in

the MSS file. Because the dedicated hardware IP core foD@IE() process use the generic
driver andXpPs can automatically add this generic driver for it, we do not need to add the
driver for the dedicated hardware IP core for tA€T() process in the MSS file. In the
MSS file which is shown in Appendix B, we need to comm&f_2 MicroBlazeproces-

sor in lines 35-47mb.opb 2 component in lines 49-53in_ctrl _P2 component in lines 55-59,
clock cyclecounterP2 component in lines 61-62ZBT CTRL2 component in lines 193-197,
DCTRLBRAM1MB_2 component in lines 325-329 aRCTRLBRAM1MB_2 component in
lines 331-335.

In the fourth step, we need to change the software inkthe project. First, we need to delete

the software project foMicroBlaze processor —MB_2 in XPs which will be introduced in
Section 6.3.1. Second, in order to get the resulting video frame for the M-JPEG encoder ap-
plication we need to change some program code for the procBstand processdP_3. The
modified program code of procesd®erl is shown in Figure 6.13. The bold lines in the code
highlight the modification. In 68-74, we linearize the packet of the video data which is used
to preprocess the video data for the dedicated hardware IP core f@GHMé process. The
modified program code of procesder3 is shown in Figure 6.14. The bold lines in the code
highlight the modification. In lines 31-45, we need to convert the negative 9-bit numbers to
32-bit negative numbers for the video data. In lines 47-55, we need to transpose the video data
blocks in the packet. The processes of these lines are used to postprocess the video data for th
dedicated hardware IP core for tBeCT() process. After these steps, finally we get ¥es

project of heterogeneous and hierarchical embedded system which consistsMidamBlaze
processors and one dedicated hardware IP core fd @) process.

6.3 Import Project to Xps and XPs Project Execution and
Results

In this section, we explain how to import our project of heterogeneous and hierarchical em-
bedded system t& Psand there are still some modifications we need to d¥ms. Then we
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0  #include "xparameters.h"
#include "stdio.h"
#include "stdlib.h"
#include "aux_func.h"
#include "MemoryMap.h"
5
int main () {
int clk_num;
10 =*clk_cntr = 0;

/I Input Arguments

/I Output Arguments

15 tCH_3 out_OND_1;
tCH_4 out_1IND_1;
tCH_6 out_2ND_1;
tCH_7 out_3ND_1;
tCH_8 out_4ND_1;
20 tCH_9 out_5ND_1;
tCH_11 out 6ND_1;
tCH_12 out_7ND_1;
tCH_10 out OND_2;
tCH_1 out_OND_3;
25
Video_in vin(VNumBIlocks,2 * HNumBIlocks);
Controllnit ~ cinit;
for( int k = ceill(l); k <= floorl(1 ); k += 1) {

30 //DefaultTables(&out_OND_1, &out IND_1, &out 2ND_1, &out_3ND_1, &out 4ND_1, &out 5ND_1, &out_6ND_1, &out 7ND_1) ;
cinit. main(out_OND_1, out_1ND_1, out 2ND_1, out_3ND_1, out 4ND_1, out 5ND_1, out_ 6ND_1, out_7ND_1);
writeFSL(ND_1_OG_2_CH_3, &out_OND_1, (sizeof(tCH_3)+(sizeof(tCH_3)%4)+3)/4);

35
writeFSL(ND_1_OG_3_CH_4, &out_1ND_1, (sizeof(tCH_4)+(sizeof(tCH_4)%4)+3)/4);
writeFSL(ND_1_OG_4_CH_6, &out_2ND_1, (sizeof(tCH_6)+(sizeof(tCH_6)%4)+3)/4);

40
writeFSL(ND_1_OG_5_CH_7, &out_3ND_1, (sizeof(tCH_7)+(sizeof(tCH_7)%4)+3)/4);

45 writeFSL(ND_1_OG_6_CH_8, &out_4ND_1, (sizeof(tCH_8)+(sizeof(tCH_8)%4)+3)/4);
writeFSL(ND_1_OG_7_CH_9, &out 5ND_1, (sizeof(tCH_9)+(sizeof(tCH_9)%4)+3)/4);

50
write(ND_1_OG_9_CH_11, &out_6ND_1, (sizeof(tCH_11)+(sizeof(tCH_11)%4)+3)/4);
write(ND_1_OG_10_CH_12, &out_7ND_1, (sizeof(tCH_12)+(sizeof(tCH_12)%4)+3)/4);

55

} /I for k

for( int k = ceill(1); k <= floorl(NumFrames ); k += 1) {
/IVideolnInit(&out_OND_2) ;
vin.init(out_OND_2);

60
writeFSL(ND_2_OG_8_CH_10, &out_OND_2, (sizeof(tCH_10)+(sizeof(tCH_10)%4)+3)/4);
for( int j = ceill(1); j <= floorl(VNumBlocks ); j += 1) {
for( int i = ceill(1); i <= floorl(HNumBlocks ); i += 1) {

65 /IVideoInMain(&out_OND_3) ;

vin.main(out_OND_3);
I linearize the packet
for (int1=0; | <64;++) {

70 out_.OND_3.Y1.pixel[l] = (unsigned int)(out. OND_3.Y 1.pixel[l]}/2);
out_.OND_3.Y2.pixel[l] = (unsigned int)(out. OND_3.Y2.pixel[l]}/2);
out_.OND_3.U1.pixel[l] = (unsigned int)(outOND_3.U1.pixel[l]/2);
out_.OND_3.V1.pixel[l] = (unsigned int)(out. OND_3.V1.pixel[l]}/2);

}
75
writeFSL(ND_3_OG_1_CH_1, &out_OND_3, (sizeof(tCH_1)+(sizeof(tCH_1)%4)+3)/4);
} 1l for i
} 1l for j
80 } 1 for k
clk_num = =clk_cntr;
*(ZBT_MEMORY) = (volatile long)clk_num;
*FIN_SIGNAL = (volatile long)0x00000001;
85 } // main

Figure 6.13: Modified program code of procesBot.

introduce how to execute the projectiprs, get the result from this heterogeneous and hierar-
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#include “"xparameters.h"
#include "stdio.h"
#include "stdlib.h"
#include "aux_func.h"
#include "MemoryMap.h"

int main ()

int clk_num;

«clk_cntr = 0;

{

/I Input Arguments
tCH_2 in_OND_5;
tCH_3 in_1ND_5;
tCH_4 in_2ND_5;

/I Output Arguments
tCH_5 out_OND_5;

tCH_2 tmp;

Q o

for( int k = ceill(1l); k <= floorl(NumFrames ); k += 1) {
for( int j = ceill(1l); j <= floorl(VNumBlocks ); j += 1) {
for( int i = ceill(1); i <= floorl(HNumBlocks ); i += 1 ) {

/IreadFSL(ND_5.1G -.1.CH_2, &in .OND_5, (sizeof(tCH.2)+(sizeof(tCH.2)%4)+3)/4);
readFSL(ND-5.1G -1.CH _2, &tmp, (sizeof(tCH-2)+(sizeof(tCH 2)%4)+3)/4);

/lconvert the negative 9-bit numbers to 32-bit negative numbers
for (int1=0; | <64;++) {
if (tmp.Y1.pixel[l] >=256){
tmp.Y1.pixel[l] = tmp.Y1.pixelll] | OxfffffeO0U;

¥
if (tmp.Y2.pixel[l] >=256){
tmp.Y2.pixel[l] = tmp.Y2.pixel[l] | OxfffffeO0U;

b
if (tmp.U1.pixel[l] >=256){
tmp.U1.pixel[l] = tmp.U1.pixel[l] | OxfffffeO0U;

}
if (tmp.V1.pixel[l] >=256) {
tmp.V1.pixel[l] = tmp.V1.pixel[l] | OxfffffeO0U;

}

/I transpose the data blocks in the packet

for (intt=0;t <8;t++) {
for (intq=0;q <8; g++) {
in_OND_5.Y1.pixel[t*8+q] = (int)tmp.Y 1.pixel[q*8+t]*2;
in_OND_5.Y2.pixel[t*8+q] = (int)tmp.Y2.pixel[q*8+t]*2;
in_OND_5.U1.pixel[t*8+q] = (int)tmp.U1.pixel[q*8+t]*2;
in_OND_5.V1.pixel[t*8+q] = (int)tmp.V1.pixel[q*8+t]*2;

}
}
ift k-1 == 0) {
f(j1==0) {
if( i-1 == 0) {
readFSL(ND_5_IG_2_CH_3, &in_1IND_5, (sizeof(tCH_3)+(sizeof(tCH_3)%4)+3)/4);
}
}
}
ift k-1 == 0) {
if( 1 ==10) {
if( -1 == 0) {
readFSL(ND_5_IG_3_CH_4, &in_2ND_5, (sizeof(tCH_4)+(sizeof(tCH_4)%4)+3)/4);
}
}

¥
/IQ(in_OND_5, in_1IND_5, in_2ND_5, &out_OND_5) ;
g.main(in_OND_5, in_1ND_5, in_2ND_5, out_OND_5);

writeFSL(ND_5_OG_1_CH_5, &out_OND_5, (sizeof(tCH_5)+(sizeof(tCH_5)%4)+3)/4);

} 1l for i
} 1l for j
} 1 for k
clk_num = =*clk_cntr;

*(ZBT_MEMORY) = (volatile long)clk_num;
*FIN_SIGNAL = (volatile long)0x00000001;

} /I main

Figure 6.14: Modified program code of procesBoB.
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chical embedded system and debug this heterogeneous and hierarchical embedded system.

6.3.1 Import Projectto XpPs

In order to import our project of heterogeneous and hierarchical embedded systedPmto
first we need to staiXPs. We use the start menu of the Windovesart->Xilinx Platform Stu-

dio 7.1i-=>Xilinx Platform Studio . In XPS, we select the menu optiorile->Open Project

In the new dialog box, we select the XMP file system.xmpf our XPs project. In our case

we useXPsversion 7.1. Because oXPs project is based oXPsversion 6.3 XPsautomat-
ically upgrade outXPs project to adapt to version 7.1 and import oUPs project intoXps.

We can get a view of all the components and settings inX®s project by selecting the menu
option: Project->Add/Edit Cores...(dialog). All the components, buses, addresses, ports, and
parameters are listed separately in the éspherals, Bus Connections Addresses Ports,
andParameters

After we import our project toXps, we still need to do some modifications for our project in
XPs. First, we need to set our target FPGA board. In$lystentab of XPs there is aProject
Options In theProject Optionsthere is an option foDevice Double click theDeviceoption,
then in the new dialog box we set the target device #rchitecture: virtex2 Device Size:
xc2v6000 Package: ff1152Grade: -5 When we set the target device, we can click @i¢
button and theiXPsset the target device for our project.

Second, we need to set the stack size for each processor of our project and import all of the
header files and implementation program code files for each processor of our profecs. in

Also, we need to delete the software project for proceb4Br2, because it has already been
replaced with the dedicated hardware IP core for@aET () process. In thé\pplicationstab

of XPs, there are fivé&Software ProjectsProj MB_1, Proj MB_2, Proj MB_3, Proj_MB_4 and
Proj_MB_5. Right click theProj_.MB_2 and select thé®elete Project ...option to delete the
software project for processdB_2. In each software project, there iSCompiler Options
Double click theCompiler Optionsthen in the new dialog box we can set tBack Sizdor

each processor. We need to set 640003tack Sizeof Proj_MB_1, 9000 for Stack Sizeof
Proj_MB_3, 19000 forStack Sizef Proj_MB_4, and 20000 foiStack Sizef Proj_ MB_5. Now

we need to import all of the header files and implementation program code files for each proces-
sor of our project. In each software project, there aBparcesoption and aHeadersoption.
Double click theSourcesoption, then in the new dialog box we can add the implementation
program code files for each processor. Double clickdradersoption, then in the new dialog

box we can add the head files for each processor.PragrMB_1, in Sourcesoption we need

to addVideain.cppandControlinit.cppfiles, and inHeadersoption we need to addidea.in.h,
Controllnit.h, csize.hmarker.h param.h tables.h andtypes.Hiles. ForProj_ MB_3, in Sources

option we need to ad@.cppfile, and inHeadersoption we need to ad@.h, csize.hmarker.h
param.h tables.h andtypes.Hiles. ForProj_.MB_4, in Sourcesption we need to addLE.cpp

file, and inHeadersoption we need to ad¥LE.h csize.h marker.h param.h tables.h and
types.Hiles. ForProj_MB_5, in Sourception we need to addidea out.cppfile, and inHead-
ersoption we need to addlideaout.h csize.h marker.h param.h tables.h andtypes.Hfiles.

The complete modified project of this heterogeneous and hierarchical embedded system can be
found in the CVS repository:
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docs/students/WeiZhong/experimentREG 4p_.DCTHW.zip

6.3.2 XPsProject Execution and Results

When we finish with importing our project t§psand all of the modifications for our project,

we start to us& Psto generate the final bitstream file. The bitstream file is used to configure the
FPGA chip to implement the M-JPEG encoder application. We use the following commands
that can be found in the menu optidbols in XPsto generate the final bitstream file step by
step.

e Generate Netlist This command uses the platform building t&datGenwith the MHS
file as input. It produces system netlist files in NGC format.

e Generate Bitstream This command uses thdlow tool with the NGC netlist files as
input. Thefastruntime.optandbitgen.utfiles in theetcdirectory of our project are used
to set some options of theflow tool. The xflow tool generates the bitstream file —
system.bifor the FPGA. This file is located in directomplementatiorof our project.

e Generate Libraries: This command uses the library building taddbGenwith the cor-
rect MSS file as input to create the Board Support Packet (BSP) which includes device
drivers, libraries, STDIN/STDOUT configurations, and interrupt handlers associated with
the design.

e Build All User Applications : This command uses the cross compiter-gcc This com-
piler generates several ELF executable files, one for each processor in the system, by
compiling the program code for each processorLitiGenhas not been executed, this
command first executdsbGen

e Update Bitstream: This command uses the tobltinit. This is the stage where the
hardware and the software flows are merged. If the above commands have not been
executed, this command will execute them one by one. Finally, we can get the final
bitstream file —download.bitfile in the implementationdirectory of our project that
contains the entire FPGA configuration information including both the software and the
hardware information of our heterogeneous and hierarchical embedded system.

In order to download the final bitstream file onto the target FPGA board and test our heteroge-
neous and hierarchical embedded system to get the resulting data, we need to use a softwarc
program in an outside host processor to communicate with our target board — ADM-XRC-II
board. The software program uses the ADM-XRC application-programming interface (API) to
takes care of open, close and device I/O control calls to the driver of the ADM-XRC-II board.
We compile and run the software program with Microsoft Visual C++ 6.0. The main code of
the software program is shown in Figure 6.15. In our case, we use one video frame which
size is 12& 128 pixels to test our M-JPEG encoder heterogeneous and hierarchical embedded
system. First in line 24 of Figure 6.15, the outside host processor writes the initial video data
into the off-chip memory. Then in lines 31-37, our M-JPEG encoder heterogeneous and hi-
erarchical embedded system reads the initial video data from the off-chip memory, executes
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0 void FPGA:MJIPEG() {

/I Initialization

fhl = mropen("nonint.Y");

fh2 = mropen("nonint.U");
5 fh3 = mropen("nonint.v");

for (int n=0; n<imageH *imageV; n++) {
rambuf[n] = (DWORD)bgetc(fh1);

10 for (n=0; n<imageH *imageV/2; n++)
rambuflimageH =*imageV + n] = (DWORD)bgetc(fh2);

for (n=0; n<imageH *imageV/2; n++) {
rambuflimageH *imageV + imageH *imageV/2 + n] = (DWORD)bgetc(fh3);
15

mclose(fhl);
mclose(fh2);
mclose(fh3);
20
/I write the packet into to Bankl of the FPGA board
fpgaSpace[COMMAND_REG] = cmd_lnitialize; // initialise memory mode + access to banks to host
fpgaSpace[COMMAND_REG];
status = writeSSRAM(rambuf , 0, imageH *imageV *2, dma);
25 if (status != ADMXRC2_SUCCESS) {
printf("exiting
n’);

exit(0);

30 /I process the packet in the FPGA
fpgaSpace[ COMMAND_REG] = cmd_Execute; // execute mode + access to banks to design
fpgaSpace[ COMMAND_REG];
WORD temp;
while(1) {
35 temp = fpgaSpace[STATUS_REG];
if (temp == stat_Finished) break;

/I read the packet from Banks of the FPGA board
40 fpgaSpace[ COMMAND_REG] = cmd_Read; // read memory mode + access to banks to host
fpgaSpace[ COMMAND_REG];
DWORD index;
DWORD clki;
DWORD clk3;
45 DWORD clk4;
DWORD clk5;

readSSRAM(&clk1, 0, 1, dma);
readSSRAM(&clk3, bankSize + bankSize, 1, dma);
50 readSSRAM(&clk4, bankSize + bankSize + bankSize, 1, dma);
readSSRAM(&index, bankSize + bankSize + bankSize + bankSize, 1, dma);
readSSRAM(&clk5, bankSize + bankSize + bankSize + bankSize + index + 1, 1, dma);
status = readSSRAM(rambuf + bankSize, bankSize + bankSize + bankSize + bankSize + 1, index, dma);
if (status != ADMXRC2_SUCCESS)  {
55 printf("Error: failed to read SSRAM
n");
exit(1);

/I Store the jpeg image
60 fh4 = mwopen("nonint.jpg");

for (int k = 0; k < index; k++) {
bputc(rambuf[bankSize + k],fh4);
}

65
mclose(fh4);
printf("%i",(int)clk1);
printf(" ~ ");

70 printf("%i",(int)clk3);
printf(" H
printf("%i",(int)clk4);
printf(" ")
printf("%i",(int)clk5);

75 printf(" )

return;

Figure 6.15: The main code of the software program in the host processor.

the M-JPEG application for the initial video data and writes the resulting video data into the

off-chip memory. Finally, in lines 48-53, the outside host processor reads back the resulting
video data from the off-chip memory. Meanwhile, the outside host processor reads back the
debugging information from the off-chip memory for our M-JPEG encoder heterogeneous and
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hierarchical embedded system which will be explained in Section 6.3.3. Therefore, in order to
download the final bitstream file onto the target FPGA board and test our heterogeneous and
hierarchical embedded system to get the resulting data, we just need to copy the final bitstream
file which has been generated before to the directory of this software program. Then we compile
and run this software program with Microsoft Visual C++ 6.0. We can get the resulting video
data in the outside host processor. This software program can be found in the CVS repository:
docs/students/WeiZhong/experiment/PentiumProgram.zip

6.3.3 Debugging the Heterogeneous and Hierarchical Embedded System

In order to debug our M-JPEG encoder heterogeneous and hierarchical embedded system anc
evaluate the time performance of our system, we need to count the number of the clock cycles
of each processor for processing the video frame with the M-JPEG application.

MB Counter
LMB

Figure 6.16:MicroBlazeprocessor connect t6ountercomponent via LMB bus.

We need a custom IP core namadck cycle countervl 00.a for counting the number of the
clock cycles of each processor. Figure 6.16 shows tiMiteoBlazeprocessor use LMB bus to
connect to alock cycle countervl 00_.a component in order to count the number of the clock
cycles. As an example, we use the comporaatk cycle counterP1 in lines 69-76 of the

MHS file shown in Appendix A. In order to make an outside host processor get the number of
the clock cycles, we also need to store the number of the clock cycles in the off-chip memories.
Because we add the debuggeioption when we run ouEsSPAM tool, this-- debuggeroption

tells our EspPAM tool to generate the component which is used for debugging. E3eAm

tool automatically copies the pcore oock cycle countervl 00.a to the pcoresdirectory of

our project and store the number of the clock cycles in a variable in the program code of each
processor. However, we still need to manually do the modification in the program code of each
processor for storing the number of the clock cycles in the off-chip memories. As an example,
we can see the modified program code of proce&sarwhich is shown in Figure 6.9. In

lines 9-10, we define a variable for storing the number of the clock cycles and initialize the
clock cyclecountervl 00.a component by setting the initial value to 0. In lines 74-75, first
we store the number of the clock cycles in the variable which is defined before and then store
the value of this variable in the off-chip memory. Finally, by using the software program in an
outside host processor which has been explained in Section 6.3.2, the outside host processo
can read back the number of the clock cycles of each processor from the off-chip memories.
Lines 48-52 in Figure 6.15 show how an outside host processor read back the number of the
clock cycles of each processor from the off-chip memories.
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Chapter

Summary and Conclusions

In this thesis, first we propose a system design methodology which is used to cldse the
plementation Gajpetween th&ystem-levedpecification of multiprocessor embedded systems
and theRTL-levelspecification of multiprocessor embedded systems. We have developed a
tool calledEspAm (Embedded System-level Platform synthesis and Application Mapping) to
implement this system design methodology. @&PAM tool allows designers to specify a
multiprocessor embedded system at a high level of abstracigstém-level then it refines

this specification and systematically and automatically converts this specificatiétiliio-kevel
specification. Second, we introduce our view on an embedded system with heterogeneous and
hierarchical architecture and prove that it is possible to implement systematically and automat-
ically such embedded system as heterogeneous and hierarchical architecture ussreathe
technology. Third, we introduce the construction of an interface of an embedded system with
the outside world which can be used to efficiently communicate between the system and the out-
side world, such as an outside host processor, via off-chip memories. We also have explained
the approach about how to make tBsPAM tool automatically generate the interface when it
maps an application onto a multiprocessor platform.

In Chapter 1, we have explained that modern complex embedded applications lead to the situa-
tion that a single processor embedded system architecture can no longer meet the performance
requirements of these applications. Because of this fact, several problems emerge. The first
problem is how to design systematically and automatically a multiprocessor embedded system.
The second problem is how to implement an embedded system as heterogeneous and hierar
chical architecture systematically and automatically. The third problem is how to construct an
efficient interface of an embedded system with the outside world. First, we need to develop a
system design methodology to efficiently and effectively map the concurrent model of an ap-
plication onto a multiprocessor embedded system platform in a systematic and automated way.
Second, we need to give the procedure which explains how to implement systematically and
automatically an embedded system as heterogeneous and hierarchical architecture. Third, we
need to construct an efficient interface of an embedded system with the outside world.

In Chapter 2, we have given a detailed description of our system design methodology which
is implemented in oUESPAM tool — Embedded System-level Platform Synthesis and Applica-
tion Mapping. The description of our system design methodology follows the process of how
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the EsPAM tool bridge thelmplementation Gappetween theSystem-levedpecification of an
embedded system and tRI L-levelspecification of an embedded system. Bystem-level
specification consists of three parts which Bltatform SpecificatiopApplication Specification
andMapping Specificationin our EsPAM design methodology, we use the Kahn Process Net-
works (KPN) model of computation fépplication SpecificationWe use th&€€oMPAAN tool to
automatically transforms an application which is specified in a sequential model of computation
into a KPN model of computation making the task-level parallelism available in an application
explicit. First, ESPAM constructs a platform instance according telatform Specificatiomand

runs a consistency check on this instance. This platform instance is an abstract model and at
this step no information about the target physical platform is taken into account. Such platform
instance consists of the generic parameterized system components. At the secdagrstep,
refines the abstract platform model to an elaborate parameterized RTL model which is ready for
an implementation on a target physical platform. At |&stPAM generates the program code for
each processor in the multiprocessor embedded system platform accordingaptleation
Specificatiorand Mapping SpecificatianAt present, oUESPAM tool can systematically syn-
thesize a platform and automatically generate all necessary files f§pPaiproject according

to Platform SpecificatiopApplication SpecificatioandMapping Specificatianin our ESPAM

tool, theVisitor Patternmechanism is used to generateXams project.

In Chapter 3, we introduce a heterogeneous and hierarchical architecture, and the differences
between a homogeneous architecture and a heterogeneous and hierarchical architecture, and
prove that it is possible to implement systematically and automatically an embedded system
as heterogeneous and hierarchical architecture usingshem technology. A homogeneous
architecture means all of the components which compose an embedded system platform be-
long to the same type. A heterogeneous architecture means different types of processes are
executed by different types of components which compose an embedded system platform. The
hierarchical architecture which we have defined earlier means the complex process of an ap-
plication is mapped onto several components which compose a sub-network on an embedded
system platform. Due to the complexity of modern applications, such as high throughput mul-
timedia, imaging and digital signal processing which usually include complicated algorithms,
different types of processes of an application are suitable for being executed by different types
of components on an embedded system platform. Therefore, an embedded system as homoge-
neous architecture is no longer suitable for modern applications. In order to meet the required
performance of various applications we need to implement systematically and automatically

a heterogeneous and hierarchical architecture on an embedded system platform. In this chap-
ter, we give the procedure which explains how to implement systematically and automatically
an embedded system as heterogeneous and hierarchical architecture which contains processor
components and a dedicated hardware IP core. In our case, the processor components use Fl-
FOs to communicate with each other. In order to make the dedicated hardware IP core can
communicate with the processor components, the dedicated hardware IP core should has the
FIFO input and output interfaces. We use theuRrA tool [6] which has been developed at the
Leiden Embedded Research Center (LERC) to generate the dedicated hardware IP core which
contains the FIFO input and output interfaces. In this heterogeneous and hierarchical archi-
tecture, we use the dedicated hardware IP core to execute the most complicated process of an
application repetitively and use the processor components to execute the other processes of the
application in order to get good performance of execution time. In this way, we can prove that it
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is possible to implement systematically and automatically an embedded system as heterogenous
and hierarchical architecture using tBerPAM technology.

In Chapter 4, we explain how to construct an efficient interface of an embedded system with
the outside world step by step. This interface can be used to communicate between embeddec
systems and the outside world via off-chip memories. The target FPGA platform on which we
implement our interface of an embedded system with the outside world is the ADM-XRC-II
board which supports high performance PCI operation without the need to integrate proprietary
cores into the FPGA. The interface of an embedded system with the outside world consists
of four main parts — Host Interface, Function Design, Multiplexer and Buffer. The Function
Design is a multiprocessor system which is used to implement different types of embedded
system applications. Besides these four main parts, our interface has two connection parts.
One connection part is a custom controller for a processor in the Function Design to connect
to the off-chip ZBT SSRAM. The other connection part includes two components which are
used to transfer control signals and status signals between the Host Interface and the Function
Design. We also make thespAM tool can automatically generate the interface when it maps

an application onto a multiprocessor platform.

In Chapter 5, two case studies are given. The first case study is about a M-JPEG multiprocessor
system with homogeneous architecture which is used to evaluate the design methodology in
our EspaM tool presented in Chapter 2 and validate the interface of an embedded system with
the outside world explained in Chapter 4. The second case study is about a M-JPEG multi-
processor system with heterogeneous and hierarchical architecture which is used to validate the
procedure of implementing an embedded system as heterogeneous and hierarchical architectur
and evaluate the heterogeneous and hierarchical architecture introduced in Chapter 3. From the
result of the first case study, we prove that with mapping the same application a multiprocessor
embedded system has better time performance than a single processor embedded system. W
find out that based on requirement of an application we can map the application onto any num-
ber of MicroBlazeprocessors embedded system platform. The only limitation is whether the
target FPGA board has enough on-chip memories and reconfigurable resources. We also find
out that there are still several tasks we need to do afteK#h&project automatic generation

using ourEspPAM tool, such as modifying the memory allocation, importing implementations

of the function calls in processors and changing function calls in processors’ program code and
so on. From the result of the second case study, we prove that with mapping the same appli-
cation a heterogeneous and hierarchical embedded system has better time performance than
homogeneous embedded system.

In Chapter 6, a tutorial with example of heterogeneous and hierarchical embedded system de-
sign is given. This tutorial gives the detailed steps for how to design a heterogeneous and
hierarchical embedded system using @@vPAAN tool, our ESPAM tool and the commercial
synthesis tool Xilinx Platform Studio{Ps). First, we generate axpsproject of homogeneous
embedded system for an application. Second, we changérberoject of homogeneous em-
bedded system to heterogeneous and hierarchical embedded system by hand. Third, we impor
the project intaXpPsand useX Psto generate the final bitstream file. At last, we use a software
program in an outside host processor to download the final bitstream file onto the target FPGA
board and test the heterogeneous and hierarchical embedded system to get the resulting data.

In conclusion, by using oUEsPAM tool, designers can easily design multiprocessor embedded
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systems for various applications. By implementing embedded systems as heterogeneous and hi-
erarchical architecture, we can make embedded systems of various applications meet required
performance. By using our interface of an embedded system with the outside world, an embed-
ded system can efficiently communicate with the outside world. Because of time limitations
related to the preparation of this thesis, currently BBPAM tool can not generate automati-

cally an embedded system as heterogeneous and hierarchical architecture. However, this is only
an implementation issue that has to be addressed in the future. In this thesis we have already
proven that it is possible for oUESPAM tool to generate systematically and automatically an
embedded system as heterogeneous and hierarchical architecture by giving a detailed proce-
dure. Therefore, in the future the people who continue developingeekm tool can work on

the implementation issue related to the automatic generation of heterogeneous and hierarchical
systems.
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MHS File for M-JPEG Encoder Five

Processors Homogeneous Embedded Systen
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PARAMETER VERSION = 2.1.0

PORT Iclk = Iclk, DIR = IN

PORT mclk = mclk, DIR = IN

PORT ramclki = ramclki, VEC = [1:0], DIR = IN
PORT ramclko = ramclko, VEC = [1:0], DIR = OUT
PORT lIreseto_| = lIreseto_|, DIR = IN

PORT Iwrite = lwrite, DIR = IN

PORT lads_| = lads_|, DIR = IN

PORT Iblast_| = Iblast_|, DIR = IN

PORT Ibterm_| = Ibterm_l, DIR = INOUT

PORT Id = Id, VEC = [31:0], DIR = INOUT
PORT la = la, VEC = [23:2], DIR = IN

PORT lreadyi_| = Ireadyi_|, DIR = OUT

PORT Ibe_| = Ibe_|, VEC = [3:0], DIR = IN
PORT fholda = fholda, DIR = IN

PORT ra0 = ra0, VEC = [19:0], DIR = OUT
PORT rd0 = rd0, VEC = [31:0], DIR = INOUT
PORT rcO = rcO, VEC = [8:0], DIR = OUT
PORT ral = ral, VEC = [19:0], DIR = OUT
PORT rdl = rdl, VEC = [31:0], DIR = INOUT
PORT rcl = rcl, VEC = [8:0], DIR = OUT
PORT ra2 = ra2, VEC = [19:0], DIR = OUT
PORT rd2 = rd2, VEC = [31:0], DIR = INOUT
PORT rc2 = rc2, VEC = [8:0], DIR = OUT
PORT ra3 = ra3, VEC = [19:0], DIR = OUT
PORT rd3 = rd3, VEC = [31:0], DIR = INOUT
PORT rc3 = rc3, VEC = [8:0], DIR = OUT
PORT ra4 = ra4, VEC = [19:0], DIR = OUT
PORT rd4 = rd4, VEC = [31:0], DIR = INOUT
PORT rc4 = rc4, VEC = [8:0], DIR = OUT
PORT ra5 = ra5, VEC = [19:0], DIR = OUT
PORT rd5 = rd5, VEC = [31:0], DIR = INOUT
PORT rc5 = rc5, VEC = [8:0], DIR = OUT

BEGIN Imb_v10

PARAMETER INSTANCE = PBUS_MB_1
PARAMETER HW_VER = 1.00.a
PARAMETER C_EXT_RESET_HIGH = 0
PORT SYS_Rst = net_design_rst

PORT LMB_CIlk = sys_clk_s

END

BEGIN Imb_v10

PARAMETER INSTANCE = DBUS_MB_1
PARAMETER HW_VER = 1.00.a
PARAMETER C_EXT_RESET_HIGH = 0
PORT SYS_Rst = net_design_rst

PORT LMB_Clk = sys_clk_s

END

BEGIN opb_v20
PARAMETER INSTANCE = mb_opb_1
PARAMETER HW_VER = 1.10.c

60

65

70

75

80

85

90

95

PARAMETER C_EXT_RESET_HIGH = 0

PORT SYS_Rst = net_design_rst

PORT OPB_Clk = sys_clk_s

END

BEGIN fin_ctrl

PARAMETER INSTANCE = fin_ctrl_P1
PARAMETER HW_VER = 1.00.a
PARAMETER C_BASEADDR = 0xf9000000
PARAMETER C_HIGHADDR = 0xf900000f
PARAMETER C_AB = 8
BUS_INTERFACE SLMB = DBUS_MB_1
PORT SI_FinOut = net_fin_signal_P1
END

BEGIN clock_cycle_counter

PARAMETER INSTANCE = clock_cycle_counter_P1
PARAMETER HW_VER = 1.00.a

PARAMETER C_BASEADDR = 0xf8000000
PARAMETER C_HIGHADDR = 0xf8000003
BUS_INTERFACE SLMB = DBUS_MB_1

PORT LMB_CIk = sys_clk_s

END

BEGIN microblaze
PARAMETER INSTANCE = MB_1

PARAMETER HW_VER = 4.00.a

PARAMETER C_NUMBER_OF_PC_BRK = 1
PARAMETER C_NUMBER_OF_RD_ADDR_BRK = 0
PARAMETER C_NUMBER_OF_WR_ADDR_BRK = 0
BUS_INTERFACE MFSLO = FIFO_MB_1_Out_1
BUS_INTERFACE MFSL1 = FIFO_MB_1_Out_2
BUS_INTERFACE MFSL2 = FIFO_MB_1_Out_3
BUS_INTERFACE MFSL3 = FIFO_MB_1_Out_4
BUS_INTERFACE MFSL4 = FIFO_MB_1 Out 5
BUS_INTERFACE MFSL5 = FIFO_MB_1_Out_6
BUS_INTERFACE MFSL6 = FIFO_MB_1_Out_7
BUS_INTERFACE MFSL7 = FIFO_MB_1_Out_8
BUS_INTERFACE DLMB = DBUS_MB_1
BUS_INTERFACE ILMB = PBUS_MB_1
BUS_INTERFACE DOPB = mb_opb_1
PARAMETER C_FSL_LINKS = 8

PORT CLK = sys_clk_s

END

BEGIN Imb_v10

100 PARAMETER INSTANCE = PBUS_MB_2

PARAMETER HW_VER = 1.00.a
PARAMETER C_EXT_RESET_HIGH = 0
PORT SYS_Rst = net_design_rst

PORT LMB_CIlk = sys_clk_s

105 END
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BEGIN Imb_v10

PARAMETER INSTANCE = DBUS_MB_2
PARAMETER HW_VER = 1.00.a
PARAMETER C_EXT_RESET_HIGH = 0
PORT SYS_Rst = net_design_rst

PORT LMB_Clk = sys_clk_s

END

BEGIN opb_v20

PARAMETER INSTANCE = mb_opb_2
PARAMETER HW_VER = 1.10.c
PARAMETER C_EXT_RESET_HIGH = 0
PORT SYS_Rst = net_design_rst
PORT OPB_Clk = sys_clk_s

END

BEGIN fin_ctrl

PARAMETER INSTANCE = fin_ctrl_P2
PARAMETER HW_VER = 1.00.a
PARAMETER C_BASEADDR = 0xf9000000
PARAMETER C_HIGHADDR = 0xf900000f
PARAMETER C_AB = 8
BUS_INTERFACE SLMB = DBUS_MB_2
PORT SI_FinOut = net_fin_signal_P2

END

BEGIN clock_cycle_counter
PARAMETER INSTANCE = clock_cycle_counter_P2
PARAMETER HW_VER = 1.00.a
PARAMETER C_BASEADDR = 0xf8000000
PARAMETER C_HIGHADDR = 0xf8000003
BUS_INTERFACE SLMB = DBUS_MB_2
PORT LMB_Clk = sys_clk_s
END

BEGIN microblaze
PARAMETER INSTANCE = MB_2
PARAMETER HW_VER = 4.00.a
PARAMETER C_NUMBER_OF_PC_BRK = 1
PARAMETER C_NUMBER_OF_RD_ADDR_BRK
PARAMETER C_NUMBER_OF_WR_ADDR_BRK
BUS_INTERFACE MFSLO = FIFO_MB_2 Out_1
BUS_INTERFACE SFSLO = FIFO_MB_1_Out_1
BUS_INTERFACE DLMB = DBUS_MB_2
BUS_INTERFACE ILMB = PBUS_MB_2
BUS_INTERFACE DOPB = mb_opb_2
PARAMETER C_FSL_LINKS = 1
PORT CLK = sys clk_s
END

=0
=0

BEGIN Imb_v10

PARAMETER INSTANCE = PBUS_MB_3
PARAMETER HW_VER = 1.00.a
PARAMETER C_EXT_RESET_HIGH = 0
PORT SYS_Rst = net_design_rst
PORT LMB_Clk = sys_clk_s

END

BEGIN Imb_v10
PARAMETER INSTANCE = DBUS_MB_3
PARAMETER HW_VER = 1.00.a
PARAMETER C_EXT_RESET_HIGH = 0
PORT SYS_Rst = net_design_rst
PORT LMB_CIk = sys_clk_s
END

BEGIN opb_v20

PARAMETER INSTANCE = mb_opb_3
PARAMETER HW_VER = 1.10.c
PARAMETER C_EXT_RESET_HIGH = 0
PORT SYS_Rst = net_design_rst

PORT OPB_Clk = sys_clk_s

END

BEGIN fin_ctrl

PARAMETER INSTANCE = fin_ctrl_P3
PARAMETER HW_VER = 1.00.a
PARAMETER C_BASEADDR = 0xf9000000
PARAMETER C_HIGHADDR = 0xf900000f
PARAMETER C_AB = 8
BUS_INTERFACE SLMB = DBUS_MB_3
PORT SI_FinOut = net_fin_signal_P3

END

BEGIN clock_cycle_counter

PARAMETER INSTANCE = clock_cycle_counter_P3
PARAMETER HW_VER = 1.00.a

PARAMETER C_BASEADDR = 0xf8000000
PARAMETER C_HIGHADDR = 0xf8000003
BUS_INTERFACE SLMB = DBUS_MB_3

PORT LMB_Clk = sys_clk_s

END

BEGIN microblaze
PARAMETER INSTANCE = MB_3
PARAMETER HW_VER = 4.00.a
PARAMETER C_NUMBER_OF_PC_BRK = 1
PARAMETER C_NUMBER_OF_RD_ADDR_BRK = 0
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PARAMETER C_NUMBER_OF_WR_ADDR_BRK = 0
BUS_INTERFACE MFSLO = FIFO_MB_3_Out_1
BUS_INTERFACE SFSLO = FIFO_MB_2_Out_1
BUS_INTERFACE SFSL1 = FIFO_MB_1_Out_2
BUS_INTERFACE SFSL2 = FIFO_MB_1 Out_3
BUS_INTERFACE DLMB DBUS_MB_3
BUS_INTERFACE ILMB = PBUS_MB_3
BUS_INTERFACE DOPB = mb_opb_3
PARAMETER C_FSL_LINKS = 3
PORT CLK = sys_clk_s

END

BEGIN Imb_v10

PARAMETER INSTANCE = PBUS_MB_4
PARAMETER HW_VER = 1.00.a
PARAMETER C_EXT_RESET_HIGH = 0
PORT SYS_Rst = net_design_rst

PORT LMB_CIk = sys_clk_s

END

BEGIN Imb_v10

PARAMETER INSTANCE = DBUS_MB_4
PARAMETER HW_VER = 1.00.a
PARAMETER C_EXT_RESET_HIGH = 0
PORT SYS_Rst = net_design_rst

PORT LMB_CIk = sys_clk_s

END

BEGIN opb_v20

PARAMETER INSTANCE = mb_opb_4
PARAMETER HW_VER = 1.10.c
PARAMETER C_EXT_RESET_HIGH = 0
PORT SYS_Rst net_design_rst

PORT OPB_Clk = sys_clk_s

END

BEGIN fin_ctrl

PARAMETER INSTANCE = fin_ctrl_P4
PARAMETER HW_VER = 1.00.a
PARAMETER C_BASEADDR = 0xf9000000
PARAMETER C_HIGHADDR = 0xf900000f
PARAMETER C_AB = 8
BUS_INTERFACE SLMB = DBUS_MB_4
PORT SI_FinOut = net_fin_signal_P4

END

BEGIN clock_cycle_counter

PARAMETER INSTANCE = clock_cycle_counter_P4
PARAMETER HW_VER = 1.00.a

PARAMETER C_BASEADDR = 0xf8000000
PARAMETER C_HIGHADDR = 0xf8000003
BUS_INTERFACE SLMB = DBUS_MB_4

PORT LMB_CIk = sys_clk_s

END

BEGIN microblaze
PARAMETER INSTANCE = MB_4
PARAMETER HW_VER = 4.00.a
PARAMETER C_NUMBER_OF_PC_BRK = 1
PARAMETER C_NUMBER_OF_RD_ADDR_BRK =
PARAMETER C_NUMBER_OF_WR_ADDR_BRK =
BUS_INTERFACE MFSLO = FIFO_MB_4_Out_1
BUS_INTERFACE SFSLO = FIFO_MB_3_Out_1
BUS_INTERFACE SFSL1 = FIFO_MB_1_Out_4
BUS_INTERFACE SFSL2 = FIFO_MB_1_Out 5
BUS_INTERFACE SFSL3 = FIFO_MB_1_Out_6
BUS_INTERFACE SFSL4 = FIFO_MB_1_Out_7
BUS_INTERFACE DLMB = DBUS_MB_4
BUS_INTERFACE ILMB = PBUS_MB_4
BUS_INTERFACE DOPB = mb_opb_4
PARAMETER C_FSL_LINKS = 5
PORT CLK = sys_clk_s
END

0
0

BEGIN Imb_v10

PARAMETER INSTANCE = PBUS_MB_5
PARAMETER HW_VER = 1.00.a
PARAMETER C_EXT_RESET_HIGH = 0
PORT SYS_Rst = net_design_rst

PORT LMB_CIk = sys_clk_s

END

BEGIN Imb_v10

PARAMETER INSTANCE = DBUS_MB_5
PARAMETER HW_VER = 1.00.a
PARAMETER C_EXT_RESET_HIGH = 0
PORT SYS_Rst = net_design_rst

PORT LMB_CIk = sys_clk_s

END

BEGIN opb_v20

PARAMETER INSTANCE = mb_opb_5
PARAMETER HW_VER = 1.10.c
PARAMETER C_EXT_RESET_HIGH = 0
PORT SYS_Rst = net_design_rst

PORT OPB_Clk = sys_clk_s

END
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PORT ral = ral
BEGIN fin_ctrl PORT ra2 = ra2
PARAMETER INSTANCE = fin_ctrl_P5 PORT ra3 = ra3
305 PARAMETER HW_VER = 1.00.a PORT ra4 = ra4
PARAMETER C_BASEADDR = 0xf9000000 400 PORT ra5 = rab5
PARAMETER C_HIGHADDR = 0xf900000f PORT rc0 = rcO
PARAMETER C_AB = 8 PORT rcl = rcl
BUS_INTERFACE SLMB = DBUS_MB_5 PORT rc2 = rc2
310 PORT SI_FinOut = net_fin_signal_P5 PORT rc3 = rc3
END 405 PORT rc4 = rcd
PORT rc5 = rc5
BEGIN clock_cycle_counter PORT RST = sys_rst_s
PARAMETER INSTANCE = clock_cycle_counter_P5 PORT CNTRL = net_command
315 PARAMETER HW_VER = 1.00.a END
PARAMETER C_BASEADDR = 0xf8000000 410
PARAMETER C_HIGHADDR = 0xf8000003 BEGIN buffers
BUS_INTERFACE SLMB = DBUS_MB_5 PARAMETER INSTANCE = buff
PORT LMB_Clk = sys clk_s PARAMETER HW_VER = 1.00.a
320 END BUS_INTERFACE BUFF_MUX_PORT = buff_to_mux
415 BUS_INTERFACE BUFF_RD_0_PORT = buff rd_0
BEGIN microblaze BUS_INTERFACE BUFF_RD_1_PORT = buff_rd_1
PARAMETER INSTANCE = MB_5 BUS_INTERFACE BUFF_RD_2_PORT = buff_rd_2
PARAMETER HW_VER = 4.00.a BUS_INTERFACE BUFF_RD_3 PORT = buff_rd_3
325 PARAMETER C_NUMBER_OF_PC BRK = 1 BUS_INTERFACE BUFF_RD_4_PORT = buff rd_4
PARAMETER C_NUMBER_OF_RD_ADDR_BRK = 0 420 BUS_INTERFACE BUFF_RD_5_PORT = buff_rd_5
PARAMETER C_NUMBER_OF_WR_ADDR_BRK = 0 PORT rd0 = rd0
BUS_INTERFACE SFSLO = FIFO_MB_1_Out_8 PORT rdl = rdl
BUS_INTERFACE SFSL1 = FIFO_MB_1_Out 9 PORT rd2 = rd2
330 BUS_INTERFACE SFSL2 = FIFO_MB_1_Out_10 PORT rd3 = rd3
BUS_INTERFACE SFSL3 = FIFO_MB_4 Out_1 425 PORT rd4 = rd4
BUS_INTERFACE DLMB = DBUS_MB_5 PORT rd5 = rd5
BUS_INTERFACE ILMB = PBUS_MB_5 END
BUS_INTERFACE DOPB = mb_opb_5
335 PARAMETER C_FSL_LINKS = 4 BEGIN opb_zbt_controller
PORT CLK = sys clk_s 430 PARAMETER INSTANCE = ZBT_CTRL_1
END PARAMETER HW_VER = 1.00.a
PARAMETER C_BASEADDR = 0xf0000000
BEGIN zbt_main PARAMETER C_HIGHADDR = 0xfOOfffff
340 PARAMETER INSTANCE = host_zbt_main PARAMETER C_EXTERNAL_DLL =1
PARAMETER HW_VER = 1.00.a 435 PARAMETER C_ZBT_ADDR_SIZE = 20
BUS_INTERFACE HOST_BUFF_0_PORT = buff rd_0 BUS_INTERFACE SOPB = mb_opb_1
BUS_INTERFACE HOST_BUFF_1_PORT = buff rd_1 BUS_INTERFACE DESIGN_BUFF_PORT = buff_rd_0
BUS_INTERFACE HOST_BUFF_2_PORT = buff_rd_2 BUS_INTERFACE DESIGN_MUX_PORT = mux_design_0
345 BUS_INTERFACE HOST_BUFF_3_PORT = buff_rd_3 END
BUS_INTERFACE HOST_BUFF_4_PORT = buff_rd_4 440
BUS_INTERFACE HOST_BUFF_5_PORT = buff_rd_5 BEGIN opb_zbt_controller
BUS_INTERFACE HOST_MUX_PORT = mux_to_host PARAMETER INSTANCE = ZBT_CTRL_2
PORT lclk = Iclk PARAMETER HW_VER = 1.00.a
350 PORT mclk = mclk PARAMETER C_BASEADDR = 0xf0000000
PORT ramclko = ramclko 445 PARAMETER C_HIGHADDR = OxfOOfffff
PORT ramclki = ramclki PARAMETER C_EXTERNAL_DLL =1
PORT lreseto_| = Ireseto_| PARAMETER C_ZBT_ADDR_SIZE = 20
PORT lwrite = lwrite BUS_INTERFACE SOPB = mb_opb_2
355 PORT lads_| = lads | BUS_INTERFACE DESIGN_BUFF_PORT = buff rd_1
PORT lblast_| = Iblast_| 450 BUS_INTERFACE DESIGN_MUX_PORT = mux_design_1
PORT Ibterm_| = Ibterm_| END
PORT Id = Id
PORT la = la BEGIN opb_zbt_controller
360 PORT Ireadyi_| = Ireadyi_| PARAMETER INSTANCE = ZBT_CTRL_3
PORT Ibe_| = lbe_| 455 PARAMETER HW_VER = 1.00.a
PORT fholda = fholda PARAMETER C_BASEADDR = 0xf0000000
PORT CLK_out = sys_clk_s PARAMETER C_HIGHADDR = 0xfOOfffff
PORT RST_out = sys_rst_s PARAMETER C_EXTERNAL_DLL = 1
365 PORT COMMAND_REG = net_command PARAMETER C_ZBT_ADDR_SIZE = 20
PORT DESIGN_STAT_REG = net_design_status 460 BUS_INTERFACE SOPB = mb_opb_3
END BUS_INTERFACE DESIGN_BUFF_PORT = buff_rd_2
BUS_INTERFACE DESIGN_MUX_PORT = mux_design_2
BEGIN host_design_ctrl END
370 PARAMETER INSTANCE = host_design_controller
PARAMETER HW_VER = 1.00.a 465 BEGIN opb_zbt_controller
PARAMETER N_FIN = 5 PARAMETER INSTANCE = ZBT_CTRL_4
PORT RST = sys_rst_s PARAMETER HW_VER = 1.00.a
PORT COMMAND_REG = net_command PARAMETER C_BASEADDR = 0xf0000000
375 PORT STATUS_REG = net_design_status PARAMETER C_HIGHADDR = OxfOOfffff
PORT RST_OUT = net_design_rst 470 PARAMETER C_EXTERNAL DLL = 1
PORT FIN_REG_0 = net_fin_signal_P1 PARAMETER C_ZBT_ADDR_SIZE = 20
PORT FIN_REG_1 = net_fin_signal_P2 BUS_INTERFACE SOPB = mb_opb_4
PORT FIN_REG_2 = net_fin_signal_P3 BUS_INTERFACE DESIGN_BUFF_PORT = buff_rd_3
380 PORT FIN_REG_3 = net_fin_signal_P4 BUS_INTERFACE DESIGN_MUX_PORT = mux_design_3
PORT FIN_REG_4 = net_fin_signal_P5 475 END
END
BEGIN opb_zbt_controller
BEGIN mux PARAMETER INSTANCE = ZBT_CTRL_5
385 PARAMETER INSTANCE = multiplexer PARAMETER HW_VER = 1.00.a

PARAMETER HW_VER = 1.00.a
PARAMETER N_MUX = 5

BUS_INTERFACE MUX_BUFF_PORT = buff_to_mux
BUS_INTERFACE MUX_DESIGN_0_PORT

480

PARAMETER C_BASEADDR = 0xf0000000
PARAMETER C_HIGHADDR = OxfOOfffff
PARAMETER C_EXTERNAL_DLL = 1

mux_design_0 PARAMETER C_ZBT_ADDR_SIZE = 20

mux_design_1 BUS_INTERFACE SOPB = mb_opb_5
BUS_INTERFACE MUX_DESIGN_2_PORT = mux_design_2 485 BUS_INTERFACE DESIGN_BUFF_PORT
BUS_INTERFACE MUX_DESIGN_3_PORT = mux_design_3 BUS_INTERFACE DESIGN_MUX_PORT
BUS_INTERFACE MUX_DESIGN_4_PORT = mux_design_4 END
BUS_INTERFACE MUX_HOST_PORT = mux_to_host

395 PORT ra0 = ra0

390 BUS_INTERFACE MUX_DESIGN_1_PORT
buff_rd_4
mux_design_4
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BEGIN fsl_v20
PARAMETER HW_VER = 2.00.a
PARAMETER INSTANCE = FIFO_MB_1 Out_1
PARAMETER C_EXT_RESET_HIGH = 0
PARAMETER C_ASYNC_CLKS = 0
PARAMETER C_IMPL_STYLE = 1
PARAMETER C_USE_CONTROL = 0
PARAMETER C_FSL_DWIDTH = 32
PARAMETER C_FSL_DEPTH = 512
PORT FSL_CIlk = sys clk_s
PORT SYS_Rst = net_design_rst
END

BEGIN fsl_v20

PARAMETER HW_VER = 2.00.a
PARAMETER INSTANCE = FIFO_MB_2_Out_1
PARAMETER C_EXT_RESET_HIGH = 0
PARAMETER C_ASYNC_CLKS = 0
PARAMETER C_IMPL_STYLE =1
PARAMETER C_USE_CONTROL = 0
PARAMETER C_FSL_DWIDTH = 32
PARAMETER C_FSL_DEPTH = 512
PORT FSL_Clk = sys_clk_s

PORT SYS_Rst = net_design_rst

END

BEGIN fsl_v20
PARAMETER HW_VER = 2.00.a
PARAMETER INSTANCE = FIFO_MB_1_Out_2
PARAMETER C_EXT_RESET_HIGH = 0
PARAMETER C_ASYNC_CLKS = 0
PARAMETER C_IMPL_STYLE =1
PARAMETER C_USE_CONTROL
PARAMETER C_FSL_DWIDTH =
PARAMETER C_FSL_DEPTH = 5
PORT FSL_Clk = sys_clk_s
PORT SYS_Rst = net_design_rst
END

=0
32
12

BEGIN fsl_v20

PARAMETER HW_VER = 2.00.a
PARAMETER INSTANCE = FIFO_MB_1_Out_3
PARAMETER C_EXT_RESET_HIGH = 0
PARAMETER C_ASYNC_CLKS = 0
PARAMETER C_IMPL_STYLE = 1
PARAMETER C_USE_CONTROL = 0
PARAMETER C_FSL_DWIDTH = 32
PARAMETER C_FSL_DEPTH = 512

PORT FSL_Clk = sys clk_s

PORT SYS_Rst = net_design_rst

END

BEGIN fsl_v20

PARAMETER HW_VER = 2.00.a
PARAMETER INSTANCE = FIFO_MB_3 Out_1
PARAMETER C_EXT_RESET_HIGH = 0
PARAMETER C_ASYNC_CLKS = 0
PARAMETER C_IMPL_STYLE = 1
PARAMETER C_USE_CONTROL = 0
PARAMETER C_FSL_DWIDTH = 32
PARAMETER C_FSL_DEPTH = 512
PORT FSL_Clk = sys_clk_s

PORT SYS_Rst = net_design_rst

END

BEGIN fsl_v20
PARAMETER HW_VER = 2.00.a
PARAMETER INSTANCE = FIFO_MB_1_Out 4
PARAMETER C_EXT_RESET_HIGH = 0

PARAMETER C_ASYNC_CLKS = 0
PARAMETER C_IMPL_STYLE = 1

PARAMETER C_USE_CONTROL = 0
PARAMETER C_FSL_DWIDTH = 32
PARAMETER C_FSL_DEPTH = 512

PORT FSL_Clk = sys_clk_s
PORT SYS_Rst = net_design_rst
END

BEGIN fsl_v20

PARAMETER HW_VER = 2.00.a
PARAMETER INSTANCE = FIFO_MB_1_Out_5
PARAMETER C_EXT_RESET_HIGH = 0
PARAMETER C_ASYNC_CLKS = 0
PARAMETER C_IMPL_STYLE =1
PARAMETER C_USE_CONTROL = 0
PARAMETER C_FSL_DWIDTH = 32
PARAMETER C_FSL_DEPTH = 512
PORT FSL_Clk = sys_clk_s

PORT SYS_Rst = net_design_rst

END

BEGIN fsl_v20
PARAMETER HW_VER = 2.00.a
PARAMETER INSTANCE = FIFO_MB_1 Out_6
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640
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PARAMETER C_EXT_RESET_HIGH = 0
PARAMETER C_ASYNC_CLKS = 0
PARAMETER C_IMPL_STYLE = 1
PARAMETER C_USE_CONTROL =
PARAMETER C_FSL_DWIDTH = 3
PARAMETER C_FSL_DEPTH = 51
PORT FSL_Clk = sys_clk_s

PORT SYS_Rst = net_design_rst
END

0
2
2

BEGIN fsl_v20

PARAMETER HW_VER = 2.00.a
PARAMETER INSTANCE = FIFO_MB_1_Out_7
PARAMETER C_EXT_RESET_HIGH = 0
PARAMETER C_ASYNC_CLKS = 0
PARAMETER C_IMPL_STYLE =1
PARAMETER C_USE_CONTROL = 0
PARAMETER C_FSL_DWIDTH = 32
PARAMETER C_FSL_DEPTH = 512
PORT FSL_Clk = sys_clk_s

PORT SYS_Rst = net_design_rst
END

BEGIN fsl_v20

PARAMETER HW_VER = 2.00.a
PARAMETER INSTANCE = FIFO_MB_1_Out_8
PARAMETER C_EXT_RESET_HIGH = 0
PARAMETER C_ASYNC_CLKS = 0
PARAMETER C_IMPL_STYLE = 1
PARAMETER C_USE_CONTROL = 0
PARAMETER C_FSL_DWIDTH = 32
PARAMETER C_FSL_DEPTH = 512
PORT FSL_Clk = sys_clk_s

PORT SYS_Rst = net_design_rst

END

BEGIN fsl_v20

PARAMETER HW_VER = 2.00.a
PARAMETER INSTANCE = FIFO_MB_1 Out 9
PARAMETER C_EXT_RESET_HIGH = 0
PARAMETER C_ASYNC_CLKS = 0
PARAMETER C_IMPL_STYLE = 1
PARAMETER C_USE_CONTROL = 0
PARAMETER C_FSL_DWIDTH = 32
PARAMETER C_FSL_DEPTH = 512
PORT FSL_Clk = sys_clk_s

PORT SYS_Rst = net_design_rst

END

BEGIN fsl_v20

PARAMETER HW_VER = 2.00.a
PARAMETER INSTANCE = FIFO_MB_1_Out_10
PARAMETER C_EXT_RESET_HIGH = 0
PARAMETER C_ASYNC_CLKS = 0
PARAMETER C_IMPL_STYLE = 1
PARAMETER C_USE_CONTROL = 0
PARAMETER C_FSL_DWIDTH = 32
PARAMETER C_FSL_DEPTH = 512
PORT FSL_Clk = sys_clk_s

PORT SYS_Rst = net_design_rst

END

BEGIN fsl_v20

PARAMETER HW_VER = 2.00.a
PARAMETER INSTANCE = FIFO_MB_4 Out_1
PARAMETER C_EXT_RESET_HIGH = 0
PARAMETER C_ASYNC_CLKS = 0
PARAMETER C_IMPL_STYLE = 1
PARAMETER C_USE_CONTROL
PARAMETER C_FSL_DWIDTH =
PARAMETER C_FSL_DEPTH = 5
PORT FSL_Clk = sys_clk_s
PORT SYS_Rst = net_design_rst
END

=0
32
12

BEGIN fifo_if_ctrl

PARAMETER INSTANCE = CTRL_MB_1_FIFOs
PARAMETER HW_VER = 1.00.a

PARAMETER C_BASEADDR = 0xc0800000
PARAMETER C_HIGHADDR = 0xc080000f
PARAMETER C_AB = 8
PARAMETER C_FIFO_WRITE = 2
PARAMETER C_FIFO_READ = 0
BUS_INTERFACE FIFO_WRITE_1
BUS_INTERFACE FIFO_WRITE_2
BUS_INTERFACE SLMB = DBUS_MB_1
END

BEGIN bram_block

PARAMETER INSTANCE = BRAM1_MB_1
PARAMETER HW_VER = 1.00.a
BUS_INTERFACE PORTA =
BUS_INTERFACE PORTB =
END

FIFO_MB_1_Out_9
FIFO_MB_1_Out_10

BUS_DCTRL_BRAM1_MB_1
BUS_PCTRL_BRAM1_MB_1
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BEGIN Imb_bram_if_cntlr

PARAMETER INSTANCE = DCTRL_BRAM1_MB_1
PARAMETER HW_VER = 1.00.b

PARAMETER C_MASK = 0xff000000

PARAMETER C_BASEADDR = 0x00000000

PARAMETER C_HIGHADDR = 0x0000ffff

BUS_INTERFACE SLMB = DBUS_MB_1

BUS_INTERFACE BRAM_PORT = BUS_DCTRL_BRAM1_MB_1
END

BEGIN Imb_bram_if_cntlr

PARAMETER INSTANCE = PCTRL_BRAM1_MB_1
PARAMETER HW_VER = 1.00.b

PARAMETER C_MASK = 0xff000000

PARAMETER C_BASEADDR = 0x00000000

PARAMETER C_HIGHADDR = 0x0000ffff

BUS_INTERFACE SLMB = PBUS_MB_1

BUS_INTERFACE BRAM_PORT = BUS_PCTRL_BRAM1_MB_1
END

BEGIN bram_block

PARAMETER INSTANCE = BRAM2_MB_1

PARAMETER HW_VER = 1.00.a

BUS_INTERFACE PORTA = BUS_DCTRL_BRAM2_MB_1
BUS_INTERFACE PORTB = BUS_PCTRL_BRAM2_MB_1
END

BEGIN Imb_bram_if_cntlr

PARAMETER INSTANCE = DCTRL_BRAM2_MB_1
PARAMETER HW_VER = 1.00.b

PARAMETER C_MASK = 0xff000000

PARAMETER C_BASEADDR = 0x00010000

PARAMETER C_HIGHADDR = 0x00017fff

BUS_INTERFACE SLMB = DBUS_MB_1

BUS_INTERFACE BRAM_PORT = BUS_DCTRL_BRAM2_MB_1
END

BEGIN Imb_bram_if_cntlr

PARAMETER INSTANCE = PCTRL_BRAM2_MB_1
PARAMETER HW_VER = 1.00.b

PARAMETER C_MASK = 0xff000000

PARAMETER C_BASEADDR = 0x00010000

PARAMETER C_HIGHADDR = 0x00017fff

BUS_INTERFACE SLMB = PBUS_MB_1

BUS_INTERFACE BRAM_PORT = BUS_PCTRL_BRAM2_MB_1
END

BEGIN bram_block

PARAMETER INSTANCE = BRAM1_MB_2
PARAMETER HW_VER = 1.00.a

BUS_INTERFACE PORTA = BUS_DCTRL_BRAM1_MB_2
BUS_INTERFACE PORTB = BUS_PCTRL_BRAM1_MB_2
END

BEGIN Imb_bram_if_cntlr

PARAMETER INSTANCE = DCTRL_BRAM1_MB_2
PARAMETER HW_VER = 1.00.b

PARAMETER C_MASK = 0xff000000

PARAMETER C_BASEADDR = 0x00000000

PARAMETER C_HIGHADDR = 0x00007fff

BUS_INTERFACE SLMB = DBUS_MB_2

BUS_INTERFACE BRAM_PORT = BUS_DCTRL_BRAM1_MB_2
END

BEGIN Imb_bram_if_cntlr

PARAMETER INSTANCE = PCTRL_BRAM1_MB_2
PARAMETER HW_VER = 1.00.b

PARAMETER C_MASK = 0xff000000

PARAMETER C_BASEADDR = 0x00000000

PARAMETER C_HIGHADDR = 0x00007fff

BUS_INTERFACE SLMB = PBUS_MB_2

BUS_INTERFACE BRAM_PORT = BUS_PCTRL_BRAM1_MB_2
END

BEGIN bram_block
PARAMETER INSTANCE = BRAM1_MB_3
PARAMETER HW_VER = 1.00.a
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BUS_INTERFACE PORTA = BUS_DCTRL_BRAM1_MB_3
BUS_INTERFACE PORTB = BUS_PCTRL_BRAM1_MB_3
END

BEGIN Imb_bram_if_cntir

PARAMETER INSTANCE = DCTRL_BRAM1_MB_3
PARAMETER HW_VER = 1.00.b

PARAMETER C_MASK = 0xff000000

PARAMETER C_BASEADDR = 0x00000000

PARAMETER C_HIGHADDR = 0x00003fff

BUS_INTERFACE SLMB = DBUS_MB_3

BUS_INTERFACE BRAM_PORT = BUS_DCTRL_BRAM1_MB_3
END

BEGIN Imb_bram_if_cntlr

PARAMETER INSTANCE = PCTRL_BRAM1_MB_3
PARAMETER HW_VER = 1.00.b

PARAMETER C_MASK = 0xff000000

PARAMETER C_BASEADDR = 0x00000000

PARAMETER C_HIGHADDR = 0x00003fff

BUS_INTERFACE SLMB = PBUS_MB_3

BUS_INTERFACE BRAM_PORT = BUS_PCTRL_BRAM1_MB_3
END

BEGIN bram_block

PARAMETER INSTANCE = BRAM1_MB_4

PARAMETER HW_VER = 1.00.a

BUS_INTERFACE PORTA = BUS_DCTRL_BRAM1_MB_4
BUS_INTERFACE PORTB = BUS_PCTRL_BRAM1_MB_4
END

BEGIN Imb_bram_if_cntlr

PARAMETER INSTANCE = DCTRL_BRAM1_MB_4
PARAMETER HW_VER = 1.00.b

PARAMETER C_MASK = 0xff000000

PARAMETER C_BASEADDR = 0x00000000

PARAMETER C_HIGHADDR = 0x00007fff

BUS_INTERFACE SLMB = DBUS_MB_4

BUS_INTERFACE BRAM_PORT = BUS_DCTRL_BRAM1_MB_4
END

BEGIN Imb_bram_if_cntlr

PARAMETER INSTANCE = PCTRL_BRAM1_MB_4
PARAMETER HW_VER = 1.00.b

PARAMETER C_MASK = 0xff000000

PARAMETER C_BASEADDR = 0x00000000

PARAMETER C_HIGHADDR = 0x00007fff

BUS_INTERFACE SLMB = PBUS_MB_4

BUS_INTERFACE BRAM_PORT = BUS_PCTRL_BRAM1_MB_4
END

BEGIN bram_block

PARAMETER INSTANCE = BRAM1_MB_5
PARAMETER HW_VER = 1.00.a

BUS_INTERFACE PORTA = BUS_DCTRL_BRAM1_MB_5
BUS_INTERFACE PORTB = BUS_PCTRL_BRAM1_MB_5
END

BEGIN Imb_bram_if_cntlr

PARAMETER INSTANCE = DCTRL_BRAM1_MB_5
PARAMETER HW_VER = 1.00.b

PARAMETER C_MASK = 0xff000000

PARAMETER C_BASEADDR = 0x00000000

PARAMETER C_HIGHADDR = 0x00007fff

BUS_INTERFACE SLMB = DBUS_MB_5

BUS_INTERFACE BRAM_PORT = BUS_DCTRL_BRAM1_MB_5
END

BEGIN Imb_bram_if_cntir

PARAMETER INSTANCE = PCTRL_BRAM1_MB_5
PARAMETER HW_VER = 1.00.b

PARAMETER C_MASK = 0xff000000

PARAMETER C_BASEADDR = 0x00000000

PARAMETER C_HIGHADDR = 0x00007fff

BUS_INTERFACE SLMB = PBUS_MB_5

BUS_INTERFACE BRAM_PORT = BUS_PCTRL_BRAM1_MB_5
END



90 MHS File for M-JPEG Encoder Five Processors Homogeneous Embedded System




et D
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MSS File for M-JPEG Encoder Five
Processors Homogeneous Embedded Systen

1  PARAMETER VERSION = 2.2.0 PARAMETER DRIVER_VER = 1.00.a
PARAMETER HW_INSTANCE = fin_ctrl_P2
BEGIN OS END
PARAMETER OS_NAME = standalone 60
5 PARAMETER OS_VER = 1.00.a BEGIN DRIVER
PARAMETER PROC_INSTANCE = MB_1 PARAMETER DRIVER_NAME = generic
END PARAMETER DRIVER_VER = 1.00.a
PARAMETER HW_INSTANCE = clock_cycle_counter_P2
BEGIN PROCESSOR 65 END
10 PARAMETER DRIVER_NAME = cpu
PARAMETER DRIVER_VER = 1.00.a BEGIN OS
PARAMETER HW_INSTANCE = MB_1 PARAMETER OS_NAME = standalone
PARAMETER COMPILER = mb-gcc PARAMETER OS_VER = 1.00.a
PARAMETER ARCHIVER = mb-ar 70 PARAMETER PROC_INSTANCE = MB_3
15 END END
BEGIN DRIVER BEGIN PROCESSOR
PARAMETER DRIVER_NAME = opbarb PARAMETER DRIVER_NAME = cpu
PARAMETER DRIVER_VER = 1.02.a 75 PARAMETER DRIVER_VER = 1.00.a
20 PARAMETER HW_INSTANCE = mb_opb_1 PARAMETER HW_INSTANCE = MB_3
END PARAMETER COMPILER = mb-gcc
PARAMETER ARCHIVER = mb-ar
BEGIN DRIVER END
PARAMETER DRIVER_NAME = generic 80
25 PARAMETER DRIVER_VER = 1.00.a BEGIN DRIVER
PARAMETER HW_INSTANCE = fin_ctrl_P1 PARAMETER DRIVER_NAME = opbarb
END PARAMETER DRIVER_VER = 1.02.a
PARAMETER HW_INSTANCE = mb_opb_3
BEGIN DRIVER 85 END
30 PARAMETER DRIVER_NAME = generic
PARAMETER DRIVER_VER = 1.00.a BEGIN DRIVER
PARAMETER HW_INSTANCE = clock_cycle_counter_P1 PARAMETER DRIVER_NAME = generic
END PARAMETER DRIVER_VER = 1.00.a
90 PARAMETER HW_INSTANCE = fin_ctrl_P3
35 BEGIN OS END
PARAMETER OS_NAME = standalone
PARAMETER OS_VER = 1.00.a BEGIN DRIVER
PARAMETER PROC_INSTANCE = MB_2 PARAMETER DRIVER_NAME = generic
END 95 PARAMETER DRIVER_VER = 1.00.a
40 PARAMETER HW_INSTANCE = clock_cycle_counter_P3
BEGIN PROCESSOR END
PARAMETER DRIVER_NAME = cpu
PARAMETER DRIVER_VER = 1.00.a BEGIN OS
PARAMETER HW_INSTANCE = MB_2 100 PARAMETER OS_NAME = standalone
45 PARAMETER COMPILER = mb-gcc PARAMETER OS_VER = 1.00.a
PARAMETER ARCHIVER = mb-ar PARAMETER PROC_INSTANCE = MB_4
END END
BEGIN DRIVER 105 BEGIN PROCESSOR
50 PARAMETER DRIVER_NAME = opbarb PARAMETER DRIVER_NAME = cpu
PARAMETER DRIVER_VER = 1.02.a PARAMETER DRIVER_VER = 1.00.a
PARAMETER HW_INSTANCE = mb_opb_2 PARAMETER HW_INSTANCE = MB_4
END PARAMETER COMPILER = mb-gcc
110 PARAMETER ARCHIVER = mb-ar
55 BEGIN DRIVER END

PARAMETER DRIVER_NAME = generic
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BEGIN DRIVER

PARAMETER DRIVER_NAME = opbarb
PARAMETER DRIVER_VER = 1.02.a
PARAMETER HW_INSTANCE = mb_opb_4
END

BEGIN DRIVER

PARAMETER DRIVER_NAME = generic
PARAMETER DRIVER_VER = 1.00.a
PARAMETER HW_INSTANCE = fin_ctrl_P4
END

BEGIN DRIVER

PARAMETER DRIVER_NAME = generic

PARAMETER DRIVER_VER = 1.00.a

PARAMETER HW_INSTANCE = clock_cycle_counter_P4
END

BEGIN OS

PARAMETER OS_NAME = standalone
PARAMETER OS_VER = 1.00.a
PARAMETER PROC_INSTANCE = MB_5
END

BEGIN PROCESSOR

PARAMETER DRIVER_NAME = cpu
PARAMETER DRIVER_VER = 1.00.a
PARAMETER HW_INSTANCE = MB_5
PARAMETER COMPILER = mb-gcc
PARAMETER ARCHIVER = mb-ar
END

BEGIN DRIVER
PARAMETER DRIVER_NAME = opbarb
PARAMETER DRIVER_VER = 1.02.a
PARAMETER HW_INSTANCE = mb_opb_5
END

BEGIN DRIVER

PARAMETER DRIVER_NAME = generic
PARAMETER DRIVER_VER = 1.00.a
PARAMETER HW_INSTANCE = fin_ctrl_P5
END

BEGIN DRIVER

PARAMETER DRIVER_NAME = generic

PARAMETER DRIVER_VER = 1.00.a

PARAMETER HW_INSTANCE = clock_cycle_counter_P5
END

BEGIN DRIVER

PARAMETER DRIVER_NAME = generic
PARAMETER DRIVER_VER = 1.00.a
PARAMETER HW_INSTANCE = host_zbt_main
END

BEGIN DRIVER

PARAMETER DRIVER_NAME = generic

PARAMETER DRIVER_VER = 1.00.a

PARAMETER HW_INSTANCE = host_design_controller
END

BEGIN DRIVER

PARAMETER DRIVER_NAME = generic
PARAMETER DRIVER_VER = 1.00.a
PARAMETER HW_INSTANCE = multiplexer
END

BEGIN DRIVER

PARAMETER DRIVER_NAME = generic
PARAMETER DRIVER_VER = 1.00.a
PARAMETER HW_INSTANCE = buff
END

BEGIN DRIVER

PARAMETER DRIVER_NAME = generic
PARAMETER DRIVER_VER = 1.00.a
PARAMETER HW_INSTANCE = ZBT_CTRL_1
END

BEGIN DRIVER

PARAMETER DRIVER_NAME = generic
PARAMETER DRIVER_VER = 1.00.a
PARAMETER HW_INSTANCE = ZBT_CTRL_2
END

BEGIN DRIVER

PARAMETER DRIVER_NAME = generic
PARAMETER DRIVER_VER = 1.00.a
PARAMETER HW_INSTANCE = ZBT_CTRL_3
END

BEGIN DRIVER
PARAMETER DRIVER_NAME = generic

210

215

220

225

230

235

240

245

250

255

260

265

270

275

285

290

295

PARAMETER DRIVER_VER =
PARAMETER HW_INSTANCE
END

1.00.a
= ZBT_CTRL_4

BEGIN DRIVER

PARAMETER DRIVER_NAME = generic
PARAMETER DRIVER_VER = 1.00.a
PARAMETER HW_INSTANCE = ZBT_CTRL_5
END

BEGIN DRIVER

PARAMETER DRIVER_NAME = generic
PARAMETER DRIVER_VER = 1.00.a
PARAMETER HW_INSTANCE = FIFO_MB_1_Out_1
END

BEGIN DRIVER
PARAMETER DRIVER_NAME = generic
PARAMETER DRIVER_VER = 1.00.a

PARAMETER HW_INSTANCE = FIFO_MB_2_Out_1
END

BEGIN DRIVER
PARAMETER DRIVER_NAME = generic
PARAMETER DRIVER_VER = 1.00.a
PARAMETER HW_INSTANCE = FIFO_MB_1_Out_2
END

BEGIN DRIVER

PARAMETER DRIVER_NAME = generic
PARAMETER DRIVER_VER = 1.00.a
PARAMETER HW_INSTANCE = FIFO_MB_1_Out_3
END

BEGIN DRIVER

PARAMETER DRIVER_NAME = generic
PARAMETER DRIVER_VER = 1.00.a
PARAMETER HW_INSTANCE = FIFO_MB_3_Out_1
END

BEGIN DRIVER
PARAMETER DRIVER_NAME = generic
PARAMETER DRIVER_VER = 1.00.a
PARAMETER HW_INSTANCE = FIFO_MB_1_Out_4
END

BEGIN DRIVER

PARAMETER DRIVER_NAME = generic
PARAMETER DRIVER_VER = 1.00.a

PARAMETER HW_INSTANCE = FIFO_MB_1_Out_5
END

BEGIN DRIVER

PARAMETER DRIVER_NAME = generic
PARAMETER DRIVER_VER = 1.00.a
PARAMETER HW_INSTANCE = FIFO_MB_1_Out_6
END

BEGIN DRIVER
PARAMETER DRIVER_NAME = generic
PARAMETER DRIVER_VER = 1.00.a
PARAMETER HW_INSTANCE = FIFO_MB_1_Out_7
END

BEGIN DRIVER

PARAMETER DRIVER_NAME = generic
PARAMETER DRIVER_VER = 1.00.a
PARAMETER HW_INSTANCE = FIFO_MB_1_Out_8
END

BEGIN DRIVER

PARAMETER DRIVER_NAME = generic
PARAMETER DRIVER_VER = 1.00.a
PARAMETER HW_INSTANCE = FIFO_MB_1_Out_9
END

BEGIN DRIVER
PARAMETER DRIVER_NAME = generic
PARAMETER DRIVER_VER = 1.00.a

PARAMETER HW_INSTANCE = FIFO_MB_1_Out_10
END

BEGIN DRIVER

PARAMETER DRIVER_NAME = generic
PARAMETER DRIVER_VER = 1.00.a
PARAMETER HW_INSTANCE = FIFO_MB_4_Out_1
END

BEGIN DRIVER

PARAMETER DRIVER_NAME = generic
PARAMETER DRIVER_VER = 1.00.a

PARAMETER HW_INSTANCE = CTRL_MB_1_FIFOs
END



BEGIN DRIVER

BEGIN DRIVER PARAMETER DRIVER_NAME = bram
PARAMETER DRIVER_NAME = bram PARAMETER DRIVER_VER = 1.00.a
PARAMETER DRIVER_VER = 1.00.a 340 PARAMETER HW_INSTANCE = DCTRL_BRAM1_MB_3
PARAMETER HW_INSTANCE = DCTRL_BRAM1_MB_1 END
END

BEGIN DRIVER
BEGIN DRIVER PARAMETER DRIVER_NAME = bram
PARAMETER DRIVER_NAME = bram 345 PARAMETER DRIVER_VER = 1.00.a
PARAMETER DRIVER_VER = 1.00.a PARAMETER HW_INSTANCE = PCTRL_BRAM1_MB_3
PARAMETER HW_INSTANCE = PCTRL_BRAM1_MB_1 END
END

BEGIN DRIVER
BEGIN DRIVER 350 PARAMETER DRIVER_NAME = bram
PARAMETER DRIVER_NAME = bram PARAMETER DRIVER_VER = 1.00.a
PARAMETER DRIVER_VER = 1.00.a PARAMETER HW_INSTANCE = DCTRL_BRAM1_MB_4
PARAMETER HW_INSTANCE = DCTRL_BRAM2_MB_1 END
END

355 BEGIN DRIVER

BEGIN DRIVER PARAMETER DRIVER_NAME = bram
PARAMETER DRIVER_NAME = bram PARAMETER DRIVER_VER = 1.00.a
PARAMETER DRIVER_VER = 1.00.a PARAMETER HW_INSTANCE = PCTRL_BRAM1_MB_4
PARAMETER HW_INSTANCE = PCTRL_BRAM2_MB_1 END
END 360

BEGIN DRIVER
BEGIN DRIVER PARAMETER DRIVER_NAME = bram
PARAMETER DRIVER_NAME = bram PARAMETER DRIVER_VER = 1.00.a
PARAMETER DRIVER_VER = 1.00.a PARAMETER HW_INSTANCE = DCTRL_BRAM1_MB_5
PARAMETER HW_INSTANCE = DCTRL_BRAM1_MB_2 365 END
END

BEGIN DRIVER
BEGIN DRIVER PARAMETER DRIVER_NAME = bram
PARAMETER DRIVER_NAME = bram PARAMETER DRIVER_VER = 1.00.a
PARAMETER DRIVER_VER = 1.00.a 370 PARAMETER HW_INSTANCE = PCTRL_BRAM1_MB_5
PARAMETER HW_INSTANCE = PCTRL_BRAM1_MB_2 END

END
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