
J Sign Process Syst (2010) 58:69–85
DOI 10.1007/s11265-008-0263-x

Design Trade-offs in Customized On-chip
Crossbar Schedulers

Jae Young Hur · Stephan Wong · Todor Stefanov

Received: 31 October 2007 / Revised: 5 June 2008 / Accepted: 16 August 2008 / Published online: 16 September 2008
© The Author(s) 2008. This article is published with open access at Springerlink.com

Abstract In this paper, we present a design and an
analysis of customized crossbar schedulers for reconfig-
urable on-chip crossbar networks. In order to alleviate
the scalability problem in a conventional crossbar net-
work, we propose adaptive schedulers on customized
crossbar ports. Specifically, we present a scheduler with
a weighted round robin arbitration scheme that takes
into account the bandwidth requirements of specific
applications. In addition, we propose the sharing of
schedulers among multiple ports in order to reduce
the implementation cost. The proposed schedulers ar-
bitrate on-demand (at design time) interconnects and
adhere to the link bandwidth requirements, where
physical topologies are identical to logical topologies
for given applications. Considering conventional cross-
bar schedulers as reference designs, a comparative
performance analysis is conducted. The hardware
scheduler modules are parameterized. Experiments
with practical applications show that our custom sched-
ulers occupy up to 83% less area, and maintain better
performance compared to the reference schedulers.

J. Y. Hur (B) · S. Wong · T. Stefanov
Computer Engineering Lab., TU Delft, The Netherlands
e-mail: J.Y.Hur@ewi.tudelft.nl
URL: http://ce.et.tudelft.nl

S. Wong
e-mail: J.S.S.M.Wong@tudelft.nl

T. Stefanov
Leiden Embedded Research Center, Leiden University,
Leiden, The Netherlands
e-mail: stefanov@liacs.nl
URL: http://www.liacs.nl

Keywords Interconnection architectures · Schedulers ·
Network topology · Reconfigurable hardware

1 Introduction

It is a well-known fact that a crossbar network provides
high network performance and minimum network con-
gestion. The non-blocking nature of communication
and the relatively simple implementation makes the
crossbar popular as an internet switch (Cisco Systems,
Inc., http://www.cisco.com). A typical crossbar consists
of a scheduler and a switch fabric. The scheduler plays
a key role in achieving high network performance and
becomes more important as the size of the network
increases. A commercial crossbar scheduler typically
accommodates an arbiter per input/output port and
each arbiter concurrently arbitrates the incoming pack-
ets [1]. In these fully parallel schedulers, all-to-all con-
nections are required to be accommodated since traffic
patterns are in most cases unknown. Nevertheless, a
major bottleneck of the fully parallel scheduler is the
high cost due to the increasing amount of wires as
the number of ports grows. Figure 1 depicts the area of
the iSLIP crossbar scheduler [1], which is widely used
for the commercial crossbar switches. As the number of
ports increases, the area of the scheduler increases in an
unscalable manner. This is mainly due to the all-to-all
interconnects inside the scheduler module. In addition,
the crossbar scheduler is an important basic building
block for modern networks-on-chip (NoC) [2]. The
scheduler in an on-chip router accommodates all-to-
all connections. In many cases, such schedulers contain
a single central arbiter that sequentially arbitrates a
single request at a time, while data transmission can be

http://www.cisco.com

70 J Sign Process Syst (2010) 58:69–85

Area of i SLIP Scheduler

0

100

200

300

400

500

600

700

4 8 16 32 64 128

Number of ports

N
u

m
b

er
 o

f
g

at
es

 (
 x

 1
00

0)

Figure 1 Area of crossbar scheduler [1].

parallel. Due to this, the arbitration latency increases
as the number of crossbar ports increases. This work
alleviates these problems by establishing on-demand
topologies using a crossbar in a reconfigurable multi-
processor system-on-chip platform. This work is moti-
vated by the following observations:

• The logical topology and traffic information can be
derived from the parallel application specification.

• Communication patterns of different applications
represent different logical topologies. Figure 2 de-
picts task graphs of realistic applications taken from
[21–24], where numbers on links represent the traf-

fic loads (or required bandwidth). The numbers
between braces in the depicted topologies indicate
the number of nodes and the number of required
links. As an example, MJPEG{6,14} indicates that
the MJPEG application requires 6 nodes and 14
links. As depicted in Fig. 2, logical topologies are
application-specific and require only a small por-
tion of all-to-all communications. It can be noted
that we focus on communication performance. De-
tailed descriptions of the computation nodes in
Fig. 2 are not relevant in this work.

• Single applications can be specified differently as
observed in the MJPEG [Fig. 2(7) and (8)] and
MPEG4 specifications [Fig. 2(1) and (5)]. More-
over, the traffic load is differently distributed for
different communication links as depicted in Fig. 2
(see the numbers on the links).

• More than 70% of modern reconfigurable hard-
ware, such as field-programmable gate arrays (FP-
GAs), is preoccupied by millions of wire segments.
As an example, Virtex-II Pro device has nine metal
layers to enhance the routing flexibility and for a
designer to realize on-demand reconfigurability.

In this paper, we present a systematic design, an
analysis, and an implementation of novel application-
specific crossbar schedulers. Our custom schedulers
arbitrate only the necessary interconnects instead of
all-to-all interconnects. In addition, our weighted
round-robin scheduler can be adapted to the traffic
requirements known at design time. The presented

vu au cpu rast

mem1 mem2 mem3 idct

dsp upsp bab risc

(1) MPEG4 {12, 26}

Inp

mem

hs vs

Jug

1

Inp

mem

Jug

2

mem

Op

disp

(2) PIP {8, 8}

Video

in

DCT

Q

DCT

Q

DCT

Q

DCT

Q

VLE

Video

out
Video

in

DCT

Q

VLE

Video

out

(7) MJPEG {5,7} (8) MJPEG {6, 14}

Init

Copy

Copy

HPF Copy

LPF

Copy

Copy

HPF

Copy

Copy

LPF

Copy

Copy

HPF

Copy

Copy

LPF
Sink

Sink

Sink Sink

(6) Wavelet {22, 36}

vld
Run le

dec
iquan idct

Inv

scan
Acd

pred

Up

samp

arm

Vop

rec

pad

Stripe

mem

Vop

mem

(3) VOPD {12, 15}

0.5 910 32
670 173 500

190
0.5 60 40

600 40

250

128
64 64

64
64 64

64

64

70 357

16362

362

27 362
353

16

313

313

94
500

49 300

32

32

32

32

32

32

32

32

32 129

32

32

32

1

785

8

128

79

785

793

921

20

400

180

20 180

10

200

20 20
200

90

100

200

100 100

180

90

10

10
90

25
25

200

10

10

10

25
90

100

25

90

10

10

25

in nr mem

1

vs hs
mem

2

hvs

jug1

mem

3
jug2

se blend

64 64

64128
96

96
96

96
96

96

96

64

64

(4) MWD {12, 13}

40

38072

65

89856

107880

24

72

2778

12

idct

iq

mc
transfer

Decoder

mbintra

Predict

_acdc

9072

(5) MPEG4 {6, 11}

90

Figure 2 Logical topologies with different traffic load distribution in practical applications [21–24].

J Sign Process Syst (2010) 58:69–85 71

schedulers combine the high performance of a parallel
scheduler and the reduced area of customized intercon-
nects. The main contributions of this work are:

• We propose a weighted round robin custom paral-
lel scheduler (WCPS). The presented scheduler is
implemented with on-demand interconnects, where
the physical topologies are identical to the logical
topologies for an application. Experiments on real-
istic applications indicate that our WCPS scheme
performs better than reference schedulers with
moderate area overheads.

• We propose a custom parallel scheduler with
shared arbitration scheme (SCPS). Experiments
show that the implementation cost can be reduced
with moderate performance overheads, when the
number of links per port is sufficiently large.

The organization of this paper is as follows. In
Section 2, related work is presented. The proposed
scheduler designs are described in Section 3. In
Section 4, we present the performance evaluation.
The hardware implementation results are presented in
Section 5. Finally, conclusions are drawn in Section 6.

2 Related Work

Our work is based on the general approach for on-
demand reconfigurable networks [3, 4]. In this pa-
per, we present a custom crossbar scheduler utilizing
on-demand reconfigurable interconnects.

Numerous NoCs targeting ASICs (surveyed in [2])
employ rigid underlying physical networks. Typically,
packet routers constitute tiled NoC architectures. Each
packet router accommodates a crossbar switch fabric
and a scheduler with internally all-to-all physical in-
terconnects. Our scheduler is different from the sched-
ulers in ASIC-targeted NoC routers, since on-demand
topology is established in our scheduler by utilizing the
reconfigurability of a reconfigurable hardware. NoCs
targeting FPGAs [5–8] employ fixed topologies defined
at design-time. In [5–8], packet switched networks are
presented and each router contains a full crossbar fab-
ric. The topology in this related work is defined by
the interconnections between routers or switches. The
scheduler in [7] accommodates an arbiter per port,
which is similar to our approach. In [7], single 2D-
mesh packet router for an 8-bit flit occupies 352 slices
and 10 block memories (BRAMs) in a Virtex-II Pro
(xc2vp30) device. Our work is close to [8], in which a
topology adaptive parameterized network component
is presented. While the crossbar interconnects inside a

router of [7, 8] are still all-to-all, the physical topology
of our crossbar network is identical to the on-demand
topology of the application. In addition, the topology
of our work is defined by the direct interconnection be-
tween processors. In other words, our custom crossbar
constitutes a system network.

In [9], the crossbar network is implemented utiliz-
ing a modern partial and/or dynamic reconfiguration
technology. In [9], a large-sized (928×928 bits) crossbar
network utilizing native programmable interconnects
and look-up tables (LUTs) is presented. However, all-
to-all crossbars in [9] are not scalable, especially for
large-sized networks. Our work differs from [9] in that
our network is customized in order to alleviate the
scalability problem. In addition, our network is im-
plemented in a fully synthesizable VHDL. Our imple-
mented network is technology-independent, though we
target FPGAs in this work.

Recently, a couple of application-specific NoC de-
signs were proposed. In [10], a multi-hop router net-
work customization is presented, whereas our network
is single-hop based. In [11, 12], an internal STbus cross-
bar customization is presented. Our work is similar
to [11, 12] in that the crossbar is customized. In [13],
a design method to generate a crossbar is presented,
in which an application is traced (in simulation) and
the graph clustering technique is used to generate the
crossbar network. Our design method differs from [10–
12] in that our custom crossbar is generated, where
the physical topology is identical to the on-demand
topology of an application. Our arbitration scheme can
also be configured with regards to the traffic demand,
where the physical topology inside the scheduler is
again identical to the required topology. In [14], a
design method to synthesize an application-specific bus
matrix is presented. Our work is similar to [14] in that
the application-specific interconnects are established
between masters and slaves. Furthermore, our work
is similar in that a shared arbitration method is pre-
sented. However, our design method differs in that
the on-demand topology information and the traffic
bandwidth information are extracted from the appli-
cation specification step. On the other hand, in [14], a
simulation-based traffic trace is conducted to synthesize
the application-specific topology, which requires hours
of design space exploration time. Finally, a perfor-
mance comparison between the full crossbar and the
partial bus matrix is not presented.

Finally, our crossbar network is similar to the vir-
tual output queues (VOQ) in that the physical FIFOs
are established at the input ports. The VOQ-based
switch such as iSLIP [1] scheduler is not popular in the
multi-hop NoC due to the high cost. We highlight that

72 J Sign Process Syst (2010) 58:69–85

our crossbar interconnects are single-hop, not multi-
hop NoC. In other words, a crossbar (with single-hop
latency) constitutes a system network in the multi-
processor system on chip platform. Our application-
specific network combines high performance of a
VOQ-based crossbar and the low cost of customized in-
terconnects. In [15], a fast round-robin crossbar sched-
uler is designed and implemented for high performance
computer networks. In the conventional (weighted or
priority-based) round-robin schedulers and [15], all-
to-all interconnects are established because the traffic
pattern is unknown. These conventional full crossbar
schedulers accommodate the circuitry to arbitrate all
possible requests from all ports. The major difference
with our work is that our scheduler is application-
specific. In the presented design flow, only necessary
interconnects are systematically established based on
the traffic patterns that an application exhibits. More-
over, the arbitration is only performed over actually
established interconnects, instead of conventional all-
to-all interconnects. Our custom scheduling scheme dif-
fers from traditional traffic-specific scheduling schemes,
such as a weighted round-robin, in that our scheduler
does not arbitrate unnecessary interconnects. Accord-
ingly, the cost is reduced by systematically establishing
only necessary FIFOs.

3 Customized On-chip Crossbar Scheduler

As mentioned earlier, our objective is the design of cus-
tomized reconfigurable crossbar schedulers in order to
reduce the area compared to a fully parallel scheduler
and increase the performance compared to a sequential
scheduler. The same crossbar scheduler is required to
dynamically generate the control signals to configure
the switch fabric within a crossbar.

3.1 Design Flow

Our scheduler has been developed to be integrated as
modular communication components in the ESPAM
tool chain as depicted in Fig. 3. Details of the ES-
PAM design methodology can be found in [16–18].
In ESPAM, three input specifications are required,
namely application/mapping/platform specification in
XML. An application is specified as a Kahn Process
Network (KPN). In this work, the KPN is considered
as a programming model. A KPN is a network of con-
current processes that communicate over unbounded
FIFO channels and synchronize by a blocking read
on an empty FIFO. The KPN is a suitable model of

P1

P2

P3

P4
Video
in/out

DCT Q VLE

P1 P2 P3 P4

Platform spec.
Video
in/out DCT Q VLE

Application spec . (KPN)Mapping spec.
0

1

2

3

Parameters set
Network type = crossbar
Scheduler = custom parallel
Topology table

Parameters set
Data width = 32 bits
Number of processors = 4

ESPAM / XPS Tools

Customized scheduler (netlist)

IP
cores
library

Crossbar network

COMPAAN

Application
(Matlab/C)

YAPI

Parameters set
Scheduler weight table

FPGA
bitstream

Processor1

Processor2

FIFOs 3

FIFOs 4

FIFOs 1

FIFOs 2

Processor3

Processor4

Arbiter1

Arbiter2

Arbiter3

Arbiter4

Control signals

scheduler

switch

DataRead request

Write into FIFOs

Figure 3 ESPAM design flow [16–18].

computation on top of the presented crossbar intercon-
nection network, due to the following facts:

• The synchronization scheme is relatively simple.
Processors synchronize only with the full/empty
status of the hardware FIFOs. Subsequently, a par-
allel programmer does not need to explicitly handle
the synchronization, since the synchronization is
inherently supported by the hardware FIFOs.

• The system eliminates the traditional head of the
line (HOL) blocking problem that all packets must
wait behind the contended packet in the input
queue. This is due to the fact that a physical FIFO
is established for a logical channel in a dedicated
manner.

A KPN specification is automatically generated from
a sequential Matlab program using the COMPAAN
tool [19]. We define the network topology in the KPN
specification as the logical topology for an application,
which consists of tasks and logical channels. Exemplary
logical topologies are depicted in Fig. 2. Single task or
multiple tasks are assigned to a physical processor in
the mapping specification. The network type and the
port mapping information are specified in the platform
specification. Figure 3 depicts how custom crossbars
can be implemented from a four-node MJPEG ap-
plication specification. In the platform specification,
four processors are port-mapped on a crossbar. From
the mapping and platform specifications, port-mapped
network topology is extracted as a static parameter
and passed to ESPAM. We define the extracted port-
mapped network topology as the on-demand topology

J Sign Process Syst (2010) 58:69–85 73

that an application requires, which consists of proces-
sors and physical links. Additionally, the traffic band-
width information is obtained from the YAPI tool [20].
Subsequently, ESPAM refines the abstract platform
model to an elaborate parameterized RTL (hardware)
and C/C++ (software) models, which are inputs to the
commercial Xilinx Platform Studio (XPS) tool. The
XPS tool generates the on-demand netlist (depicted in
Fig. 3) with regard to the parameters passed from the
input specifications. Our system model is based on the
local write, remote read scheme. The processor issues
the request that designates the target port index and
target FIFO index. Subsequently, the FIFO responds
with a data stream to the processor. The crossbar net-
work transfers the requests (from processors to FIFOs)
and the data (from FIFOs to processors). The directions
of requests (from left to right) and the direction of
the data transfers (from right to left) are depicted in
Fig. 3. Finally, a bitstream is generated for the FPGA
prototype board to check the functionality and the
performance.

3.2 Reference Scheduling Schemes

We consider a sequential scheduler (SQS) and a fully
parallel scheduler (FPS) as references to compare with
our custom schedulers. Figure 4 depicts the behavior
of the SQS, FPS, and our custom schedulers for the
MJPEG application in Fig. 2(8). Figure 4(1) depicts
the logical topology (or data flow graph) with 6 nodes
and 14 channels. In our model of computation, each
communication channel is mapped onto the FIFOs
labeled by F1 ∼ F14. Figure 4(2) depicts the system
model. The physical system consists of 6 nodes and
14 links (or 14 FIFOs). The ith node is connected
to processor port p′

i and FIFO port pi. For example,
in the sixth node, processor P6 is connected to the
processor port p′

6 and FIFO F14 is connected to the
FIFO port p6, as depicted in Fig. 4(2). A FIFO in-
dex corresponds to the channel index, as depicted in
Fig. 4(1). The crossbar network transfers the requests
(from processors to FIFOs) and the data (from FIFOs
to processors). For example, a bold line in Fig. 4(2)
represents that processor P6 sends the request signal
to FIFO F11. Subsequently, FIFO F11 sends data to
processor P6. Note that data in FIFO F11 is from
processor P4. Figure 4(3) depicts the bipartite graph
based on the system model. The thick and thin lines
depict all possible requests according to the topology in
Fig. 4(1). The thick lines represent an example request
pattern. In this example, four processors request to four
FIFOs. The numbers on the link represent the relative
amount of traffic. For example, the link between p′

6

and p1 is 5 times less utilized than the link between p′
4

and p1.
Figures 4(4)∼(8) depict the cycle-by-cycle behavior

of five different schedulers for the request patterns
(bold links) in Fig. 4(3). In order to establish the link
between the processor and the target FIFO, three steps
are required. First, a processor requests to an arbiter.
Second, the arbiter grants the request when the target
port is idle and the round-robin pointer points to the
requesting processor. Third, the request is accepted
when the target FIFO contains data. These operations
are denoted by R, G, and A. The round-robin pointer
is denoted by the oval. For the sake of simplicity, the
data is assumed to be requested by a processor in
the first cycle. The arbiter is assumed to perform a
circular (weighted) round-robin arbitration in the order
of p′

1, p′
2, p′

3, and so on. After the request is granted, a
link between a processor and a FIFO port is established
using a handshaking protocol, which is assumed to take
2 cycles. The bold lines in Fig. 4(4)∼(8) represent actual
data transmission, which is assumed to take 5 cycles.

Figure 4(4) depicts the behavior of a SQS, where one
port is arbitrated at a time. A crossbar contains a cen-
tral arbiter that sequentially grants a single request at a
time, while data transmission can be parallel. A request
is served after a request in the previous port index is ar-
bitrated. Subsequently, 48 cycles are required to serve
those requests, as depicted in Fig. 4(4). Figure 4(5)
depicts FPS, where homogeneous arbiters are located
in each port. Unlike the SQS, multiple requests can be
arbitrated in parallel. Each arbiter checks for all ports
whether there is a request or not. Consequently, 40
cycles are required in total, as depicted in Fig. 4(5). Our
FPS implementation is similar to the iSLIP scheduler
[1], in that circular round-robin pointer is updated when
the request is granted. Similar to iSLIP scheduler, all-
to-all interconnects are established. The iSLIP sched-
uler is designed for the input-queued packet switch.
Our FPS differs from the iSLIP scheduler in that the
FPS has been implemented for on-chip multiprocessor
systems with distributed memories. Additionally, while
the iSLIP scheduler [1] requires two stages of arbiter
arrays, our FPS requires a single stage of the arbiter ar-
ray. As Fig. 4(5) depicts, FPS performs better than SQS,
since concurrent requests can be served in parallel.

3.3 Round Robin Custom Scheduler

The round-robin custom parallel scheduler (CPS)
scheme is presented in [21]. The CPS is similar to the
FPS in that the scheduler consists of arbiter arrays. In
the CPS, however, the round-robin pointer update op-
eration is performed only for on-demand interconnects.

74 J Sign Process Syst (2010) 58:69–85

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1718 19 20 2122 2324 25

R

GR

R

R

G

G

R : data request G : request grant A : accept : actual data transfer : round -robin pointer

cycles

p1

p2

p3

p4

R

R

G

G

R
p6

p5

R G

R G

(3) Data requests example

p’1

p’2

p’3

p’4

p’5

p’6

p1

p2

p3

p4

p5

p6

F
IF

O
 ports

P
ro

cessor ports

p’ pointer

P
orts

(2) System model

P1

P2

P3

P4

P5

P6

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

1

5
5

5
5
5

5 5

5

5

1

(4) Single arbiter
(SQS)

R G

R

R G R G

R G R G

R G R

R G

R G R
(3)

G

G

R G

R

R G R G R G

R G R G

R G R G

R G R G R G

R G R G R G

p’ pointer

(5) Full parallel
(FPS)

(6) Custom parallel
(CPS)

(8) Shared custom
(SCPS)

(7) Weighted round-robin
custom (WCPS)

p’1

p’2

p’3

p’4
p’5

p2

p3

p4
p5

p’6 p6

p1

2
34

5
6

26

3
6

4
6

56

6

2
345

6 1

scheme

p’ pointer

p’ pointer

R

R G R G R G

G R

G R

G R
G R

G R

G R

G R
G R

G

G

G
G

R G

R G

R G R G R G

R G R G

R G R G

2
3456 1

2
345

6 1

2
34561

2
3456 1

2
3456 1

2345
61

G R G R GR
G R G

2
34

5
6

3
6

4
5
6

5

5 5

P1

P2

P3

P4

P5

P6

p’1

p’2

p’3

p’4

p’5

p’6

p1

p2

p3

p4

p5

p6

Write into FIFOs

Read request
to remote
FIFOs

Data
transfer

(1) Logical topology

P
ro

ce
sso

rs

F
IF

O
s

Interconnection network

1 1

1 1 1

1

1

1

1

1

1

1

1

1

2 2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2 2 2 2

2 2 2 2 2

3 1 2 3 3

3

3

3

3

3

3

3

3

3

3

3

3

3

3 33 3 3

3

3

3

3

33

3

33

3 3

3

3 3 3

3

3 3

3

3 3 3 3 3 3

3

4 4 4

4

4

4

4

4

4

4 4

4

4

4

4 4

4 4

4

444

4

4

4 4 4

4

4 4

4 4

4

4 4

4 4

4 4

4

4 4 4

4

5 5 5

5

5

5

5

5

5

5

5

55

5

5

5

5

5 5 5 5 5

5 5 5

5 555

5

5 5

5 5 5

5 5

5

5

55

6 6 6

6

6

6

6

6

6

6

6

6

6

6

6 6

6 6

6 6

6

66

6 6

6 6

6

6 6

6 6

6 6 6 6

5

6 6

6 6

6

6

6 6

6 6

6 6

6

6

6

6

6

6

6 6 6

6666

6 6 6

Processor P6 requests
to FIFO F11 that is
connected to port p4.

Physical link between p’6 and p4 is established.
Processor P6 reads data from FIFO F11.

Request from processor P6 is granted,
because the round-robin pointer points to p’6 .

Request from processor P6 is accepted, because port p4

is idle and target FIFO F11 contains data.

The round-robin pointer
points to p’6.

Established
interconnects

Parallel arbitration logic that arbitrates
only established interconnects

 Multiple requests can be
 arbitrated in parallel .
 All-to-all interconnects
 are established.

Only necessary interconnects
are established.

Single request
is arbitrated
at a time .

Partly parallel
arbitration

A

A

A

A

A

A

A

A

A
A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A
A

A

A

A
A

A

A

A
A

3

Index

F1

F5

F6
F7

F8
F9

F10
F11

F12
F13

F14

F 1

F2

F3

F
4

F5

F
6

F
7F8

F9

F10

F11

F12

F 13

F14

(6 nodes, 14 channels)
(6 nodes, 14 FIFOs) (Requests in bold arrows)

Processor P3 requests to FIFO F8 that is connected to port p3 .

Pi ith processor
p’i ith processor port
pi ith FIFO port
Fi ith FIFO

P
orts

P
orts

P
orts

P
orts

(by processor) (by arbiter) (by target FIFO) (between processor and FIFO)

p’1

p’2

p’3

p’4

p’5

p2

p3

p4

p5

p’6 p6

p1

p’1

p’2

p’3

p’4

p’5

p2

p3

p4

p5

p’6 p6

p1

p’1

p’2

p’3

p’4

p’5

p2

p3

p4

p5p’6

p6

p1

p1

p2

p3

p4

p6

p5

p1

p2

p3

p4

p6

p5

p1

p2

p3

p4

p6

p5

p1

p2

p3

p4

p6

p5

Figure 4 Different scheduling schemes.

We exploit the fact that the application is specified by
a directed graph, in which each task has possibly a
different number of connected channels. As a design
technique, each arbiter is parameterized with regard
to the on-demand logical topology. Application-specific
and differently sized arbiters ensure that the topol-
ogy of the physical interconnects is identical to the
on-demand topology specified by the application par-
titioning. Given the on-demand topologies from the
application specifications, our CPS operates as follows:

1. Request: A processor issues a request, by designat-
ing the target FIFO port and FIFO index.

2. Grant: If there is a request in the round-robin
pointer and the target FIFO port is idle, the request
is validated.

3. Accept: The target FIFO status is checked. If the
target FIFO is not empty, the request is accepted
and the physical link is established. The round-
robin pointer is updated to the one that appears
next in the round-robin schedule, where the round-
robin schedule is determined by the on-demand
topology for an application.

If the pointed request is a Clear_Request, the link is
cleared. If there is no request, the round-robin pointer

J Sign Process Syst (2010) 58:69–85 75

is incremented. Figure 4(6) depicts our example sce-
nario for the CPS. Each arbiter checks if there is a
request for required links. As an example, p1 has five
probable requests from p′

2 ∼ p′
6. Therefore, the CPS

arbiter at p1 services five links. Similarly, p5 has two
probable requests from p′

5 and p′
6. Therefore, the CPS

arbiter at p5 services two links. For comparison, the
FPS arbiter [Fig. 4(5)] services 6 links at each port.
As Fig. 4(6) indicates, 35 cycles are required to serve
the request patterns in our example. In general, CPS
performs better than FPS, since the request search
space of CPS is a subset of the full search space of the
FPS. Area reduction also can be expected, since only
on-demand links are physically established. Moreover,
only one link is often connected to an arbiter, indicating
that the arbiter performs only handshaking operation
and implementation cost can be reduced. Additionally,
CPS performs significantly better than SQS, since the
arbitration is performed in parallel. In many cases, CPS
occupies more area than SQS. The area overhead issue
is discussed in Section 5.

3.4 Weighted Round Robin Scheduler

In the previous section, we presented a topologically
customized scheduler (CPS) scheme. The CPS per-
forms better and provides lower cost for an on-demand
topology, compared to reference schedulers [21]. In
the CPS scheme, an arbitration is performed in a sim-
ple round-robin fashion and the differently utilized
traffic bandwidth is not considered. In this section,
we propose a weighted round-robin custom scheduling
scheme (WCPS) in order to adapt the scheduler to the
traffic requirements.

3.4.1 Weighted Round Robin Custom Scheduler
(WCPS)

Our proposed WCPS scheme is similar to the CPS
in that the round-robin pointer is updated only for
on-demand interconnects. Similarly, the topology of
the physical interconnects is also identical to the on-
demand topology specified in the ESPAM design flow.
The difference between WCPS and CPS is that the
pointer update operation in WCPS is performed with
regard to weights. The weight refers to the relative
number of utilized tokens (or packets), which corre-
sponds to traffic bandwidth requirements. In this con-
text, we define the weight by the relative number of
requests for tokens utilized in a communication link.
A token refers to a set of data words, which is our
primitive communication unit. We exploit the fact that
the weights can be determined by application profiling.

In this work, we use the YAPI tool [20] (see Fig. 3).
As a design technique, each arbiter is parameterized
with respect to the on-demand topology together with
a weight distribution. By using differently sized ar-
biters and application-specific weight information, we
can increase the network performance. This is due to
the fact that the scheduler checks links with a high
probability of requests more frequently. The main idea
of the WCPS to match physical network bandwidth
to logical traffic bandwidth. Only when the traffic is
uniformly distributed, our WCPS is identical to CPS.
The novelty of our WCPS lies in that the arbitration
is performed over only actually established on-demand
interconnects. This means that no physical circuitry is
established for unnecessary interconnects.

It can be noted that our scheme of assigning weights
is static. We are motivated by the fact that the traffic
information can be statically derived from the appli-
cation specification. The traffic variation is not signif-
icant especially in data-streaming applications, since
the traffic pattern is rather regular and periodic. The
presented design flow rapidly instantiates on-demand
interconnects and scheduler IPs, based on the extracted
traffic information. In this work, we assume that the
token (or packet) sizes for the applications in Fig. 2
are similar (or same). Though the token size can be
different in the ESPAM design flow, the token sizes are
similar for the applications considered in this work. As
an example, YAPI [20] profiling result indicates that
97% of the Wavelet traffic and 86% of the MJPEG
traffic contain identical-sized tokens.

3.4.2 WCPS Example

In Fig. 5(1), weights for each link are depicted as an
example. The number on the channels refers to the
relative number of requests for tokens. As an example,
the weight of the links from p′

2 ∼ p′5 to p1 is 5, respec-
tively. The weight of the link from p′

6 to p1 is 1. This
means that the links from p′

2 ∼ p′
5 to p1 are five times

more utilized than the link from p′
6 to p1. Therefore,

the WCPS arbiter at p1 checks p′
2 ∼ p′

5 five times more
often than p′

6.
We implement WCPS using the weight table which

contains a list with the sequence of processor ports that
an arbiter checks. Figure 5(2) depicts the weight table
for port p1. The sequence is permutated such that the
same processor port index is sparsely distributed. We
use a weight counter for each processor port index to
handle the permutation. As an example, an arbitration
sequence for port p1 is depicted in Fig. 5(3). In this
example, the maximum weight is 5, indicating that there
are five sub-rounds. Initially, the weight counters are

76 J Sign Process Syst (2010) 58:69–85

(1) WCPS arbiter
p’6

p’5

p’4

p’3

p’2

p’1
p15

5
5
5
1

Arbiter for port p1

with weighted
round-robin pointer

2
34

5
6

 p’2 p’3 p’4 p’5 p’6p p’

 p1 5 5 5 5 1

1st 2nd 3rd 4th 5th sub-round

(2) Weight table for port p1

(3) Request check sequence

Iterate

p’2=5
p’3=5
p’4=5
p’5=5
p’6=1

p’2=4
p’3=4
p’4=4
p’5=4
p’6=1

p’2=3
p’3=3
p’4=3
p’5=3
p’6=1

p’2=2
p’3=2
p’4=2
p’5=2
p’6=1

p’2=1
p’3=1
p’4=1
p’5=1
p’6=1

p’2=0
p’3=0
p’4=0
p’5=0
p’6=0

2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 6

Figure 5 Weighted round robin custom parallel scheduler.

set by the weight table, as depicted in the rectangle
in Fig. 5(3). In each sub-round, the arbiter searches
processor ports, which have the same counter values.
Subsequently, the weight counter value is decremented.
When all the weight counter values are zero, or all the
sub-rounds are finished, then the counter values are
set by the initial weight table. The process is iterated,
similarly to a round robin approach.

Figure 4(7) depicts an example scenario for the
WCPS. The weight from p′

2 ∼ p′
6 to p1 is five times

greater than the weight from p′
6 to p1. In this case, 33

cycles are required to serve the request patterns. For
comparison, the CPS requires 35 cycles. The WCPS
requires less cycles than the CPS, because the arbitra-
tion time at port p1 is reduced. In most cases, WCPS
performs better than CPS, since the arbitration is adap-
tively performed with regard to the traffic information.
WCPS occupies more area than CPS, since the internal
logic is relatively more complex. The area overhead
issue is also discussed in Section 5.

3.5 Shared Arbiters for Custom Crossbars

In our (W)CPS scheme, an arbiter is accommodated at
each crossbar port in order to perform parallel arbi-
tration. In addition, we considered that a single task is
mapped onto a single processor. However, the number
of tasks (or processes) is often greater than the number
of ports (or processors). In this case, it is required
to map multiple tasks onto a single processor. Subse-
quently, the number of links per node increases and the
implementation cost of (W)CPS increases accordingly.
In this section, we propose a novel shared arbitration

scheme in order to provide a design trade-off between
performance and cost.

3.5.1 Shared Custom Parallel Scheduler (SCPS)

In this work, we propose a custom scheduler with the
shared arbitration (SCPS) scheme. In SCPS, multiple
arbiters are shared, such that each arbiter sequentially
performs arbitration while multiple arbiters operate in
parallel. Our SCPS scheme combines the advantages of
the low cost in SQS and increased performance in CPS.
Figure 6 depicts an example of CPS and SCPS for a
six-node MJPEG application. Figure 6(1) depicts CPS,
where an arbiter is established per port. Figure 6(2)
depicts SCPS, where arbiters for port (p1, p2), (p3, p6),
and (p4, p5) are shared. The traffic requirement is also
depicted in Fig. 6, derived from the YAPI tool [20]. λ is
the total incoming traffic bandwidth or an arrival rate to
the p1 port. We aim to reduce the implementation cost,
by sharing the arbiter resources. Figure 6 indicates that
the number of arbiters in SCPS is 3, while the number
of arbiters in CPS is 6. This means the implementation
cost can be reduced. Our SCPS is also constructed
over on-demand interconnects. Compared to CPS, the
network performance can be likely decreased. This is
due to the fact that a shared arbiter is accommodated
for multiple ports and the round-robin search space can
be increased for the shared arbiters.

Figure 4(8) depicts the example scenario for the
SCPS, where 3 sequential arbiters operate in parallel.
As Fig. 4(8) shows, 39 cycles are required to serve the
request patterns. For comparison, the CPS requires 35
cycles and the WCPS requires 33 cycles.

3.5.2 Clustering Method

In this section, we present a method to cluster arbiters.
Our aim is to minimize the performance degradation
by balancing the traffic bandwidth, compared to CPS.

p’6

p’5

p’4

p’3

p’2

p’1

(1) CPS

p6

p5

p4

p3

p2

p12
34

56

26

3
6

4
6

5
6

6

32 /129

 λ/129

129λ/129

(2) SCPS

p’6

p’5

p’4

p’3

p’2

p’1 A’1

A’2

A’3

p6

p5

p4

p3

p2

p1

2
34

5
6

3
6

4
56

A1

A2

A3

A4

A5

A6

32λ
λ

λ

/129
32λ/129

32λ/129
32λ/129

32λ/129
32λ/129

32λ/129
32λ/129

32λ/129
32λ/129

32 /129

32λ/129
32λ/129

32λ/129
32λ/129

32λ/129
32λ/129

32λ/129
32λ/129

32λ/129
32λ/129

32λ/129
32λ/129

λ/129

129λ/129

Figure 6 Shared custom parallel scheduler.

J Sign Process Syst (2010) 58:69–85 77

In this work, we consider clusters of two arbiters only.
Given a CPS scheme, our method can be described as
follows:

1. Calculate cost function: Calculate the individual
cost using a cost function for arbiter A j, where
1 ≤ j ≤ p. p is the number of CPS arbiters.

2. Sort: Sort arbiters in an increasing order, based on
the derived cost function.

3. Iterate clustering: Iteratively cluster arbiters with
the lowest and the highest cost function, in the
sorted list.

The cost function is a relative metric to represent the
utilization of an arbiter. We define the cost function for
the arbiter Aj as the following:

C
{

Aj
} = links j

2
× Uj, (1)

where C{Aj} refers to the cost function of a CPS arbiter
in the j th port. links j refers to the number of physical
links which are connected to the arbiter Aj.

links j

2 corre-
sponds to the relative arbitration latency, as described
in the next section. Uj refers to the summation of the
traffic for the arbiter Aj and corresponds to relative
arbiter utilization. The individual channel utilization
for U j is depicted in Fig. 6. As an example, U1 is derived
by 32+32+32+32+1

129 [see Fig. 6(1)]. We multiply Uj by links j

2
in order to reflect the actual utilization of an arbiter. As
an example in Fig. 6, we cluster arbiters in the following
way:

1. Calculate cost function: We calculate the cost func-
tion for each arbiter. As an example, links1 =
5 and U1 = 32+32+32+32+1

129 for arbiter A1. There-
fore C{A1} = 5

2 × (32+32+32+32+1
129) = 2.5. Similarly,

C{A2} = C{A3} = C{A4} = C{A5} = 0.496, and
C{A6} = 0.5.

2. Sort: Arbiters are sorted in an increasing order. We
obtain ({A2},{A3},{A4},{A5},{A6},{A1})

3. Iterate clustering: We cluster {A1,A2}, {A3,A6}, and
{A4,A5}.

In this way, a highly utilized arbiter and a less utilized
arbiter can be clustered. Also, more than 2 arbiters (or
variable-sized arbiters) can be shared in a similar way,
from the sorted list.

4 Performance Analysis

In this section, we present comparative performance
evaluations for different schedulers. In Section 4.1,
we define the performance metric. Different crossbar

schedulers are compared in terms of the service rates.
In Section 4.2, we conduct the queueing modeling and
compare the entire network performance for consid-
ered applications.

4.1 Scheduler Performance

4.1.1 Performance Metric

In order to compare the relative scheduler perfor-
mance for given applications, we consider the following
performance metric for different schedulers:

Mscheduler =
N∑

i=1

μi × ui

N
, (2)

where Mscheduler is a performance metric for each sched-
uler and refers to the relative service rate in tokens/s.
μi is the service rate of the arbiter for the ith logical
channel. N is the total number of logical channels. ui

refers to the normalized channel utilization for the ith
channel. The ui is multiplied by the arbiter service rate
μi, in order to reflect the actual amount of traffic for an
application. The service rate μi can be modeled as:

μi = (Tarbit + Ttransmit)
−1, (3)

where Tarbit is an arbitration latency to establish a link.
Ttransmit is the actual data transmission latency after the
link is established. Ttransmit can be derived as Num_Word

Clksys
,

where Num_Word refers to the number of data words,
or the token size. Clksys refers to the system clock
frequency.

4.1.2 Crossbar Schedulers

In this subsection, we present a performance compar-
ison between five different schedulers. We can fairly
compare different scheduling schemes, since only the
arbitration latencies are different. Tarbit in Eq. 3 for
different crossbar schedulers can be approximated as
follows:

Tarbit_SQS = k1

⌊
#ports

2

⌋
× Chand

Clksys
(4a)

Tarbit_FPS = k2

⌊
#ports

2

⌋
+ Chand

Clksys
(4b)

Tarbit_CPS = k3

⌊
#links

2

⌋ + Chand

Clksys
(4c)

78 J Sign Process Syst (2010) 58:69–85

Tarbit_WCPS = k4

⌊
#links

2

⌋ (
1 − Wstd

Wmax

)
+ Chand

Clksys
(4d)

Tarbit_SCPS = k5

⌊
#links

2

⌋{
(α Chand)+(1−α) Chand

}

Clksys
, (4e)

• Tarbit_SQS refers to the arbitration latency (in sec-
onds) for the sequential scheduler (SQS). k1 is the
scaling factor to calibrate the hardware implemen-
tation. The request check latency is modeled by⌊ #ports

2

⌋
cycles. We divide by 2, since the circular

round-robin pointer is statistically located in the
middle of the search space. In the SQS, there is only
a single arbiter in the system. Only after the current
processor port is served, the next port is served.
Chand refers to the handshaking latency in number
of cycles. Therefore, we model these sequential
operations by multiplying the handshaking latency
Chand by

⌊ #ports
2

⌋
.

• Tarbit_FPS refers to the arbitration latency in the fully
parallel scheduler (FPS). In the FPS, the arbiter
at each port obliviously checks for all ports. The
request check latency is modeled by

⌊ #ports
2

⌋
cycles,

similarly to the SQS. However, multiple requests
can be concurrently served. Therefore, we model
these parallel arbitration operations, by adding⌊ #ports

2

⌋
and the Chand.

• Tarbit_CPS refers to the arbitration latency for the
custom parallel scheduler (CPS). Similarly to the
FPS, we model the arbitration latency by adding
the request check latency and the Chand. However,
the request check latency is modeled by

⌊ #links
2

⌋
,

since the actual arbitration is performed for the
only established physical links, instead of all links.
#links is equal or less than #ports. Therefore, it
is obvious that Tarbit_CPS is less than Tarbit_SQS and
Tarbit_FPS. Only if the required topology is all-to-all,
then the Tarbit_CPS is equal to Tarbit_FPS.

• Tarbit_WCPS refers to the arbitration latency for
the weighted round-robin scheduler (WCPS). In
Eq. 4d, Wstd refers to the standard deviation of
weights for connected links in an arbiter. Wmax

refers to the maximum weight in the connected
links to an arbiter. We divide by Wmax in order
to normalize the weight. Compared to the round-
robin CPS, the arbitration latency can be reduced.
As an example, in Fig. 4(3), Wstd

Wmax
for port p1 is

1.8
5 , or 0.36. We used the term Wstd

Wmax
to statistically

model the reduced arbitration latency, due to the
following facts. First, the higher weight deviation
means that the variation of link bandwidths (that an
application requires) is high. Second, our scheduler

allocates higher bandwidth (or time slots) to the
links that require high bandwidth. Third, the traffic
pattern of our streamed multimedia applications
is highly regular and periodic. As an example,
the MJPEG application is performed block-wise,
where each block contains 8 × 8 image pixels. Due
to the regularity of the traffic pattern, the statistical
model can be simplified as shown in Eq. 4d. It
must be noted that the Wstd is calculated for only
connected links. In other words, the WCPS arbiter
at each port checks for only the necessary ports with
different weights.

• Tarbit_SCPS refers to the arbitration latency for the
shared custom parallel scheduler (SCPS). In Eq. 4e,
α is 1 if the number of arbiters is 1. In this case,
SCPS is the same as SQS. α is 0 if the number of
arbiters is greater than 1. In this case, the SCPS
operates in a same way as CPS. The difference
between CPS and SCPS is that the #links of a SCPS
arbiter is in many cases greater than the #links of
CPS arbiter. For example, as depicted in Fig. 6(2),
#links for (A′1,A′2,A′3) are (5,2,3). For compari-
son, as depicted in Fig. 6(1), #links for (A1 ∼ A6)
are (5,2,2,2,2,1).

4.1.3 MJPEG Example

We consider the six-node MJPEG application, depicted
in Fig. 2(8). The different scheduling schemes are given
in Fig. 7. The service rates for each scheme are derived
as follows. We assume that the schedulers operate at
100MHz and k1 ∼ k5 are 1. Chand is assumed to be 2
cycles per token, since each of the request and the
acknowledgement requires 1 cycle, respectively. To ob-
tain Ttransmit, it is assumed that each word takes 1 cycle
to transmit.

• SQS: The service rate μs per token for the cen-
tralized SQS arbiter is derived as follows. Con-
sidering the single-word token communications,
or Num_Word = 1, Ttransmit is 1 cycle

100 MHz (in seconds).
Since Chand is two cycles and number of ports
is 6, Tarbit_SQS is obtained from Eq. 4a and it is
(� 6

2 �×2) cycles
100 MHz . By substituting Tarbit_SQS to Eq. 3, μs

can be derived by 100 MHz
(� 6

2 �×2+1)cycles
= 14.3 × 106 to-

kens/s. The performance metric MSQS is derived
from Eq. 2. As Fig. 7(1) depicts, there are 14 chan-
nels, or N = 14. The relative channel utilization u
is also depicted in Fig. 7(1). As a result, MSQS is

derived by (14.3×106)(12×32+1+129
129)

14 or 4.1 × 106 tokens/s,
from Eq. 2. The derived MSQS indicates the relative
service rate for the MJPEG traffic.

J Sign Process Syst (2010) 58:69–85 79

p’6

p’5

p’4

p’3

p’2

p’1

(3) (W)CPS

p6

p5

p4

p3

p2

p12
34

5
6

2
6

3
6

4

6

5
6

6

(4) SCPS

p’6

p’5

p’4

p’3

p’2

p’1

p6

p5

p4

p3

p2

p1

2

34
5

6

3
6

4
5

6

p’6

p’5

p’4

p’3

p’2

p’1

(1) SQS

p6

p5

p4

p3

p2

p1

2

34

5

6 1

p’6

p’5

p’4

p’3

p’2

p’1

p6

p5

p4

p3

p2

p1
2

34
5

6
A1

A2

A3

A4

A5

A6

1

2
34

5
6 1

2
34

5
6 1

2
34

5
6 1

2
34

5
6 1

2
34

5
6 1

(2) FPS

µs

µf1

µf2

µf3

µf4

µf5

µf6

µ(w)c1

µ(w)c2

µ(w)c3

µ(w)c4

µ(w)c5

µ(w)c6

A’1

A’2

A’3

µsc’1

µsc’2

µsc’2

A1

A2

A3

A4

A5

A6

32 /129

32 /129

32 /129

32 /129

32 /129

32 /129

32 /129

32 /129

32 /129

32 /129

32 /129

32 /129

 /129

32 /129

32 /129

32 /129

32 /129

32 /129

32 /129

32 /129

32 /129

32 /129

32 /129

32 /129

32 /129

 /129

32 /129

32 /129

32 /129

32 /129

32 /129

32 /129

32 /129

32 /129

32 /129

32 /129

32 /129

32 /129

 /129

32 /129

32 /129

32 /129

32 /129

32 /129

32 /129

32 /129

32 /129

32 /129

32 /129

32 /129

32 /129

 /129

λ

λ
λ
λ
λ
λ
λ
λ

λ
λ

λ
λ

λ
λ

λ
λ
λ
λ
λ
λ
λ

λ
λ

λ
λ

λ
λ

λ

λ
λ

λ
λ
λ
λ
λ
λ
λ

λ
λ

λ
λ

λ
λ

λ

λ
λ
λ

λ
λ

λ
λ

λ

λ
λ

λ
λ

Figure 7 Different schedulers.

• FPS: Similarly, a service rate μf for each FPS
arbiter can be derived by 100 MHz

(� 6
2 �+2+1)cycles

= 16.7×
106 tokens/s [see Fig. 7(2)]. MF PS is derived by
(16.7×106)(12×32+1+129

129)

14 or 4.8 × 106 tokens/s, from Eq. 2.
• CPS: A service rate μc for each CPS arbiter is

determined by the topology [see Fig. 7(3)]. μc1 for
an arbiter A1 is 100 MHz

(� 5
2 �+2+1)cycles

= 20×106 tokens/s.

Similarly, μc2, μc3, μc4, μc5 is 100 MHz
(� 2

2 �+2+1)cycles
= 25×

106 tokens/s. μc6 is 33×106 tokens/s. As a result,
MCPS is 7.3×106 tokens/s and is derived by the
following equation:

MCPS

=
(
20×106

)(32×4+1
129

)
+(

25×106
)(32×8

129

)
+(

33×106
)(129

129

)

14
.

• WCPS: A service rate μwc for each WCPS arbiter
is determined by the topology as well as the weight
distribution [see Fig. 7(3)]. The weight distribution
is depicted in Fig. 2(8). As an example, the standard
deviation Wstd of (32, 32, 32, 32, 1) is 13.9
for arbiter A1 in Video_in node. The maximum
weight Wmax is 32. Subsequently, Wstd

Wmax
is calculated

by 13.9
32 , or 0.43. Therefore, μwc1 for arbiter A1 is

100 MHz
(� 5

2 �(1−0.43)+2+1)cycles
= 24×106 tokens/s. For compa-

rison, the service rate in CPS for arbiter A1 is
20×106 tokens/s. This means that the service rate

of WCPS is 20% higher than the service rate of
CPS for arbiter A1. On the other hand, the weight
distribution is uniform for arbiters A2 ∼ A5. For
the ports p2 ∼ p6, the standard deviation Wstd is
0, indicating that the arbitration is performed in
the same way as in the round-robin CPS. In case
of p6, only single link is established. Subsequently,
the service rates, μwc2 ∼ μwc6 are the same for both
CPS and WCPS. MWCPS is 7.6×106 tokens/s and is
derived by the following equation:

MWCPS =
(
23×106

)(32×4+1
129

)
+(

25×106
)(32×8

129

)
+(

33×106
)(129

129

)

14
.

• SCPS: A service rate μsc for each SCPS arbiter can
be derived in a similar way as CPS [see Fig. 7(4)].
As described earlier, the difference between CPS
and SCPS is the number of links that each arbiter
handles. μsc′1 for an arbiter A′

1 (for ports p1, p2)
is 100 MHz

(� 5
2 �+2+1)cycles

= 20×106 tokens/s. Similarly, μsc′2 =
μsc′3 = 25×106 tokens/s. MSCPS is 6.6×106 tokens/s
and is derived by the following equation:

MSCPS =
(
20 × 106

)(
32×6+1

129

)+(
25×106

)(
32×6+129

129

)

14
.

Similarly, the performance metric for different
schedulers with different applications is derived, as
depicted in Fig. 8. The application task graphs of the 12-
node MPEG4, the eight-node PIP, the 12-node VOPD,
the 12-node MWD were taken from [22]. The task
graph of the six-node MPEG4 specification was taken
from [23]. The task graphs of the MJPEG and Wavelet
applications were taken from [21]. When the token
size is 1-word, our WCPS provides better service rate
by factor of 3 compared to SQS and 2 compared to
FPS. Our WCPS performs 14% better than CPS for
MPEG4 and Wavelet applications. The performance
improvement of WCPS over CPS is relatively small for
other applications due to the following reasons. First,
the topology in practical applications is simple in the
sense that the average number of links per node is only
1.6. In many cases, only a single link is connected to the
crossbar port, indicating that no arbitration is necessary
for those ports. The SCPS is 2 times better than SQS
and 1.7 times better than FPS. When the token size is 1-
word, the CPS provides on average 22% better service
rate than SCPS. This performance degradation of SCPS
over CPS is due to the sharing arbiter resources.

As Fig. 8(2) shows, when the token size is 64-words,
our WCPS performs still better than the reference
schedulers, while the improvement is significantly less
than the case of the small-sized tokens. This is due

80 J Sign Process Syst (2010) 58:69–85

(1) Token size = 1 word (2) Token size = 64 words

Relative service rate Relative service rate

0

0.3

0.6

0.9

1.2

1.5

M
JP

EG{5
,7

}

M
PEG4 {6

,1
1}

M
JP

EG {6
,1

4}

PIP
 {8

,8
}

M
W

D {1
2,

13
}

VOPD {1
2,

15
}

M
PEG {1

2,2
6}

W
ave

let
 {2

2,
36

}

x
1

0
6 t

o
k

e
n

s
/s

SQS FPS CPS WCPS SCPS

0

5

10

15

20

25

M
JP

EG{5
,7

}

M
PEG4 {6

,1
1}

M
JP

EG {6
,1

4}

PIP
 {8

,8
}

M
W

D {1
2,

13
}

VOPD {1
2,

15
}

M
PEG {1

2,2
6}

W
ave

let
 {2

2,
36

}

x
1

0
6 t

o
k

e
n

s
/s

SQS FPS CPS WCPS SCPS

Figure 8 Relative service rate for different schedulers.

to the fact that the token transmission latency is a
dominant term to determine the service rate.

4.2 Network Performance

In the previous section, the comparative performance
of different scheduler modules is presented. In this
section, the entire network performance is compared in
terms of latency and throughput.

4.2.1 Queueing Modeling

We formulated a network performance model to com-
pare the relative latency and throughput. Our analysis
is based on the queuing model [25], since the queuing
model provides a reasonable fit to the reality with
relatively simple formulation. Based on the general
queuing model, the following assumptions are made:

• The system network conforms to the Jackson model
[25]. Each queue behaves as an independent single
server and the total network latency can be mod-
eled as the combination of each service latency.

• Each server is analyzed by an (M/M/1) queu-
ing model. In other words, the incoming traffic
obeys the Poisson distribution. The data arrivals
occur randomly and the service time distribution is
exponential.

• If the server is idle, a data in the queue is served
immediately. The queue size is adequately large to
avoid the stall of the data flow.

The Jackson’s open queueing model is based on
the network of queues [25] and can be utilized as a
modeling method in general, since most of NoC-based
systems accommodate buffers (or queues) for the

communication. The queueing model can be suitably
applied to our system due to the following facts:

• The KPN model and the actual system are indeed a
network of queues.

• The incoming data stream pattern is statistically
random.

• A token in the FIFO is independently served by
a single scheduler (or server) at each crossbar
port. In addition, the physical queue size is suffi-
ciently large. As an example, we implement a FIFO
using (multiple) embedded block RAMs, where
single block RAM primitive in our target device
can accommodate 512 32-bit words, which is large
enough.

Consequently, the general network latency can be
modeled as:

Tnetwork = 1

λ

N∑

i=1

λi

μi − λi
, (5)

where Tnetwork is the total latency of the system net-
work. N is the number of queueing systems. λ is the
total incoming arrival token rate to the network (or
outgoing rate from the network). λi is the incoming
arrival token rate to the ith queue. μi is the service rate
of the arbiter for the ith queue.

4.2.2 Case Studies

We studied four cases with two different network sizes
and two different token sizes. First, we consider the six-
node MJPEG application, depicted in Fig. 2(8) which
requires a small network size. The port-mapped system

J Sign Process Syst (2010) 58:69–85 81

µ

µ

µ

µ

µ

µ

c1

c2

c3

c4

c5

c6

queueing system

32λ/129

32λ/129
32λ/129

32λ/129
32λ/129

32λ/129
32λ/129

32λ/129
32λ/129

32λ/129
32λ/129
32λ/129

λ/129

32λ/129

32λ/129
32λ/129

32λ/129
32λ/129

λ

32λ/129
32λ/129

32λ/129
32λ/129

32λ/129
32λ/129
32λ/129

λ/129

1
2
3
4
5

6
7

8

9

10
11

12
13

14

λ

λλ

λ

λ

(1) Network of queues

P1

P2

P3

P4

P5

P6

1
2

12

4

5

8
3

7

9

11

13

14

legend

(2) Network model for (W)CPS

Video
in

Video
out

10

6
32 /129

32 /129

32λ /129

32λ /129

32λ /129

32λ /129

32λ /129
32λ /129

λ /129

32λ/129
32λ/129

32λ/129

32λ/129

p'1

p'2

p'3

p'4

p'5

p'6

p1

p2

p3

p4

p5

p6

(3) Network model for SCPS

p ,6

p ,5

p ,4

p ,3

p ,2

p ,1

p6

p5

p4

p3

p2

p1

µ sc2

µ sc1

µ sc3

1
2
3
4
5

6
7

8
9

10
11

12
13

14

P processor
p processor port
p FIFO port

'

'

'

λ

,

Figure 9 A case study.

model is depicted in Fig. 9(1). Considering processor
P1 as a streamed data source, P1 generates the data
in a rate of λ (tokens/s). A token rate in each queue
is derived from the YAPI profiler [20], as depicted in
Fig. 9(1). Figure 9(2) and (3) depict the network model
for (W)CPS and SCPS. The service rate μ for each

scheduler is derived in the same way as in Section 4.1.3
with Eq. 3. The total network latency can be derived by
substituting the service rate μ to Eq. 5.

As a result, the network latencies are derived and
depicted in Fig. 10(1a). The performance analysis indi-
cates that the WCPS reduces latency by at least 44%
than SQS and at least 34% better than the FPS for
all token rate ranges. Also, the performance is bet-
ter improved as the token rate increases. Moreover,
the network with our WCPS saturates at the bandwidth
of 32 × 106 tokens/s and the network with SQS satu-
rates at the bandwidth of 13 × 106 tokens/s. Therefore,
WCPS is 2.5× better than SQS in terms of through-
put. Similarly, our WCPS is 2× better than FPS in
terms of throughput. Compared to CPS, WCPS pro-
vides marginal performance improvement. This is due
to the fact that the weight variation is not high, as de-
picted in Fig. 9(2). Compared to SCPS, WCPS reduces
the latency by at least 10% and provides 25% better
throughput.

Second, we consider the MJPEG case study for a
large token size with Num_Word = 64. The network
performance can be derived in the similar way as in
the previous case, while only the service rate differs.
Ttransmit is derived by 64 cycles

100 MHz , because the Num_Word
is 64. As a result, Fig. 10(1b) shows that the WCPS
performs at least 5% better than SQS and 3.3% better
than FPS for all ranges. The performance improvement

Figure 10 Network
performance.

Network latency (us)

(1a) Token size = 1 word (1b) Token size = 64 words

(2a) Token size = 1 word

(1) 6-node MJPEG application in Figure 2(8)

(2) 22-node Wavelet application in Figure 2(6)

Network latency (us)

Network latency (us)
Network latency (us)

(2b) Token size = 64 words

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20 25 30 35

Token rate (X10
6
 tokens/s)

CPS

FPS

SQS

WCPS

SCPS

0

2

4

6

8

10

12

14

0 300 600 900 1200 1500

Token rate (X10
3
 tokens/s)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0 5 10 15 20 25 30 35 40 45 50

Token rate (X10
6

 tokens/s)

CPS

FPS

SQS

WCPS

SCPS

0

2

4

6

8

10

12

0 600 1200 1800 2400 3000

Token rate (X10
3

 tokens/s)

82 J Sign Process Syst (2010) 58:69–85

is smaller than the case of single-word token transac-
tions, since Ttransmit is a dominant factor for the network
latency, compared to Tarbit.

Third, we consider the 22-node Wavelet application
depicted in Fig. 2(6), which requires a large-sized net-
work and a single-word token size. As the number
of crossbar ports increases, Tarbit for SQS and FPS
proportionally increases. However, Tarbit for (W)CPS
does not increase, since the average number of ports
for the round-robin pointer is 1.6. In other words, on
average 1.6 ports are only required to be arbitrated by
an arbiter, instead of 22 ports. Figure 10(2a) depicts
the network latency for single-word token transactions.
The network latency of CPS is reduced by at least 84%
compared to SQS and at least 73% compared to FPS.
The WCPS provides 24% higher throughput than CPS.

Finally, Fig. 10(2b) depicts the network latency for
64-word token transactions in the Wavelet application.
CPS performs at least 22% better than SQS and 13%
better than FPS. It can be suggested that the presented
CPS, WCPS, SCPS schemes are more beneficial for
small sized tokens communicated over large networks.

5 Implementation Results

The aforementioned scheduler modules were imple-
mented in VHDL to integrate the presented net-
work components in the ESPAM design environment
[16–18]. The presented schedulers are implemented
with parameterized arbiter arrays. The scheduler
modules are generic in terms of data width, number
of ports, on-demand topologies, and a traffic weight

table. The switch module in [24] is used as a common
interconnects fabric and the communication controller
in [17] is used as a common network interface. The
functionality of the network is verified by VHDL sim-
ulations. In order to fairly compare different sched-
ulers, we implemented the schedulers such that k1 ∼
k5 = 1 for Eq. 4. Implementation details can be found
in [21]. The exemplary behaviors of the implemented
schedulers are depicted in Fig. 4.

The implemented scheduler modules are compared
in terms of area utilization. We experimented with
different task graph topologies of realistic applications,
depicted in Fig. 2. The implemented schedulers were
synthesized using the Xilinx ISE 8.2 tool targeting the
Virtex-II Pro (xc2vp20-7-896) FPGA and the areas
were obtained and depicted in Fig. 11(1). Our CPS
requires on average 83% less area compared to the
FPS. The CPS requires on average 28% more area
compared to the network with SQS. We consider that
the area overhead of our CPS over SQS is relatively
less significant, since our target xc2vp20 device contains
9,280 slices and chip-wise overhead of CPS over SQS is
on average 3%. The area of our network is not only de-
pendent on the number of nodes that determine its size
but also on the network topology. It is observed that
the higher area reduction is obtained as the network
size increases. This is due to the fact that the average
number of links per node is 1.6 and does not increase
as the number of nodes increases. WCPS occupies on
average 13% more area than CPS. The SCPS occupies
14% more area than CPS. As described earlier, this
is due to the fact that in many cases only one link is
connected to arbiters in CPS scheme. Due to this, the

(1) One-task to one-processor mapping (2) Multiple-to-one mapping

Number of slices Number of slices Number of slices

0

500

1000

1500

2000

2500

M
JP

EG
 {5

,7
}

M
PE

G
4
{6
,1
1}

M
JP

EG
 {6

,1
4}

PI
P

{8
, 8

}

M
W

D
 {1

2,
13

}

VO
PD

 {1
2,
15

}

M
PE

G
4
{1
2,
26

}

SQS

FPS

CPS
WCPS

SCPS

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

W
av

el
et

 {2
2,

36
}

AV
ER

AG
E

{1
6,

 2
4}

SQS
FPS
CPS
WCPS
SCPS

0

100

200

300

400

500

600

700

800

W
av

el
et

 {5
, 1

3}

M
JP

EG
+W

av
el

et
SQS
FPS
CPS
WCPS
SCPS

Figure 11 Experimental results.

J Sign Process Syst (2010) 58:69–85 83

Video in

Init

DCT

Q

Copy

DCT

Q

HPF

DCT

Q

LPF

DCT

Q

VLE

Video out

Sink

(2) 6-node MJPEG + 5-node Wavelet

{6, 20}

Init Copy

HPF

LPF

Sink

(1) 5node-Wavelet

{5, 13}

Figure 12 Topology after multiple tasks are mapped onto a
processor.

CPS arbiter logic can be greatly simplified, especially
when a single task is mapped onto a processor. In
addition, the single SCPS arbiter contains relatively
more complex decoding logic than single CPS arbiter.

The experiment shows that CPS scheme is suitable
when single task is mapped onto a physical proces-
sor. In many cases, however, the number of tasks is
often greater than the number of physical processors
for given applications. Therefore, multiple tasks are
required to be mapped onto a physical processor be-
cause a target device is limited in size. Subsequently,
the required number of links per port increases.
Figure 12(1) depicts the five-node representation for
the 22-node Wavelet application. Figure 12(1) is de-
rived by clustering the same tasks onto a single proces-
sor. As a result, the number of links per node is 13

5 ,
or 2.6. Note that the number of links per node is
36
22 , or 1.6 when a single task is mapped onto one
processor. Figure 12(2) depicts a topology of a syn-
thetic application that combines the six-node MJPEG
and the five-node Wavelet specification. In this case,
the number of links per node is 20

6 , or 3.3. In both
cases, the number of links per node increases when
compared to a one-to-one mapping. We implemented
different schedulers for these cases and compared the
area cost. As depicted in Fig. 11(2), the SCPS scheme

(1) Token size = 1 word (2) Token size = 64 words

Relative service rate Relative service rate

0

3

6

9

12

15

SQ
S

FP
S

CPS

W
CPS

SC
PS

x1
0

6
to

ke
n

s/
s

0.0

0.2

0.4

0.6

0.8

1.0

SQ
S

FP
S

C
P
S

W
C
PS

SC
PS

x1
0

6
to

ke
n

s/
s

Figure 13 Performance for five-node wavelet specification.

requires 70% less area than the CPS scheme. Figure 13
depicts the performance metric defined in Section 4.1
for the five-node Wavelet representation. As Fig. 13(1)
depicts, the WCPS provides 13% better service rate for
1-word token sizes. The WCPS scheme also occupies
20% more area than the CPS, whereas the chip-wise
overhead is 1%, for five-node Wavelet representation.
The experimental result suggests that when the number
of links per port increases, the SCPS can be benefi-
cial, providing a design trade-offs between cost and
performance.

6 Conclusions

The performance of a parallel application increases
when the underlying network can be matched to the
on-demand logical topology and adhered to the band-
width requirements of an application. In this paper,
we presented crossbar schedulers designed for recon-
figurable on-chip-networks capable of adjusting them-
selves to custom topologies and custom bandwidth
requirements. We conducted a queueing analysis to
determine the overall network performance. From
the performance evaluation and implementation, the
following conclusions can be drawn:

• The presented custom schedulers (CPS, WCPS,
SCPS) provide better performance than conven-
tional schedulers, especially for small-sized tokens
communicated over large-size network. In addi-
tion, our schedulers efficiently utilize the on-chip
resources by adapting themselves to the logical
topologies.

• When the tasks are one-to-one mapped onto pro-
cessors, the custom parallel scheduler (CPS) per-
forms significantly better than SQS, FPS, SCPS.

• The weighted round-robin custom scheduler
(WCPS) can increase the network performance, by
assigning different network bandwidth to different
traffic requirements. The WCPS is beneficial when
the traffic load is not evenly distributed.

• The shared custom scheduler (SCPS) provides a
design trade-offs for cost and performance when
compared to the mentioned schedulers. The SCPS
can be beneficial when the number of links per port
increases.

• The sequential scheduler (SQS) provides adequate
performance and cost when the token size is large
and the size of a network is fairly small.

Our schedulers were implemented using parame-
terized arbiter arrays. By utilizing the on-demand

84 J Sign Process Syst (2010) 58:69–85

topology and traffic requirements as design parame-
ters, the schedulers were adapted to given applications
without modifying the network implementation. We
showed that our schedulers perform better and occupy
significantly less area than conventional fully parallel
schedulers. Our schedulers perform significantly bet-
ter and occupy moderately more area than sequential
schedulers.

Open Access This article is distributed under the terms of the
Creative Commons Attribution Noncommercial License which
permits any noncommercial use, distribution, and reproduction
in any medium, provided the original author(s) and source are
credited.

References

1. Mckeown, N. (1999). The iSLIP scheduling algorithm for
input-queued switches. IEEE/ACM Transaction on Network-
ing (TON), 7(2), 188–201, April.

2. Bjerregaard, T., & Mahadevan, S. (2006). A survey of re-
search and practices of network-on-chip. ACM Computing
Surveys, 38(1), 1–51, March.

3. Vassiliadis, S., & Sourdis, I. (2006). FLUX networks: Inter-
connects on demand. In Proceedings of international con-
ference on computer systems architectures modelling and
simulation (IC-SAMOS’06) (pp. 160–167), July.

4. Vassiliadis, S., & Sourdis, I. (2007). FLUX interconnection
networks on demand. Journal of Systems Architecture, 53(10),
777–793, October.

5. Moraes, F., Calazans, N., Mello, A., Möller, L., & Ost, L.
(2004). HERMES: An infrastructure for low area overhead
packet-switching netwoks on chip. Integration, The VLSI
Journal, 38(1), 69–93, October.

6. Marescaux, T., Nollet, V., Mignolet, J.-Y., Moffat, A. B. W.,
Avasare, P., Coene, P., et al. (2004). Run-time support for
heterogeneous multitasking on reconfigurable SoCs. Integra-
tion, The VLSI Journal, 38(1), 107–130.

7. Sethuraman, B., Bhattacharya, P., Khan, J., & Vemuri, R.
(2005). LiPaR: A lightweight parallel router for FPGA based
networks on chip. In Proceedings of the great lakes sympo-
sium on VLSI (GLSVLSI’05) (pp. 452–457), April.

8. Bartic, T. A., Mignolet, J.-Y., Nollet, V., Marescaux, T.,
Verkest, D., Vernalde, S., et al. (2005). Topology adaptive
network-on-chip design and implementation. IEE Proceed-
ings. Computers and Digital Techniques, 152(4), 467–472,
July.

9. Brebner, G., & Levi, D. (2003). Networking on chip with
platform FPGAs. In Proceedings of the IEEE interna-
tional conference on field-programmable technology (FPT’03)
(pp. 13–20), December.

10. Srinivasan, K., & Chatha, K. S. (2005) A low complexity
heuristic for design of custom network-on-chip architectures.
In Proceedings of international conference on design, automa-
tion and test in Europe (DATE’06) (pp. 130–135), March.

11. Murali, S., & Micheli, G. D. (2005) An application-specific
design methodology for STbus crossbar generation. In Pro-
ceedings of international conference on design, automation
and test in Europe (DATE’05) (pp. 1176–1181), March.

12. Loghi, M., Angiolini, F., Bertozzi, D., Benini, L., &
Zafalon, R. (2004). Analyzing on-chip communication in a
MPSoC environment. In Proceedings of international confer-
ence on design, automation and test in Europe (DATE’04)
(pp. 752–757), February.

13. Murali, S., Benini, L., & Micheli, G. D. (2007). An
application-specific design methodology for on-chip crossbar
generation. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 26(7), 1283–1296, July.

14. Pasricha, S., Dutt, N., & Ben-Romdhane, M., (2006).
Constraint-driven bus matrix synthesis for MPSoC. In
Proceedings of 11th Asia and South Pacific design automation
conference (ASP-DAC’06) (pp. 30–35), January.

15. Gupta, P., & McKeown, N. (1999). Designing and implement-
ing a fast crossbar scheduler. IEEE Micro, 19(1), 203–289,
January–February.

16. Nikolov, H., Stefanov, T., & Deprettere, E. (2006). Multi-
processor system design with ESPAM. In Proceedings of
the 4th IEEE/ACM/IFIP international conference on HW/SW
codesign and system synthesis (CODES-ISSS’06) (pp. 211–
216), October.

17. Nikolov, H., Stefanov, T., & Deprettere, E. (2006). Efficient
automated synthesis, programming, and implementation of
multi-processor platforms on FPGA chips. In Proceedings of
16th international conference on field programmable logic and
applications (FPL’06) (pp. 323–328), August.

18. Nikolov, H., Stefanov, T., & Deprettere, E. (2008). Sys-
tematic and automated multi-processor system design, pro-
gramming, and implementation. IEEE Transactions on
Computer-Aided Design of Integrated Circuits, 27(3), 542–
555, March.

19. Kienhuis, B., Rijpkema, E., & Deprettere, E. (2000). COM-
PAAN: Deriving process networks from Matlab for em-
bedded signal processing architectures. In Proceedings of
8th international workshop on hardware/software codesign
(CODES’2000) (pp. 13–17), May.

20. de Kock, E. A., Essink, G., Smits, W. J. M., van der Wolf, P.,
Brunel, J.-Y., Kruijtzer, W. M., et al. (2000). YAPI: Applica-
tion modeling for signal processing systems. In Proceedings
of the 37th design automation conference (DAC’00) (pp. 402–
405), June.

21. Hur, J. Y., Stefanov, T., Wong, S., & Vassiliadis, S.
(2007). Customizing reconfigurable on-chip crossbar sched-
uler. In Proceedings of IEEE 18th international conference
on application-specific systems, architectures and processors
(ASAP’07) (pp. 210–215), July.

22. Bertozzi, D., Jalabert, A., Murali, S., Tamhankar, R.,
Stergiou, S., Benini, L., et al. (2005). NoC synthesis flow
for customized domain specific multiprocessor systems-on-
chip. IEEE Transactions on Parallel and Distributed Systems,
16(2), 113–129, February.

23. Chang, K.-C., Shen, J.-S., & Chen, T.-F. (2006). Evaluation
and design trade-offs between circuit-switched and packet-
switched NOCs for application-specific SOCs. In Proceedings
of the 43th design automation conference (DAC’06) (pp. 143–
148), July.

24. Hur, J. Y., Stefanov, T., Wong, S., & Vassiliadis, S. (2007).
Systematic customization of on-chip crossbar interconnects.
In Proceedings of international workshop on applied recon-
figurable computing (ARC’07) (pp. 61–72), March.

25. Baldwin, R. O., Davis IV, N. J., Midkiff, S. F., & Kobza, J. E.
(2003). Queueing network analysis: Concepts, terminology,
and methods. The Journal of Systems and Software, 66(2),
99–117, May.

J Sign Process Syst (2010) 58:69–85 85

Jae Young Hur received the B.S. degree in electronics engi-
neering from Cheju National University, Cheju, South Korea in
1995. He received the M.S. degrees in electronics engineering
from Sogang University, Seoul, South Korea in 1998 and from
Munich University of Technology, Munich, Germany in 2002.
From 1999 to 2000, he was a semiconductor engineer in Samsung
Electronics, Ltd., South Korea. Since November 2003, he has
been with the computer engineering laboratory, Delft Univer-
sity of Technology, The Netherlands, where he is currently a
research assistant (PhD student). His research interests include
embedded systems design, networks-on-chip, VLSI design, and
reconfigurable computing.

Stephan Wong received his PhD in Computer Engineering from
the Electrical Engineering, Mathematics and Computer Science
faculty of the Delft University of Technology (TU Delft), The

Netherlands, in December 2002. He is currently working as an
assistant professor at the Computer Engineering Laboratory at
the Delft University of Technology (TU Delft), The Netherlands.
He has considerable experience in the design of embedded recon-
figurable media processors. He has worked also on microcoded
FPGA complex instruction engines and the modeling of par-
allel processor communication networks. His research interests
include embedded systems, multimedia processors, complex in-
struction set architectures, reconfigurable and parallel process-
ing, microcoded machines, and distributed/grid processing.

Todor Stefanov received the Dipl.Ing. and M.S. degrees in com-
puter engineering from The Technical University of Sofia, Sofia,
Bulgaria, in 1998 and the Ph.D. degree in computer science from
Leiden University, Leiden, The Netherlands, in 2004. From 1998
to May 2000, he was a Research and Development Engineer with
Innovative Micro Systems, Ltd., Sofia. From June 2000 to August
2007, he was with the Leiden Institute of Advanced Computer
Science, Leiden University, where he was a Research Assistant
(PhD student) and a PostDoc Researcher at the Leiden Embed-
ded Research Center. From September 2007 to August 2008, he
was a Senior Researcher at the Computer Engineering Lab, Delft
University of Technology, Delft, The Netherlands. Since Sep-
tember 1, 2008, Todor Stefanov has been an Assistant Professor
with the Leiden Institute of Advanced Computer Science, Leiden
University where he performs research at the Leiden Embedded
Research Center. His research interests include several aspects
of embedded systems design, with particular emphasis on system-
level design automation, multiprocessor systems-on-chip design,
and hardware/software codesign.

	Design Trade-offs in Customized On-chip Crossbar Schedulers
	Abstract
	Introduction
	Related Work
	Customized On-chip Crossbar Scheduler
	Design Flow
	Reference Scheduling Schemes
	Round Robin Custom Scheduler
	Weighted Round Robin Scheduler
	Weighted Round Robin Custom Scheduler (WCPS)
	WCPS Example

	Shared Arbiters for Custom Crossbars
	Shared Custom Parallel Scheduler (SCPS)
	Clustering Method

	Performance Analysis
	Scheduler Performance
	Performance Metric
	Crossbar Schedulers
	MJPEG Example

	Network Performance
	Queueing Modeling
	Case Studies

	Implementation Results
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

