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Abstract. A Brain Computer Interface (BCI) speller allows human-
beings to directly spell characters using eye-gazes, thereby building com-
munication between the human brain and a computer. Convolutional
Neural Networks (CNNs) have shown better ability than traditional
machine learning methods to increase the character spelling accuracy
for the BCI speller. Unfortunately, current CNNs can not learn well the
features related to the target signal of the BCI speller. This issue limits
these CNNs from further character spelling accuracy improvements. To
address this issue, we propose a network, which combines our proposed
two CNNs, with an existing CNN. These three CNNs of our network
extract different features related to the target BCI signal. Our network
uses the ensemble of the features extracted by these CNNs for BCI char-
acter spelling. Experimental results on three benchmark datasets show
that our network outperforms other methods in most cases, with a sig-
nificant spelling accuracy improvement up to 38.72%. In addition, the
communication speed of the P300 speller based on our network is up to
2.56 times faster than the communication speed of the P300 speller based
on other methods.

1 Introduction

A Brain Computer Interface (BCI) enables direct communication between the
human brain and a computer by analyzing the human’s neural activities. In this
way, human-beings can use only the brain to express their thoughts without any
real movement. Traditionally, BCIs are conceived as a pathway for people suf-
fering from motor disabilities [10]. With the rapid development of BCIs, recent
research is also focused on developing BCIs for healthy users to allow users’
hands-free interaction with applications such as games [3], mental state monitor-
ing [14], and IoT services [13]. Due to their non-invasiveness, easiness and safety,
Electroencephalogram (EEG)-based BCIs attract most of the research. Among
all kinds of EEG-based BCIs, the P300 speller is one of the most-commonly
investigated applications because the P300 speller has a good performance on
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character spelling [10]. Therefore, this paper considers the P300 speller as our
target BCI application.

Previously, traditional machine learning methods were used for character
spelling in the P300 speller. These methods employ signal processing techniques
for feature extraction and use classifiers such as Support Vector Machine (SVM)
or Linear Discriminant Analysis (LDA) for the detection of P300 signals and the
inference of characters. For example, Rivet [22] enhances the P300 potentials.
Mennes [17] removes artifacts in the EEG recordings containing P300 signals.
Bostanov [4] extracts useful features related to P300 signals. However, there
are some problems with traditional machine learning methods. (1) they can only
learn the features that researchers are focusing on but lose or remove other under-
lying features [23]; (2) brain signals have subject-to-subject variability, which
makes it possible that methods performing well on certain subjects (with simi-
lar age or occupation) may not give a satisfactory performance on others. These
problems prevent traditional machine learning methods from further increasing
the character spelling accuracy for the P300 speller.

In recent years, deep learning, especially deep Convolutional Neural Networks
(CNNs), has achieved significant success in the computer vision field. CNNs
have the advantage of automatically learning features from raw data1. They can
learn not only something we know but also something important and unknown
to us [6,23]. Automatically learning from raw data has better ability to achieve
good results which are invariant to different subjects. Thus, CNNs are able to
boost the full potential of detecting BCI signals, overcoming the aforementioned
shortcomings of traditional machine learning methods.

Therefore, in recent years, researchers have started to design (deep) CNNs for
P300-based BCIs [6,15,16,23]. However, these CNNs have some limitations in
increasing the P300 spelling accuracy. CNNs in [6,15,16] first use a spatial con-
volution layer to learn P300-related spatial features from raw signals. Then, they
use several temporal convolution layers to learn P300-related temporal features
from the abstract signals generated by the spatial convolution layer (the first
layer). The abstraction of raw signals loses raw temporal information, which
makes these CNNs not able to learn P300-related temporal features well. To
solve the problem of [6,15,16], the CNN in [23] performs the spatial convolu-
tion and the temporal convolution at the same time (thereby performing the
spatial-temporal convolution) in the first layer. The input to the first layer is
raw signals. Thus, the CNN in [23] is able to learn temporal features from raw
signals instead of abstract signals as in [6,15,16]. In this way, [23] learns better
P300-related temporal features than [6,15,16]. Unfortunately, [23] extracts only
P300-related joint spatial-temporal features through the spatial-temporal convo-
lution. It does not extract P300-related separate temporal features and separate
spatial features. These separate temporal features and separate spatial features
have proven to be very important for the P300 speller [9,11,19,20]. Adding

1 In this paper, we use “raw data, information, or signals” to denote the data which
are only preprocessed (e.g., bandpass filtering and normalization) but not abstracted
by a feature extraction method (e.g., a CNN).
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several temporal or spatial convolution layers after the first spatial-temporal
convolution layer enables [23] to learn P300-related separate spatial or temporal
features. Nevertheless, this cannot make [23] learn these features well because
the input to these added temporal or spatial convolution layers is the abstract
signals generated by the first spatial-temporal convolution layer instead of raw
signals. This leads to the loss of raw information related to the P300 signal.
In order to solve this issue in [23], we propose a network which combines our
proposed two CNNs, with the CNN in [23] for character spelling in the P300
speller. The novel contributions of this paper are the following:

– Each of our proposed two CNNs has only one convolution layer. One of the
CNNs performs the temporal convolution in the convolution layer (the first
layer) to extract P300-related separate temporal features. The other CNN
performs the spatial convolution in the convolution layer (the first layer)
to extract P300-related separate spatial features. These two CNNs are able
to learn well P300-related separate temporal features and separate spatial
features, respectively.

– Experimental results on three benchmark datasets show that our network,
which is the ensemble of our two CNNs and OCLNN [23], outperforms other
methods in most cases, with a significant spelling accuracy improvement up to
38.72%. In addition, the communication speed of the P300 speller based on
our network is up to 2.56 times faster than the communication speed of the
P300 speller based on other methods.

The rest of the paper is organized as follows: Sect. 2 describes the related
work on P300 spelling. Section 3 introduces some background information about
the P300 speller, and the datasets used in this paper. Section 4 presents our
proposed network for P300 spelling. Section 5 compares the character spelling
accuracy and the communication speed achieved by our network and other meth-
ods for the P300 speller. Section 6 analyses our proposed two CNNs on extracting
P300-related features, performs an ablation study on our proposed network and
discusses the importance of extracting P300-related features from raw signals.
Section 7 ends the paper with conclusions.

2 Related Work

In [6,16], and [15], the authors propose CNNs for character spelling in the P300
speller. The CNN in [6,16], and [15] is called CCNN [6], CNN-R [16], and
BN3 [15], respectively. CCNN, CNN-R, and BN3 first use a spatial convolu-
tion layer to learn P300-related spatial features. After this spatial convolution
layer, they use several temporal convolution layers to learn P300-related tempo-
ral features. However, the problem of these CNNs is that they learn P300-related
temporal features from abstract signals instead of raw signals, which makes these
CNNs not able to learn P300-related temporal features well. P300-related tem-
poral features are learned by the temporal convolution layers of these CNNs.
The input to these temporal convolution layers is the feature maps generated by
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the spatial convolution layer (the first layer). These feature maps are abstract
temporal signals instead of raw signals because this spatial convolution layer
converts each receptive field of raw signals into an abstract datum in a feature
map. These abstract temporal signals in the feature maps lose raw temporal
information. Losing raw temporal information means losing important tempo-
ral features because the nature of P300 signals is the positive voltage potential
in raw temporal information, see Fig. 1 explained in Sect. 3.1, as well as many
important P300-related features are also embodied in raw information [20,23].
As a result, these CNNs can not learn temporal features well and can not further
increase the spelling accuracy of the P300 speller.

In order to solve the problem of [6,16], and [15,23] proposes a CNN with
one convolution layer, called OCLNN, for character spelling in the P300 speller.
In contrast to CCNN [6], CNN-R [16], and BN3 [15], the network OCLNN [23]
performs the spatial convolution and the temporal convolution at the same time,
thereby performing the spatial-temporal convolution in the first layer instead of
performing only the spatial convolution as in CCNN, CNN-R, and BN3. The
input to this spatial-temporal convolution layer (the first layer) is raw signals.
In this way, the data used to learn P300-related temporal features is raw sig-
nals instead of the abstract signals in CCNN, CNN-R, and BN3. Therefore,
OCLNN is able to learn P300-related temporal features better than CCNN,
CNN-R, and BN3. In addition, OCLNN can learn spatial features. As a result,
OCLNN achieves higher spelling accuracy than CCNN, CNN-R, and BN3. Unfor-
tunately, OCLNN loses other important P300-related features. OCLNN extracts
P300-related spatial and temporal features at the same time in its single convo-
lution layer, thereby extracting only P300-related joint spatial-temporal features
through the spatial-temporal convolution. OCLNN does not extract P300-related
separate temporal features and separate spatial features. These separate tem-
poral features and separate spatial features have proven to be very important
for the P300 speller [9,11,19,20]. Adding several temporal or spatial convolution
layers after the first spatial-temporal convolution layer is a potential method
to enable OCLNN to learn P300-related separate spatial or temporal features.
Nevertheless, this method can not learn P300-related separate temporal or spa-
tial features well due to the loss of raw information. The raw information loss
happens because the input to these added temporal or spatial convolution lay-
ers for OCLNN is the abstract signals (generated by the first spatial-temporal
convolution layer in OCLNN) instead of raw signals.

To address this issue of [23], we proposes a network which combines our
proposed two CNNs with OCLNN in order to learn well the aforementioned
P300-related separate spatial and temporal features, which are not extracted
by OCLNN, as well as the spatial-temporal features. Each of these two CNNs
has only one convolution layer. One of the CNNs performs the temporal con-
volution in the first layer to learn P300-related separate temporal features. The
other CNN performs the spatial convolution in the first layer to learn P300-
related separate spatial features. In this way, the input to each of the two
CNNs is raw signals, thus these two CNNs are able to learn features from raw
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signals instead of the abstract signals in the aforementioned potential method for
enabling OCLNN to learn more features. As a consequence, these two CNNs can
learn well P300-related separate temporal features and separate spatial features,
respectively. Our network uses the ensemble of these two CNNs and OCLNN,
thereby extracting more useful P300-related features than OCLNN. As a result,
our proposed network can achieve higher spelling accuracy than OCLNN.

3 Background

In this section, we provide some background information for the P300 speller
and the benchmark datasets used in this paper.

3.1 P300 Speller

The P300 speller is one of the most investigated applications in BCI [10]. A
target character is spelled using the property of the P300 signal. As shown
in Fig. 1, a P300 signal, recorded in EEG, occurs as a positive deflection in
voltage with a latency of about 300 ms after a rare stimulus is presented to a
subject (person). The following experiment is used to evoke a P300 signal in a
subject’s brain and then the evoked P300 signal is used to spell characters. In
this experiment, the subject is presented with a 6 by 6 character matrix (see
Fig. 2) and he focuses his attention on a target character he wants to spell. The
matrix performs random, separate, and successive row or column intensification.
When the target row or column is intensified, it is a rare stimulus to the subject
because there are only two target intensifications out of 12 intensifications. This
rare stimulus evokes the subject’s brain to generate a P300 signal. Then, with the
detection of a P300 signal, the target row or column is inferred. By combining
the target row position and the target column position, the target character
position is inferred. Assume that one epoch includes 12 intensifications, in which
there exist one target row intensification and one target column intensification.
In practice, people use several consecutive epochs for the P300 speller to infer

Fig. 1. P300 signal. Fig. 2. P300 speller character matrix.
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one target character, because it is hard to use only one epoch to correctly spell
one target character [21,23].

3.2 Datasets

We perform experiments on three benchmark datasets, i.e., BCI Competition II
- Data set IIb [1] as well as BCI Competition III - Data set II Subject A and
Subject B [2]. In this paper, we use II to represent BCI Competition II - Data
set IIb, III-A to represent BCI Competition III - Data set II Subject A, and
III-B to represent BCI Competition III - Data set II Subject B. These three
benchmark datasets are commonly used to evaluate many methods for the P300
speller [4,6,15,16,21,23]. Therefore, we are able to fairly compare the spelling
accuracy achieved by our proposed network and other state-of-the-art methods
for the P300 speller.

In Dataset II, III-A and III-B, the EEG signals are recorded from 64 sensors
at a sampling frequency of 240 Hz when performing the P300 speller experiment
described in Sect. 3.1. In this P300 speller experiment, one row or column is
intensified for 100 ms. After each row/column intensification, the matrix is blank
for 75 ms. In this experiment, 15 consecutive epochs are used for the spelling of
one character. After every group of 15 epochs, the matrix is blank for 2.5 s to
inform the subject to focus on the next character to spell.

In Dataset II, III-A and III-B, there are separate training and test datasets.
In Dataset II, the training dataset has 42 characters and the test dataset has
31 characters. Since 15 epochs are used for the spelling of one character, the
total number of epochs is 630 epochs and 465 epochs in the training dataset and
test dataset, respectively. The training dataset in Dataset III-A and the training
dataset in Dataset III-B have the same number of characters, i.e., 85 characters.
The test dataset in Dataset III-A and the test dataset in Dataset III-B also have
the same number of characters, i.e., 100 characters. Therefore, in Dataset III-A
and Dataset III-B, the total number of epochs is 1275 epochs and 1500 epochs
in each training dataset and each test dataset, respectively.

4 Proposed Network

This section introduces our proposed network for character spelling in the
P300 speller. We call our network Ensemble of Convolutional Neural Networks
(EoCNN). EoCNN uses our proposed two CNNs. We call these two CNNs One
Spatial Layer Network (OSLN) and One Temporal Layer Network (OTLN).

4.1 Ensemble of Convolutional Neural Networks

The workflow of our EoCNN is shown in Fig. 3. First, the EEG signals are
preprocessed to construct the input tensor. The construction of the input ten-
sor is described in Sect. 4.2. Then, the input tensor is sent to three different
CNNs, i.e., OSLN, OTLN, and OCLNN. OSLN and OTLN are described in
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Sect. 4.3. OCLNN is the CNN proposed in [23]. OSLN extracts P300-related sep-
arate spatial features. OTLN extracts P300-related separate temporal features.
OCLNN extracts P300-related joint spatial-temporal features. Our EoCNN uses
the ensemble of the outputs from OSLN, OTLN, and OCLNN for character
spelling in the P300 speller.

4.2 Input Tensor

The EEG signals are preprocessed to construct the input tensor (Tem × C),
where C is the number of sensors used to acquire EEG signals. Tem is the number
of signal samples in the time domain. In this tensor, in order to remove the high
frequency noise, the temporal signal samples are bandpass filtered between 0.1 Hz
and 20 Hz. Then, we normalize the temporal signal samples to make the signal
samples to have zero mean and unit variance based on each individual pattern
and for each sensor. Here an individual pattern denotes the Tem signal samples.
The normalization is a common practice for preprocessing input data to CNNs.
The normalization helps the CNN to perform well for the P300 spelling [6].

Fig. 3. Workflow of our EoCNN

4.3 Proposed OSLN and OTLN

The architectures of our proposed OSLN and OTLN are described in Tables 1
and 2, respectively. OSLN and OTLN are used in EoCNN (see Sect. 4.1), where
OSLN is designed to learn P300-related separate spatial features and OTLN
is designed to learn P300-related separate temporal features. Since only the
convolution layer is different between OSLN and OTLN, below we describe the
architectures of OSLN and OTLN together.

Layer 1 of OSLN (see Table 1) performs the spatial convolution operation
with the kernel size (1, C). This convolution operation converts each receptive
field of the signal samples into an abstract datum in a feature map. The signal
samples in each receptive field are from all C sensors in the space domain and
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Table 1. OSLN architecture.

Layer Operation Kernel Feature
maps or
neurons

1 Convolution (1, C) 16

Dropout — —

2 Fully-Connected — 2

Table 2. OTLN architecture.

Layer Operation Kernel Feature
maps or
neurons

1 Convolution (Tem/15, 1) 16

Dropout — —

2 Fully-Connected — 2

sampled at only one time point in the time domain. Therefore, this convolution
operation extracts P300-related separate spatial features. We use the kernel size
(1, C) in order to make this layer to learn the spatial features from EEG signals
acquired using all sensors. The reason for using all sensors is that it is more
helpful to increase the spelling accuracy than using part of all sensors [6,15,16,
23]. The input to this layer is the raw signals, so this layer learns P300-related
separate spatial features from raw signals. This layer generates 16 feature maps,
which are the input to Layer 2 of OSLN. The choice of 16 feature maps follows
the suggestion in [23].

Layer 1 of OTLN (see Table 2) performs the temporal convolution operation
with the kernel size (Tem/15, 1). The temporal convolution operation converts
each receptive field of the signal samples into an abstract datum in a feature
map. The signal samples in each receptive field are sampled within a certain
time period and are acquired from only one sensor. Therefore, this convolution
operation extracts P300-related separate temporal features. We use the kernel
size (Tem/15, 1) because 1/15 of temporal signal samples is a proper receptive
field for a CNN to learn P300-related temporal features [23]. The input to this
layer is the raw signals, so this layer learns P300-related separate temporal fea-
tures from raw signals. This layer generates also 16 feature maps, which are the
input to Layer 2 of OTLN.

In both Layer 1 of OSLN and Layer 1 of OTLN, the activation function is
the Rectified Linear Unit (ReLU) [18] function. We employ dropout [25], with a
rate of 0.4, to prevent OSLN and OTLN from overfitting.

Layer 2 of OSLN (see Table 1) and Layer 2 of OTLN (see Table 2) are the
same. This layer is a fully-connected layer with two neurons. These two neurons
represent the class “P300” (the presence of a P300 signal) and the class “non-
P300” (the absence of a P300 signal), respectively. The activation function used
in this layer is the Softmax [12] function which outputs the predicted probability
for the “P300” class and the “non-P300” class.

OSLN and OTLN each uses only one convolution layer. OSLN uses only one
convolution layer because it does not make sense to add more spatial convolution
layers for OSLN. This CNN is designed to learn P300-related spatial features
from the EEG signals recorded with all C sensors in the first layer. If we add
more spatial convolution layers after its first spatial convolution layer to learn
P300-related spatial features, these added layers should learn spatial features
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from the abstract signals generated by the first spatial convolution layer. These
abstract signals include only the time domain and do not have the space domain
because the first convolution layer uses the receptive field including all C sensors.
Thus, these abstract signals can not be used to extract spatial features. OTLN
also uses only one convolution layer because one convolution layer is enough to
extract useful P300-related separate temporal features (see Sect. 6.1).

4.4 Training

The training is carried out by minimizing the binary cross-entropy loss func-
tion [8]. It uses a Stochastic Gradient Descent [5] optimizer with momentum
and weight decay. The momentum is 0.9 and the weight decay is 0.0005. The
learning rate is fixed to 0.01. The batch size is 128. This setup of the training
parameters follows the suggestion in [24].

4.5 Character Spelling Using EoCNN

The character spelling approach using EoCNN is performed by Eqs. (1), (2), (3),
and (4).

PEoC(i, j) =
1
3

× (POS(i, j) + POT (i, j) + POCL(i, j)) (1)

Sum(j) =
k∑

i=1

PEoC(i, j) (2)

indexcol = argmax
1≤j≤6

Sum(j) (3)

indexrow = argmax
7≤j≤12

Sum(j) (4)

Equation (1) shows the ensemble processing of the outputs from OSLN,
OTLN, and OCLNN. The output from a CNN used for character spelling is
the predicted probability by this CNN for class “P300”. In this equation, for
epoch i and for intensification j, POS(i, j) denotes the predicted probability by
OSLN for class “P300”, POT (i, j) denotes the predicted probability by OTLN
for class “P300”, and POCL(i, j) denotes the predicted probability by OCLNN
for class “P300”.

The calculation for the position of the target character when using the first
k epochs is defined by Eqs. (2), (3) and (4), where Sum(j) denotes the sum of
the predicted probabilities by EoCNN, indexcol denotes the index of the column
position of the target character, and indexrow denotes the index of the row
position of the target character. j denotes a column intensification when j ∈ [1, 6]
and j denotes a row intensification when j ∈ [7, 12].
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5 Experimental Evaluation

First, we introduce our experimental setup in Sect. 5.1. Then, we compare the
spelling accuracy achieved by our EoCNN and other methods in Sect. 5.2. Finally,
we compare the communication speed of the P300 speller based on our EoCNN
and other methods in Sect. 5.3.

5.1 Experimental Setup

We use Keras with the Tensorflow backend [7] to implement our EoCNN.
We use every training dataset of Dataset II, III-A and III-B to train our

EoCNN, separately. Therefore, for the input tensor to EoCNN (see Sect. 4.2),
we have C = 64 because the number of sensors used to acquire EEG signals is
64. We have Tem = 240 because we take each individual pattern as the signals
from the time period between 0 and 1000 ms posterior to the beginning of each
intensification, and the signal sampling frequency is 240 Hz.

We evaluate every trained EoCNN on the corresponding test dataset of
Dataset II, III-A and III-B, and calculate the spelling accuracy for every test
dataset. The spelling accuracy is calculated using Eq. (5), where acck denotes the
spelling accuracy when using the first k epochs for every character, Rk denotes
the number of correctly inferred characters when using the first k epochs for
every character, and A denotes the number of all characters.

acck =
Rk

A
(5)

We compare our EoCNN with CCNN [6], BN3 [15], CNN-R [16], OCLNN [23],
and Bostanov [4] on Dataset II. CCNN, BN3, CNN-R, and OCLNN are differ-
ent CNNs used for the character spelling in the P300 speller. Bostanov is the
method which won the championship on Dataset II in the BCI Competition II.
We compare our EoCNN with CCNN, BN3, CNN-R, OCLNN, and ESVM [21]
on Dataset III-A and Dataset III-B. ESVM is the method which won the cham-
pionship on Dataset III-A and Dataset III-B in the BCI Competition III.

5.2 Character Spelling Accuracy

The spelling accuracy achieved by our EoCNN and other methods on Dataset II,
Dataset III-A, and Dataset III-B is shown in Tables 3, 4, and 5, respectively. In
these tables, the different methods, we compare, are shown in the first column.
The spelling accuracy for different epoch numbers k ∈ [1, 15] is shown in each
row of the table. A number in bold indicates that the accuracy achieved by
the corresponding method is the highest among all methods. “–” denotes that
the corresponding paper, describing the method, does not provide this accuracy
number. The accuracy in this table is shown in %. Overall, the spelling accuracy
achieved by our EoCNN is higher than the spelling accuracy achieved by other
methods in most cases. Our EoCNN increases the spelling accuracy achieved by
other methods with up to 38.72%.
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Table 3 shows that for Dataset II, for every epoch number k ∈ [1, 15], the
spelling accuracy achieved by our EoCNN is higher than the spelling accuracy
achieved by all other methods. Our EoCNN can increase the spelling accuracy
achieved by CCNN, CNN-R, BN3, OCLNN, and Bostanov with up to 38.72%,
12.90%, 19.36%, 6.45%, and 19.35%, respectively.

Table 4 shows that for Dataset III-A, in 14 out of 15 cases (epoch number
k ∈ [1, 8]∪ [10, 15]), the spelling accuracy achieved by our EoCNN is higher than
the spelling accuracy achieved by all other methods. Our EoCNN can increase

Table 3. Spelling accuracy achieved by different methods on Dataset II.

Method Epochs

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

EoCNN 83.87 93.55 100 100 100 100 100 100 100 100 100 100 100 100 100

CCNN 58.06 54.83 77.41 93.54 93.54 93.54 93.54 96.77 96.77 100 100 100 100 100 100

CNN-R 70.97 83.87 93.55 96.77 100 100 100 100 100 100 100 100 100 100 100

BN3 77.42 74.19 80.65 83.87 93.55 96.77 96.77 96.77 100 100 100 100 100 100 100

OCLNN 77.42 90.32 100 100 100 100 100 100 100 100 100 100 100 100 100

Bostanov 64.52 83.87 93.55 96.77 96.77 100 100 100 100 100 100 100 100 100 100

Table 4. Spelling accuracy achieved by different methods on Dataset III-A.

Method Epochs

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

EoCNN 23 39 61 68 76 81 84 86 88 93 95 98 97 99 99

CCNN 16 33 47 52 61 65 77 78 85 86 90 91 91 93 97

CNN-R 14 28 38 53 57 62 71 75 77 82 89 87 87 92 95

BN3 22 39 58 67 73 75 79 81 82 86 89 92 94 96 98

OCLNN 23 39 56 63 73 79 82 85 90 91 94 95 95 96 99

ESVM 16 32 52 60 72 – – – – 83 – – 94 – 97

Table 5. Spelling accuracy achieved by different methods on Dataset III-B.

Method Epochs

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

EoCNN 51 66 74 81 84 90 91 92 95 97 98 98 98 98 99

CCNN 35 52 59 68 79 81 82 89 92 91 91 90 91 92 92

CNN-R 36 46 66 70 77 80 86 86 88 91 94 95 95 96 96

BN3 47 59 70 73 76 82 84 91 94 95 95 95 94 94 95

OCLNN 46 62 72 79 84 87 89 93 94 96 97 97 97 98 98

ESVM 35 53 62 68 75 – – – – 91 – – 96 – 96
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the spelling accuracy achieved by CCNN, CNN-R, BN3, OCLNN, and ESVM
with up to 16%, 23%, 7%, 5%, and 10%, respectively.

Table 5 shows that for Dataset III-B, in 14 out of 15 cases (epoch number
k ∈ [1, 7] ∪ [9, 15]), the spelling accuracy achieved by our EoCNN is higher than
the spelling accuracy achieved by all other methods. Our EoCNN can increase
the accuracy achieved by CCNN, CNN-R, BN3, OCLNN, and ESVM with up to
16%, 20%, 8%, 5%, and 16%, respectively.

Moreover, our method is robust across different subjects. Tables 3, 4, and 5
show that for all three subjects, our EoCNN achieves the highest spelling accu-
racy among all other methods in 43 out of 45 cases.

These experimental results also give some insights on how many epochs we
should use for the spelling of one character in the P300 speller. The first insight is
from the fact that, in Table 3, the spelling accuracy achieved by CCNN and BN3
on epoch number k= 2 is lower than the spelling accuracy achieved by CCNN
and BN3 on epoch number k= 1. This shows that adding more epochs does not
necessarily improve spelling accuracy for the P300 speller. This is also discussed
in more details in [6]. The other insight is from the fact that in Dataset II, we need
only 2 epochs to achieve the spelling accuracy which is higher than 90% while
in Dataset III-A and Dataset III-B, in order to achieve the spelling accuracy
higher than 90%, we need at least 10 epochs and 6 epochs, respectively. This
indicates us that we can use different number of epochs for different subjects to
spell characters using the P300 speller. In this way, we can use a small number of
epochs for a subject when using the P300 speller such that we can significantly
decrease the time needed for a subject to spell a character while keeping an
acceptable spelling accuracy.

5.3 Information Transfer Rate

This section compares the Information Transfer Rate (ITR) of the P300 speller
based on our EoCNN and other methods. ITR has been the most commonly
applied metric to assess the communication speed of BCIs [26], combining the
accuracy and the time needed for recognition. It is calculated by Eqs. (6) and
(7) [27], where P denotes the probability to correctly spell a character, N denotes
the number of classes, and T denotes the time needed to spell a character when
using k epochs. For more detailed explanation about the ITR please refer to [27].

ITR =
60(P log2(P ) + (1 − P ) log2

1−P
N−1 + log2(N))

T
(6)

T = 2.5 + 2.1k 1 ≤ k ≤ 15 (7)

The ITR of the P300 speller based on our EoCNN and other methods for
Dataset II, Dataset III-A and Dataset III-B is shown in Tables 6, 7, and 8,
respectively. In these tables, the different methods, we compare, are shown in
the first column. The ITR for different epoch numbers k ∈ [1, 15] is shown
in each row of the table. A number in bold denotes that the corresponding
method achieves the highest ITR for the P300 speller, compared with all other
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methods. “–” in a table denotes that the ITR cannot be calculated because the
corresponding method does not provide the spelling accuracy. The ITR is shown
in bits/minute. Overall, in 43 out of 45 cases, the ITR of the P300 speller based
on our EoCNN is higher than the ITR of the P300 spellers based on all other
methods. The communication speed (i.e., ITR) of the P300 speller based on our
EoCNN is up to 2.56 times faster than the communication speed of the P300
speller based on other methods.

Table 6. The ITR of the P300 speller based on different methods on Dataset II.

Method Epochs

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

EoCNN 88.92 58.62 46.28 35.24 28.45 23.85 20.53 18.03 16.07 14.49 13.19 12.11 11.19 10.41 9.72

CCNN 48.9 24.26 29.02 30.63 24.73 20.74 17.85 16.74 14.92 14.49 13.19 12.11 11.19 10.41 9.72

CNN-R 67.48 48.33 40.25 32.72 28.45 23.85 20.53 18.03 16.07 14.49 13.19 12.11 11.19 10.41 9.72

BN3 77.79 39.42 31.06 25.26 24.74 22.15 19.07 16.74 16.07 14.49 13.19 12.11 11.19 10.41 9.72

OCLNN 77.79 54.97 46.28 35.24 28.45 23.85 20.53 18.03 16.07 14.49 13.19 12.11 11.19 10.41 9.72

Bostanov 57.88 48.33 40.25 32.72 26.41 23.85 20.53 18.03 16.07 14.49 13.19 12.11 11.19 10.41 9.72

Table 7. The ITR of the P300 speller based on different methods on Dataset III-A.

Method Epochs

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

EoCNN 10.62 14.04 19.74 17.89 17.31 16.13 14.76 13.49 12.51 12.46 11.81 11.55 10.44 10.14 9.48

CCNN 5.45 10.67 13.02 11.65 12.14 11.26 12.76 11.45 11.78 10.84 10.69 10.01 9.25 8.95 9.07

CNN-R 4.19 8.11 9.24 12.01 10.89 10.44 11.18 10.73 9.99 10 10.48 9.25 8.55 8.77 8.7

BN3 9.81 14.04 18.22 17.47 16.2 14.2 13.32 12.19 11.09 10.84 10.48 10.21 9.82 9.51 9.27

OCLNN 10.62 14.04 17.22 15.83 16.2 15.47 14.17 13.22 13.02 11.98 11.58 10.84 10.02 9.51 9.48

ESVM 5.45 10.14 15.3 14.64 15.84 – – – – 10.21 – – 9.82 – 9.07

Table 8. The ITR of the P300 speller based on different methods on Dataset III-B.

Method Epochs

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

EoCNN 39.76 32.62 26.95 23.82 20.45 19.33 16.97 15.2 14.38 13.52 12.58 11.55 10.67 9.92 9.48

CCNN 21.64 22.29 18.72 17.89 18.45 16.13 14.17 14.32 13.55 11.98 10.91 9.82 9.25 8.77 8.2

CNN-R 22.67 18.32 22.4 18.75 17.68 15.79 15.37 13.49 12.51 11.98 11.58 10.84 10.02 9.51 8.88

BN3 34.9 27.27 24.63 20.07 17.31 16.46 14.76 14.9 14.1 12.97 11.81 10.84 9.82 9.13 8.7

OCLNN 33.71 29.51 25.78 22.85 20.45 18.21 16.31 15.51 14.1 13.24 12.31 11.3 10.44 9.92 9.27

ESVM 21.64 22.98 20.26 17.89 16.93 – – – – 11.98 – – 10.23 – 8.88

Table 6 shows that the communication speed of the P300 speller based on our
EoCNN is up to 2.42 times faster than the communication speed of the P300
speller based on other methods. The maximum increase of the communication
speed occurs when comparing the ITR of the P300 speller based on our EoCNN
with the ITR of the P300 speller based on CCNN for epoch number k = 2.
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Table 7 shows that the communication speed of the P300 speller based on our
EoCNN is up to 2.56 times faster than the communication speed of the P300
speller based on other methods. The maximum increase of the communication
speed occurs when comparing the ITR of the P300 speller based on our EoCNN
with the ITR of the P300 speller based on CNN-R for epoch number k = 1.

Table 8 shows that the communication speed of the P300 speller based on our
EoCNN is up to 1.84 times faster than the communication speed of the P300
speller based on other methods. The maximum increase of the communication
speed occurs when comparing the ITR of the P300 speller based on our EoCNN
with the ITR of the P300 speller based on CCNN and ESVM for epoch number
k = 1.

These experimental results show that by using our EoCNN, the communi-
cation speed of the P300 speller can be significantly increased for low epoch
numbers.

6 Discussions

In this section, first, we analyse our proposed OTLN and OSLN in terms of
spelling accuracy, and discuss the influence of the number of convolution layers
on extracting useful P300-related separate temporal features. Then, we perform
an ablation study on EoCNN. Finally, we explore the importance of extracting
P300-related temporal features from raw signals.

In this section, all the experiments are performed by using the experimental
setup described in Sect. 5.1. We have done experiments using all three datasets,
which show the similar conclusions. Thus, we only present the experimental
results on Dataset III-A.

6.1 Analysis on Our Proposed OTLN and OSLN

First, we perform experiments to show the spelling accuracy achieved by OTLN
and OSLN, respectively. The experimental results are shown in Table 9. In this
table, different CNNs, we compare, are shown in the first column. The spelling
accuracy for different epoch numbers k ∈ [1, 15] is shown in each row of the
table. A number in bold indicates that the corresponding CNN achieves the
highest accuracy compared to all other CNNs. The accuracy in this table is
shown in %. Table 9 shows that OTLN and OSLN both have good ability to
achieve high spelling accuracy when OTLN and OSLN are used independently
for P300 spelling. Thus, OTLN and OSLN are able to extract very useful P300-
related separate temporal features and P300-related separate spatial features,
respectively.

Then, we analyse whether OTLN needs more convolution layers to extract
P300-related separate temporal features. In order to analyse the influence of the
number of convolution layers on OTLN, we perform experiments to compare the
spelling accuracy achieved by OTLN and other two CNNs called OTLN-3l and
OTLN-6l. OTLN-3l and OTLN-6l use 3 and 6 convolution layers, respectively.
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Table 9. Spelling accuracy achieved by OTLN, OSLN and EoCNN on Dataset III-A.

Network Epochs

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

OTLN 21 34 51 65 69 73 76 81 85 85 88 92 92 93 95

OSLN 24 35 55 63 69 75 78 79 80 82 89 92 94 95 96

EoCNN 23 39 61 68 76 81 84 86 88 93 95 98 97 99 99

These convolution layers use the same kernel size and generate the same number
of feature maps as the convolution layer used in OTLN. The spelling accuracy
achieved by OTLN, OTLN-3l and OTLN-6l is plotted in Fig. 4. This figure shows
that the spelling accuracy achieved by OTLN-3l and OTLN is almost the same.
The spelling accuracy achieved by OTLN-6l is lower than the spelling accuracy
achieved by OTLN. These experimental results show that using one convolution
layer is enough to extract useful P300-related separate temporal features for
P300 spelling. Using more convolution layers for the extraction of the separate
temporal features does not help increasing the spelling accuracy and may cause
overfitting which decreases the spelling accuracy.

Fig. 4. Spelling accuracy achieved by OTLN, OTLN-3l and OTLN-6l on Dataset III-A.

6.2 Ablation Study on EoCNN

We perform an ablation study on EoCNN. We first remove a CNN from EoCNN.
Then, we perform experiments to show the spelling accuracy achieved by the
ensemble of the two CNNs left in EoCNN. In this way, we want to show the
importance of each separate CNN in EoCNN for character spelling in the P300
speller. The experimental results are shown in Table 10. In this table, “-” indi-
cates that we remove a given CNN from EoCNN. For example, “EoCNN-OSLN”
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indicates that we remove OSLN from EoCNN. The experimental results show
that after removing any of the individual CNNs from EoCNN, the spelling accu-
racy achieved by the ensemble of the two CNNs left is lower, compared with
the spelling accuracy achieved by EoCNN when none of the individual CNNs
is removed. This shows that we need to combine all three CNNs (i.e., OSLN,
OTLN, and OCLNN) in EoCNN in order to achieve high spelling accuracy.

Table 10. Spelling accuracy achieved by EoCNN after removing a separate CNN.

Network Epochs

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

EoCNN-OTLN 23 39 58 67 75 81 82 86 86 91 93 96 96 97 99

EoCNN-OSLN 22 36 57 66 73 79 80 84 89 92 92 95 95 97 98

EoCNN-OCLNN 22 35 55 67 75 79 80 82 83 89 90 93 95 97 98

EoCNN 23 39 61 68 76 81 84 86 88 93 95 98 97 99 99

6.3 Exploration on the Importance of Extracting P300-Related
Temporal Features from Raw Signals

We explore the importance of extracting P300-related temporal features
from raw signals. We addressed this issue in Sect. 2. We build two sets
of networks, called “RAW networks” and “unRAW networks”, respectively.
RAW networks contains EoCNN, EoCNN-OSLN, EoCNN-OTLN, EoCNN-
OCLNN and OCLNN. All the networks in RAW networks extract P300-related
temporal features from raw signals. unRAW networks contains CCNN, CNN-R,

Fig. 5. Spelling accuracy achieved by networks in RAW networks and networks in
unRAW networks on Dataset III-A.
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and BN3. All the networks in unRAW networks extract P300-related temporal
features from abstract temporal signals (the feature maps generated by the spa-
tial convolution layer). We perform experiments to show the spelling accuracy
achieved by each network in RAW networks and the spelling accuracy achieved
by each network in unRAW networks.

The experimental results are shown in Fig. 5. In this figure, the spelling
accuracy achieved by the networks in RAW networks and the spelling accuracy
achieved by the networks in unRAW networks are plotted in different shapes and
colors. This figure shows that in most cases, the spelling accuracy achieved by
the networks in RAW networks is higher than the spelling accuracy achieved by
the networks in unRAW networks. This shows that extracting P300-related tem-
poral features from raw signals is able to achieve higher spelling accuracy than
extracting P300-related temporal features from abstract signals. These experi-
mental results support our statement in Sect. 2.

7 Conclusions and Future Work

In this paper, we propose a novel and effective network, called EoCNN, for char-
acter spelling in the P300 speller. Our EoCNN uses an ensemble of three different
CNNs for P300 spelling. These three CNNs extract different useful P300-related
features. Experimental results on three datasets show that the spelling accuracy
achieved by our network is higher than the spelling accuracy achieved by other
methods. Also, the communication speed of the P300 speller based on our net-
work is higher than the communication speed of the P300 speller based on other
methods.

The future work includes two aspects. The first aspect is to evaluate the
performance of our proposed network via an online P300 speller. The online P300
speller helps the BCI users spell characters in real time. Thus, the performance
of the online P300 speller based on our proposed network is able to provide more
accurate evaluation for the usage of this BCI system in people’s real life. The
second aspect of the future work is to evaluate our network with more subjects
in terms of spelling accuracy and ITR. Evaluating our network using the EEG
signals from more subjects is able to further prove that our network can solve the
problem of the subject-to-subject variability in brain signals and achieve high
spelling accuracy and ITR across subjects.
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