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Abstract— A Brain Computer Interface (BCI) character
speller allows human-beings to directly spell characters using
eye-gazes, thereby building communication between the human
brain and a computer. Current popular BCI character speller
systems employ a large number of sensors, which prevents the
utilization of such systems in human’s daily life. Using sensor
selection methods to select appropriate sensor subsets from an
initial large sensor set can reduce the number of sensors needed
to acquire brain signals without losing the character spelling
accuracy, thereby promoting the BCI character spellers into
people’s daily life. However, current sensor selection methods
cannot select an appropriate sensor subset such that they can
further reduce the number of sensors needed to acquire brain
signals without losing the spelling accuracy. To address this
issue, we propose a novel sensor selection method based on a
specific Convolutional Neural Network (CNN) we have devised.
Our method uses a parametric backward elimination algorithm
which uses our devised CNN as a ranking function to evaluate
sensors and eliminate less important sensors. We perform
experiments on three benchmark datasets and compare the
minimal number of sensors selected by our proposed method
and other selection methods to acquire brain signals while
keeping the spelling accuracy the same as the accuracy achieved
when the initial large sensor set is used. The results show that
the minimal number of sensors selected by our method is lower
than the minimal number of sensors selected by other methods
in most cases. Compared with the minimal number of sensors
selected by other methods, our method can reduce this number
with up to 44 sensors.

I. INTRODUCTION

A Brain Computer Interface (BCI) translates brain signals
into computer commands, thereby building communication
between the human brain and outside devices. In this way,
human-beings can use only the brain to express their thoughts
without any real movement. As a result, BCIs become an
important communication pathway for the people who lose
motor ability, such as patients with Amyotrophic Lateral
Sclerosis (ALS) [1] or spinal-cord injury. In recent years,
BCI has also been popularly developed for healthy people, in
application domains such as entertainments [2], mental state
monitoring [3] as well as in IoT services [4]. Electroen-
cephalogram (EEG)-based BCI attracts most of the research
due to its noninvasive way of measuring/acquiring brain
signals [5]. An EEG-based BCI includes an EEG headset for
acquisition of EEG signals as well as a hardware/software
platform for processing and translating EEG signals into
computer commands. An important application of EEG-
based BCIs is the P300 speller [6] because the P300 speller
performs outstandingly well among all kinds of EEG-based
character spellers.

Nevertheless, the P300 speller is still not used in human’s
daily life and remains in an experimental stage at research
labs. Some of the reasons for this situation are : 1) Current
popular EEG headsets in BCI systems used for the P300
speller employ a large number of sensors to achieve high
spelling accuracy. For example, the BCI systems Brain
Products ActiCHamp, g.HIamp and Biosemi employ up to
160, 256, and 256 sensors, respectively. The price of the EEG
headset is significantly high when the number of sensors is
large because a lot of sensors require a complicated electrode
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cap and a lot of amplifier channels. For example, a 256-
sensor BCI system (BioSemi) costs 87000 dollars while a
14-sensor BCI system (EMOTIV EPOC+) costs 799 dollars;
2) Employing a large number of sensors makes the P300
speller to consume a lot of power, which is unacceptable for
a battery-powered mobile BCI system. Such system employs
a wireless EEG headset and a resource-constrained hardware
platform for data processing. A large number of sensors
increase the amount of the data needed to be recorded and
processed, thereby increasing the power consumption of the
wireless BCI headset and the hardware platform. This does
not allow a mobile P300 speller to work for a long time
period on a single battery charge; 3) Employing a large
number of sensors strengthens the user’s discomfort and
increases the installation time of the P300 speller.

To address the aforementioned problems caused by the
employment of a large number of sensors, sensor selection
methods could be used to select an appropriate sensor subset
from an initial large set of sensors while keeping accept-
able spelling accuracy. So, a good sensor selection method
should enable substantial reduction of the sensors needed
to acquire brain signals. Therefore, good sensor selection
methods are in urgent need for designing comfortable, cheap,
and power-efficient P300 spellers and for promoting such
P300 spellers into the human’s daily life. Sensor selection
methods for the P300 speller have been studied in recent
years. For example, [7] [8] [9] [10] employ a backward
elimination algorithm as a sensor selection strategy. These
works propose different ranking functions to evaluate and
eliminate sensors such as the P300 signal detection accuracy,
the P300 spelling accuracy [10], Ccs score [7], Signal to
Signal and Noise Ratio (SSNR) [8] [9] [10], Area Under
the Receiver Operating Characteristic (AUC) [11]. Alterna-
tively, [12] and [13] directly select the important sensors for
a given user by analysing the weights of a trained neural
network. Unfortunately, the aforementioned sensor selection
methods cannot select an appropriate sensor subset such that
they can further reduce the number of sensors used to acquire
brain signals while keeping the spelling accuracy the same
as the accuracy achieved when the initial large sensor set is
used. As a consequence, the cost, power consumption, and
discomfort of a P300 speller are still unacceptably high when
using the aforementioned sensor selection methods to design
and configure P300 spellers. In order to further reduce the
cost and power consumption of a P300 speller, we propose an
effective sensor selection method based on a specific novel
Convolutional Neural Network (CNN) we have devised. The
novel contributions of this paper are the following:

• Our devised CNN extracts the spatial features related
to P300 signals from the input EEG signals. Our sensor
selection method uses this CNN to evaluate and rank
the sensors in the sensor selection process. This method
features an iterative parametric backward elimination
algorithm to eliminate and select sensors. The param-
eter configured in this algorithm controls the training
frequency of the CNN and the number of sensors to
eliminate in every iteration.

• We perform experiments on three benchmark datasets
and compare the minimal number of sensors selected
by our proposed method and other selection methods
needed to acquire brain signals while keeping the

978-1-5386-1311-5/19/$31.00 ©2019 IEEE 3026



spelling accuracy the same as the accuracy achieved
when the initial large sensor set is used. The results
show that, compared with the minimal number of sen-
sors selected by other methods, our method can reduce
this number with up to 44 sensors.

The rest of the paper is organized as follows. Section II
describes the related work. Section III provides background
information on the P300 speller and the datasets used in
this paper. Section IV presents the proposed sensor selection
method. Section V describes the experimental setup and
the experimental results on the comparison of the minimal
number of sensors selected by our proposed method and
other sensor selection methods to acquire brain signals for the
P300 speller. Section VI discusses how the number of sensors
eliminated in an iteration influences the performance of our
proposed method as well as how the CNN network archi-
tecture influences the sensor selection process. Section VII
ends the paper with conclusions.

II. RELATED WORK

In this section, we describe the related works on sensor
selection methods for the P300 speller in BCI.

[7] [10] employ a backward elimination algorithm as a
sensor selection strategy. Different ranking functions are
proposed to evaluate and eliminate sensors. These ranking
functions include the P300 detection accuracy, the average
spelling accuracy across different epochs [10], Ccs score [7],
Signal to Signal and Noise Ratio (SSNR) [10] and Area
Under the Receiver Operating Characteristic (AUC) [11]. In
order to select a sensor subset, the backward elimination
algorithm either eliminates one sensor [10] or a group of
sensors [7] in each iteration of the algorithm. Starting with
a set of n sensors in an iteration, the backward elimination
algorithm removes each sensor in the current sensor set and
evaluates the resulting subsets with (n− 1) sensors using
the aforementioned ranking functions. The sensor or the
group of sensors which removal maximizes the ranking score
is eliminated. In contrast to these methods, we proposes
a novel ranking function (see Section IV-C) based on a
specific novel Convolutional Neural Network (CNN) we
have devised. Experimental results (see Section V-B) show
that our sensor selection method is able to select a sensor
subset with smaller number of sensors needed to acquire
the brain signals while keeping the spelling accuracy the
same as the accuracy achieved when the initial large sensor
set is used, compared with the sensor subset selected by
the aforementioned sensor selection methods. Therefore, our
sensor selection methods can further reduce the cost and
power consumption of the P300 speller.

[12] and [13] propose CNN-based classifiers for character
spelling in the P300 speller. By analysing the weights of
the spatial convolution layer of their trained CNNs, they
determine which sensors are more important in the sensor
set. This can be a potential sensor selection method for
the P300 speller. However, the problem of such potential
method is that it loses important information needed for
proper sensor selection. The aforementioned CNNs have
multiple convolution layers and only the information of
the first layer is used for analysis and sensor selection.
Unfortunately, the information needed for proper sensor
selection is distributed over all convolution layers, thus the
aforementioned methods lose information needed for sensor
selection from other convolution layers. In contrast to the
aforementioned CNNs, we propose a simple and novel CNN
which has only one convolution layer and this layer performs
the spatial convolution operation. All the information needed
for sensor selection is captured by the weights of this
single spatial convolution layer. Moreover, our CNN has
similar ability to extract very useful P300-related features
compared to the aforementioned CNNs (see Section VI-B).
We analyse the weights of the single spatial convolution layer
in our CNN to select sensors. Thus, our method uses all the

information available for proper sensor selection compared
to the aforementioned methods. As a result, our method can
select more appropriate sensor subsets and further reduce
the minimal number of sensors needed to acquire brain
signals without losing spelling accuracy. For more detailed
discussion see Section VI-C.

III. BACKGROUND

In this section, we provide some background information
for the P300 speller method and the benchmark datasets used
in this paper.

A. P300 Speller
The P300 speller is one of the most investigated applica-

tions in BCI [14] [15] [6]. A target character is spelled using
the property of the P300 signal. As shown in Figure 1, a P300
signal, recorded in EEG, occurs as a positive deflection in
voltage with a latency of about 300ms after a rare stimulus
is presented to a subject (person). The following method is
used to evoke a P300 signal in a subject’s brain and then the
evoked P300 signal is used to spell characters. The subject
is presented with a 6 by 6 character matrix (see Figure 2)
and he focuses his attention on a target character he wants
to spell. All rows and columns in this matrix are intensified
successively and randomly but separately. Two out of twelve
intensifications contain the target character, i.e., one target
row and one target column. As a result, the target row/column
intensification becomes a rare stimulus to the subject. A P300
signal is then evoked by the rare stimulus. By detecting the
P300 signal, we can infer which row or column the subject
is focused on. By combing the row and column positions, we
can infer the target character position. Assume that one epoch
includes 12 intensifications, in which there exist one target
row intensification and one target column intensification. In
practice, people use several consecutive epochs for the P300
speller to infer one target character, because it is hard to use
only one epoch to correctly spell one target character [16].

Fig. 1. P300 signal.
Fig. 2. P300 speller char-
acter matrix.

B. Datasets
This paper uses three benchmark datasets, namely, BCI

Competition II - Data set IIb [17] as well as BCI Competition
III - Data set II Subject A and Subject B [18]. In this paper,
we use II to denote BCI Competition II - Data set IIb, III-A
to denote BCI Competition III - Data set II Subject A, and
III-B to denote BCI Competition III - Data set II Subject B.
Here, we give a short description of the three datasets.

Dataset II, III-A and III-B are provided by the Wadsworth
Center, NYS Department of Health. They are recorded from
three different subjects with the BCI2000 platform, using
the P300 speller method described in Section III-A. EEG
brain signals are collected from 64 sensors. The brain signals
are sampled at a frequency of 240Hz. One intensification
lasts for 100ms, followed by a 75ms blank period for the
matrix. The experiment uses 15 epochs for each character.
After each sequence of 15 epochs, the matrix is blank for
2.5s, to inform the subject that this character is completed
and to focus on the next character. In all three datasets, there
are two separate sub-datasets. We use the first sub-dataset for
sensor selection and we call this sub-dataset the preliminary
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dataset. We use the second sub-dataset for evaluation of the
performance of the P300 speller after sensor selection and
we call this sub-dataset the evaluation dataset. In Dataset II,
the preliminary dataset has 42 characters and the evaluation
dataset has 31 characters. In Dataset III-A and III-B, each
preliminary dataset has 85 characters and each evaluation
dataset has 100 characters.

IV. OUR SENSOR SELECTION METHOD

In this section, we present our novel iterative sensor
selection method for the P300 speller. We call it Spatial
Learning based Elimination Selection (SLES).

A. Spatial Learning based Elimination Selection
Our SLES method is described in Algorithm 1. The

symbols used in Algorithm 1 and their corresponding de-
scriptions are listed in Table I. The input of SLES is the
initial sensor set S and the parameter Ns. The output of
SLES is a set of selected sensor subsets SUB. For each
iteration in Algorithm 1, SLES trains SCNN(S) (described
in Section IV-B) with the input signals recorded with the
sensors in sensor set S (see Line 2 in Algorithm 1). After
training SCNN(S), the ranking scores score j for all sensors s j
in sensor set S are calculated (Line 3-4) using SCNN(S) and
Equation (2) explained in Section IV-C. The sensor with the
minimal score is found and removed from sensor set S (Lines
6-7). This reduced sensor set S is the selected sensor subset
in this iteration (Line 8). The input parameter Ns controls
the training frequency of SCNN(S) (Line 1) and the number
of sensors to eliminate after training SCNN(S) (Line 5).

TABLE I
THE SYMBOLS USED IN ALGORITHM 1.

Symbol Description
S Sensor set.
s j The jth sensor in S.
C Number of sensors in the initial sensor set.

SUB A set of selected sensor subsets.
subm A selected sensor subset with m sensors.

SCNN(S) The novel parametric CNN given in Section IV-B
Ns Number of sensors to eliminate in an iteration.

score j The ranking score for s j .
sremove The sensor to remove.

Algorithm 1: Proposed SLES algorithm.
Input: A set of S = {s1, s2, ..., s j , ... sC}, Ns;
Output: A set of SUB = {sub1, sub2, ... , subm, ... subC−1};

1 for 1 ≤ k ≤ C/Ns do
2 Train a SCNN(S) with the input signals recorded using S;
3 for s j ∈ S do
4 Calculate score j using SCNN(S) and Equation (2);

5 for 1≤ m≤ Ns do
6 sremove = argmin

s j∈S
{score j};

7 S← S− sremove;
8 sub(C−Ns∗(k−1)−m)← S;

B. Spatial Convolutional Neural Network
In this section, we introduce our novel parametric Spatial

Convolutional Neural Network (SCNN(S)), which weights are
used in SLES to calculate the ranking scores of sensors.

1) Input Tensor: The input to SCNN(S) is the tensor (N
× |S|) shown in Figure 3. S is the sensor set used in
Algorithm 1. x ji denotes the ith temporal signal sample in
the time domain and this signal sample is recorded with
sensor s j in sensor set S in the space domain. SCNN(S)
is parameterized by S because the input tensor to SCNN(S)
is constructed by the EEG signals samples acquired using
the sensors in sensor set S and S is changed in each main
iteration of Algorithm 1. N denotes the number of temporal

signal samples. Here N= Ts×Fs, where Ts denotes the time
period between 0 and Ts posterior to the beginning of
each row/column intensification (see Section III-A) and Fs
denotes the signal sampling frequency. In the input tensor,
the temporal signal samples are bandpass filtered between
0.1Hz and 20Hz to remove high frequency noise. Then,
the temporal signal samples are normalized to have zero
mean and unit variance based on each individual pattern and
for each sensor. Each individual pattern represents N signal
samples in the time period between 0 and Ts posterior to the
beginning of each intensification.

Fig. 3. Input tensor to SCNN(S), where s j ∈ S.

2) Spatial Convolutional Neural Network: In our pro-
posed SCNN(S), there are two layers in total. Table II shows
the details of the SCNN(S) architecture. The first column
shows the name of the layers. The second column shows the
operation performed in the corresponding layer. The third
column shows the kernel size in the convolution layer. The
fourth column shows how many feature maps/neurons are
employed in the convolution/fully-connected layer.

TABLE II
SCNN(S) ARCHITECTURE.

Layer Operation Kernel Size Feature Maps/Neurons
1 Convolution (1,|S|) 10

Dropout — —
2 Fully-Connected — 2

In Layer 1, SCNN(S) performs a spatial convolution oper-
ation to extract the spatial features related to P300 signals
from the input tensor. The detailed calculation in this convo-
lution operation is shown in Equation (1), where fki denotes
the ith datum in the kth feature map. wk j denotes the jth
weight of the filter and this filter outputs abstract data for
the kth feature map. The activation function we employ in
this layer is the Rectified Linear Unit (ReLU). In this layer,
we employ Dropout in order to prevent the network from
overfitting. In this layer, we do not use bias in the convolution
operation, thus all the learned features are captured by the
weights wk j. This layer outputs 10 feature maps in total.
These generated feature maps are the input to Layer 2.

fki = ∑
s j∈S

x jiwk j (1) score j =
10

∑
k=1
|wk j| (2)

In Layer 2, SCNN(S) performs the fully-connected op-
eration. This layer has two neurons in total. The fully-
connected operation makes correlation between the feature
maps generated in Layer 1 and the two neurons. The two
neurons represent two classes. One class represents “P300”,
denoting the presence of a P300 signal. The other class
represents “non-P300”, denoting the absence of a P300
signal. The activation function employed in this layer is the
Softmax function.

3) Training: The training of SCNN(S) is carried out by
minimizing the binary cross-entropy loss function. It uses
Stochastic Gradient Descent as an optimizer with momentum
and weight decay. The learning rate is set to 0.01. The
momentum is set to 0.9. The batch size is set to 128.
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The weight decay is set to 0.0005. The weights of all
neurons in the single convolution layer are regularized by
L2 Regularizer.

C. Ranking Function
Our proposed novel ranking function used in SLES is

described in Equation (2), where score j is the ranking score
for sensor s j used in Algorithm 1. wk j are the weights
described in Equation (1). These weights are obtained from
the trained SCNN(S), described in Section IV-B.2 and used
in Algorithm 1. Note that we take the absolute value of
the weights in Equation (2) because weights with a large
negative value also indicate that the corresponding sensors
are important in sensor set S.

V. EXPERIMENTAL EVALUATION

In this section, we present the experiments, we have
performed, in order to compare the minimal number of
sensors selected by our method and other methods to acquire
EEG signals while keeping the spelling accuracy the same
as the accuracy achieved when the initial large sensor set is
used. We first introduce our experimental setup and then we
present and analyse the obtained experimental results.

A. Experimental Setup
We use two different implementations of the P300 speller

to perform the experiments: one uses the CNN-based classi-
fier OCLNN [16] and the other uses the SVM-based classifier
ESVM [7]. We want to confirm the robustness of our SLES
method by showing that our method is effective for different
P300 speller implementations.

We compare our SLES method with 12 other sensor
selection methods. These methods are summarized in Ta-
ble III. In this table, the first row gives the name of the
different methods. The second row describes the sensor
elimination algorithms used in the methods, where BE-1
denotes a backward elimination algorithm which eliminates
one sensor at a time; BE-4 denotes a backward elimination
algorithm which eliminates 4 sensors at a time; “–” denotes
that the corresponding method does not use a backward
elimination algorithm. The last row indicates the ranking
functions used in the methods, where P300 denotes the
P300 detection accuracy; Char denotes the average character
spelling accuracy across all epochs; AUC denotes Area Un-
der the Receiver Operating Characteristic [11]; Ccs denotes
the ranking score proposed in [7]; SSNR denotes Signal to
Signal and Noise Ratio [10]; CCNN and BN3 denote that
the corresponding method selects sensors by analysing the
weights obtained from the trained networks CCNN [12] and
BN3 [13], respectively.

TABLE III
METHODS COMPARED WITH SLES.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

Algo. BE-1 BE-1 BE-1 BE-1 BE-1 BE-4 BE-4 BE-4 BE-4 BE-4 – –
Function P300 Char AUC Ccs SSNR P300 Char AUC Ccs SSNR CCNN BN3

We compare the minimal number of sensors selected by
the different methods to acquire EEG signals while keeping
the spelling accuracy the same as the accuracy achieved when
the initial large sensor set is used. We use the preliminary
dataset of Dataset II, III-A and III-B described in Section III-
B to perform sensor selection using the different sensor selec-
tion methods to select sensor subsets for the corresponding
subject. Then, we use the evaluation dataset of Dataset II,
III-A and III-B to evaluate the spelling accuracy of the afore-
mentioned P300 speller implementations with the selected
sensor subsets. The spelling accuracy is calculated using
Equation (3). In this equation, accm

k denotes the spelling
accuracy when using the first k epochs for each character
and using the EEG signals acquired with the selected sensor
subset containing m number of sensors. Nm

k denotes the
number of truly predicted characters when using the first

k epochs for each character and using the EEG signals
acquired with the selected sensor subset containing m number
of sensors, and M denotes the number of all characters in
the evaluation dataset. After the evaluation of the spelling
accuracy, the minimal number of sensors needed to acquire
EEG signals for epoch k is calculated as mmin, where mmin
is the minimal m ∈ [1,63] which makes accm

k >= acc64
k .

accm
k =

Nm
k

M
(3)

The setup for our SLES algorithm (Algorithm 1) is the
following. The input to SLES is S = {s1, s2, ..., s j, ...
sC} and Ns. We set C=64 because the datasets used in the
experiments are recorded with 64 sensors. We set Ns=4. For
detailed discussion why Ns=4 see Section VI-A. SLES uses
SCNN(S) as the ranking function. SCNN(S) uses the input
tensor (N × |S|). N = Ts×Fs = 240, where Fs = 240 Hz and
we set Ts = 1000ms because we take each individual pattern
to be the signal samples between 0 and 1000 ms posterior
to the beginning of each intensification.

B. Experimental Results
Table IV and Table V show the minimal number of sensors

selected by the different sensor selection methods to acquire
EEG signals while keeping the spelling accuracy the same
as the accuracy achieved when the initial large sensor set of
all 64 sensors is used. The first column in the tables lists the
different selection methods we compare. Each row provides
the minimal number of sensors selected by a method to
acquire EEG signals for different epoch numbers k ∈ [1,15].
A number in bold indicates that the minimal number of
sensors selected by the corresponding method is the lowest
among all methods. Overall, the minimal number of sensors
selected by our SLES method is lower than the minimal
number of sensors selected by all other methods in most
cases. SLES is able to reduce the minimal number of sensors
selected by other methods with up to 44 sensors.

For the P300 speller with the CNN-based classifier (see
Table IV), in 42 out of 45 cases, the minimal number of
sensors selected by our SLES is lower than the minimal
number of sensors selected by all other method. Our SLES
is able to reduce the minimal number of sensors selected by
other methods with up to 44 sensors. The largest reduction
occurs when comparing the minimal number of sensors
selected by SLES with the minimal number of sensors
selected by C8 on epoch number k = 7 for Dataset III-A.

For the P300 speller with the SVM-based classifier (see
Table V), in 41 out of 45 cases, the minimal number of
sensors selected by our SLES is lower than the minimal
number of sensors selected by all other methods. Our SLES
is able to reduce the minimal number of sensors selected by
other methods with up to 40 sensors. The largest reduction
occurs when comparing the minimal number of sensors
selected by SLES with the minimal number of sensors
selected by C12 on epoch number k = 2 for Dataset III-B.

Finally, our SLES method is robust because: 1) SLES
is effective in reducing the number of sensors when the
P300 speller is implemented with different classifiers. From
Table IV and Table V, we can see that no matter the P300
speller is implemented with CNN-based classifier or SVM-
based classifier, the minimal number of sensors selected by
SLES is lower than the minimal number of sensors selected
by all other methods in most cases; 2) SLES is effective when
our method is used for different subjects, i.e., no matter that
SLES is used with Dataset III-A, Dataset III-B or Dataset II,
the minimal number of sensors selected by SLES is lower
than the minimal number of sensors selected by all other
methods in most cases.

VI. DISCUSSIONS

In this section, we discuss the configuration of input
parameter Ns in SLES (see Algorithm 1). Also, we discuss
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TABLE IV
MINIMAL NUMBER OF SENSORS SELECTED BY DIFFERENT METHODS FOR DATASET III-A, III-B AND II. THE P300 SPELLER IS IMPLEMENTED USING

THE CNN-BASED CLASSIFIER OCLNN [16]. SL DENOTES OUR PROPOSED METHOD SLES.
Dataset III-A

Epochs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

SL 17 50 50 25 40 35 20 50 60 20 50 35 21 16 35
C1 27 64 58 59 55 64 43 58 64 29 57 49 29 29 53
C2 29 64 64 60 59 59 36 60 60 31 56 56 31 28 60
C3 28 64 64 60 64 60 55 64 64 36 64 55 39 39 46
C4 53 64 63 64 64 64 60 64 61 61 64 56 55 37 61
C5 30 64 56 64 55 64 43 63 64 31 64 57 36 33 55
C6 30 63 64 64 64 64 57 64 64 61 64 53 53 53 59
C7 44 57 64 64 64 64 62 64 64 55 64 53 59 52 51
C8 49 59 60 63 64 64 64 63 64 60 64 56 56 54 56
C9 22 64 56 55 58 64 56 56 64 34 52 48 27 36 34
C10 34 63 64 64 64 64 59 64 64 61 64 58 61 53 59
C11 25 64 56 55 58 64 56 56 64 34 54 48 27 36 39
C12 28 64 64 56 64 64 58 56 64 41 64 53 39 36 41

Dataset III-B
Epochs

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
SL 25 17 31 27 26 21 27 32 37 32 31 29 34 29 23
C1 32 23 31 28 31 24 32 40 43 44 38 32 42 35 26
C2 28 24 52 38 36 25 35 45 41 41 31 30 42 38 31
C3 26 29 42 50 35 23 32 54 49 48 38 29 39 38 33
C4 31 25 61 40 45 24 38 57 60 57 59 55 49 47 43
C5 44 33 36 34 31 24 34 41 43 48 38 42 42 37 26
C6 50 56 55 49 48 58 48 50 50 50 48 44 51 49 45
C7 52 48 49 49 50 49 49 59 48 48 48 46 45 47 46
C8 49 49 54 52 49 54 48 59 49 49 49 44 46 44 44
C9 44 56 49 49 40 25 35 39 39 49 51 37 34 35 42
C10 49 52 55 44 50 51 46 50 52 51 49 50 51 49 50
C11 44 56 49 49 40 25 35 49 39 49 51 37 38 34 42
C12 54 61 59 55 52 27 30 42 45 63 54 48 47 34 42

Dataset II
Epochs

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
SL 11 11 46 15 22 11 9 3 3 3 3 4 3 3 3
C1 32 30 47 39 38 22 16 6 6 6 6 6 6 7 6
C2 17 20 55 19 34 15 12 6 5 3 4 3 6 7 7
C3 18 18 47 18 30 10 12 6 5 3 5 6 6 6 6
C4 24 27 49 17 28 8 10 7 6 7 4 3 3 5 6
C5 40 33 48 41 38 35 20 9 8 9 9 8 9 9 8
C6 48 33 49 47 32 30 28 28 20 15 10 20 10 15 15
C7 44 32 49 48 31 27 27 27 22 18 10 10 8 10 10
C8 44 36 50 38 33 32 25 25 10 10 10 10 10 17 12
C9 45 35 44 34 34 34 25 25 10 17 18 17 15 15 15
C10 48 35 49 44 40 30 33 29 21 19 20 20 20 18 17
C11 25 25 54 24 24 14 15 15 10 10 12 17 15 15 15
C12 29 27 59 25 31 22 15 18 13 13 15 18 19 21 18

TABLE V
COMPARISON OF THE MINIMAL NUMBER OF SENSORS SELECTED BY DIFFERENT METHODS FOR DATASET III-A, III-B AND II. THE P300 SPELLER IS

IMPLEMENTED USING THE SVM-BASED CLASSIFIER ESVM [7]. SL DENOTES OUR PROPOSED METHOD SLES.
Dataset III-A

Epochs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

SL 19 44 54 38 40 42 33 56 58 39 44 27 35 21 36
C1 31 56 58 49 45 57 44 54 64 43 55 51 46 32 56
C2 32 53 57 48 44 59 47 55 64 43 50 53 47 32 55
C3 29 53 54 48 47 56 35 55 63 45 52 57 42 36 49
C4 56 50 53 44 42 55 31 54 60 56 49 51 43 37 57
C5 31 55 58 50 45 49 43 60 64 46 58 48 47 33 57
C6 35 60 61 57 54 56 52 64 64 53 62 59 57 50 62
C7 43 59 61 55 49 57 52 64 64 50 62 58 55 50 62
C8 47 54 64 57 48 54 55 62 64 59 57 52 56 49 63
C9 33 55 60 51 48 62 59 63 64 56 53 54 39 46 49
C10 33 62 62 59 53 57 57 64 64 54 61 60 59 52 55
C11 29 61 59 54 55 59 56 58 64 46 53 45 41 40 37
C12 35 64 63 56 59 61 60 59 64 51 58 47 44 46 43

Dataset III-B
Epochs

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
SL 18 19 34 29 17 31 39 41 22 36 24 33 33 26 27
C1 28 27 43 39 32 35 45 50 36 51 36 30 45 37 29
C2 27 25 42 38 29 31 39 54 36 49 40 30 44 30 27
C3 24 31 45 35 26 30 42 49 34 44 38 32 47 26 27
C4 23 26 59 36 27 29 44 52 35 42 37 36 39 37 30
C5 35 29 44 40 29 33 48 50 39 49 38 33 43 40 31
C6 49 58 56 51 44 40 57 61 48 59 46 42 57 51 47
C7 41 52 53 48 46 48 53 63 50 54 49 44 52 47 44
C8 40 50 53 49 47 50 49 60 47 50 41 44 51 50 46
C9 42 51 48 47 41 37 52 61 43 49 45 39 46 44 45
C10 42 54 51 52 38 43 57 61 44 55 50 46 53 50 49
C11 43 55 49 47 34 33 45 53 40 52 51 39 49 29 46
C12 52 59 56 61 46 41 51 64 49 64 56 41 60 30 46

Dataset II
Epochs

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
SL 13 10 36 20 31 16 8 4 3 5 3 5 3 6 3
C1 30 32 42 38 43 28 15 8 6 9 7 10 6 8 6
C2 25 28 40 29 40 19 16 9 6 11 3 11 7 6 8
C3 21 23 38 30 34 25 13 8 7 10 6 14 7 7 7
C4 26 24 36 33 38 18 14 10 8 12 5 13 4 9 9
C5 43 29 37 40 41 36 24 11 9 13 8 12 10 16 11
C6 50 38 52 50 50 33 26 30 18 19 11 24 12 14 16
C7 47 40 55 48 49 29 29 29 16 21 13 23 11 17 13
C8 50 37 54 42 46 31 30 29 16 23 13 20 16 16 19
C9 51 35 49 39 54 39 29 31 19 25 14 19 13 19 17
C10 49 44 50 40 50 30 31 26 20 21 19 19 19 20 16
C11 28 30 56 30 36 19 17 16 9 20 16 19 16 17 12
C12 31 33 61 36 38 23 18 20 11 24 20 21 21 26 14

the impact of different CNN architectures on extracting
P300-related features and on selecting sensors.
A. Configuration of Ns in SLES

In order to configure the input parameter Ns in SLES, we
use the preliminary dataset of Dataset III-A to perform exper-
iments and tune Ns. The P300 speller implemention used for
this experiment is the CNN-based classifier OCLNN [16].
We use 60% of this preliminary dataset to train SCNN(S)
(see Section IV-B) while running SLES with different Ns
configurations, i.e., Ns=1, 2, 4, 8, 16, 32 and 64. With
each Ns configuration, SLES selects a set of sensor subsets
for Dataset III-A. We use the left 40% of this preliminary
dataset to evaluate the spelling accuracy of aforementioned
P300 speller implementation with the selected sensor subsets.
The P300 spelling accuracy is calculated using Equation (3).
Then, we calculate the minimal number of sensors mmin for
the different Ns configurations as described in Section V-A.

TABLE VI
MINIMAL NUMBER OF SENSORS SELECTED BY SLES WITH DIFFERENT

Ns CONFIGURATIONS.
Epochs

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Ns=1 27 56 58 57 50 60 44 53 63 30 55 33 24 19 46
Ns=2 18 45 52 34 43 46 28 48 58 26 47 30 20 16 36
Ns=4 15 46 49 28 40 36 18 48 59 21 46 27 19 13 38
Ns=8 19 54 49 31 41 48 26 48 57 25 46 34 20 13 37
Ns=16 22 54 55 42 45 56 39 53 63 29 53 35 25 20 37
Ns=32 25 59 57 47 49 58 48 54 63 32 54 37 28 23 41
Ns=64 27 60 60 48 50 60 55 55 64 36 59 42 31 24 44

The experimental results are shown in Table VI. The first

column in the table lists the different configurations of Ns
in SLES. Each row provides the minimal number of sensors
selected by SLES for different epoch numbers k ∈ [1,15].
A number in bold indicates the minimal number of sensors
selected by SLES with the corresponding Ns configuration
is the lowest compared with the minimal number of sensors
selected by SLES with other Ns configurations. From Ta-
ble VI, we can see that, in most cases, the minimal number of
sensors selected by SLES with Ns=4 is the lowest compared
to the minimal number of sensors selected by SLES with
other Ns configurations. Therefore, we set Ns=4 when using
SLES.

B. Exploring the Impact of CNN Architecture on Extracting
P300-related Features

We perform experiments to explore the impact of different
CNN architectures on extracting useful P300-related features.
We implement three P300 spellers. The first P300 speller
implementation uses our SCNN(S) (see Section IV-B.2) as
the classifier. The second P300 speller implementation uses
CCNN [12] as the classifier. The third P300 speller imple-
mentation uses BN3 [13] as the classifier. Then, we evaluate
the spelling accuracy of the aforementioned P300 spellers
using Dataset III-A with all the 64 sensors.

The experimental results are shown in Figure 4. From
this figure, we can see that SCNN(S) and BN3 achieve
similar spelling accuracy across different epoch numbers k ∈
[1,15]. CCNN achieves lower spelling accuracy on smaller
epoch numbers and it achieves similar spelling accuracy
with SCNN(S) and BN3 on larger epoch numbers. We can
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conclude from this experiment that our SCNN(S) extracts
similar useful P300-related features as BN3 and CCNN.

Fig. 4. Spelling accuracy of SCNN, CCNN and BN3.

C. Exploring the Impact of CNN Architecture on Sensor
Selection

We perform experiments to explore the impact of dif-
ferent CNN architectures on the sensor selection process.
We introduced this issue in Section II. The P300 speller
implemention used for this experiment is the CNN-based
classifier OCLNN. We use the preliminary dataset of Dataset
III-A to train our SCNN(S) (see Section IV-B), CCNN [12]
and BN3 [13]. We select sensor subsets by directly analysing
the weights of the spatial convolution layer of our SCNN(S),
CCNN and BN3. We use the evaluation dataset of Dataset
III-A to evaluate the P300 spelling accuracy of the aforemen-
tioned P300 speller implementation with the selected sensor
subsets. Then, we calculate the minimal number of sensors
mmin selected by analysing the weights of our SCNN(S),
CCNN and BN3. For the detailed calculation of mmin see
Section V-A.

TABLE VII
MINIMAL NUMBER OF SENSORS SELECTED BY ANALYSING DIFFERENT

CNNS.
Epochs

CNN 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
SCNN(S) 23 60 55 49 51 60 53 55 64 31 53 46 27 32 39
CCNN 25 64 56 55 58 64 56 56 64 34 54 48 27 36 39
BN3 28 64 64 56 64 64 58 56 64 41 64 53 39 36 41

The experimental results are shown in Table VII. The
first column in the table lists the different CNNs. Each
row provides the minimal number of sensors selected by
analysing the weights of different CNNs for different epoch
numbers k ∈ [1,15]. A number in bold indicates that the
minimal number of sensors selected by analysing the weights
of the corresponding CNN is the lowest, compared to the
minimal number of sensors selected by analysing the weights
of other CNNs. Table VII shows that the minimal number
of sensors selected by analysing the weights of our SCNN(S)
is the lowest, compared to the minimal number of sensors
selected by analysing the weights of CCNN and BN3. The
reason is the following. CCNN and BN3 have multiple
convolution layers and only the weights of the first layer
is used for analysis and sensor selection. Unfortunately, the
information needed for proper sensor selection is distributed
over the weights of all convolution layers. Therefore, CCNN
and BN3 do not use all the information available for proper
sensor selection. In contrast, our SCNN(S) has only one con-
volution layer and this layer performs the spatial convolution
operation. All the information needed for sensor selection is
captured by the weights of this single spatial convolution
layer. Moreover, our SCNN(S) achieves similar spelling ac-
curacy in comparison to CCNN and BN3 (see Section VI-B),
meaning that our CNN has similar ability to extract useful

P300-related features. We analyse the weights of the single
spatial convolution layer in our SCNN(S) to select sensors.
Thus, our SCNN(S) uses all the information available for
proper sensor selection compared to CCNN and BN3. As
a result, SCNN(S) can select more appropriate sensor subsets
and further reduce the minimal number of sensors needed to
acquire brain signals without losing spelling accuracy.

VII. CONCLUSIONS

In this paper, we propose a novel sensor selection method,
called SLES, for reducing the number of sensors needed
to acquire EEG signals for a P300 speller without losing
spelling accuracy. SLES uses an iterative parametric back-
ward elimination algorithm to eliminate and select sensors
and it uses our novel SCNN(S) as a ranking function to
evaluate the importance of a sensor. Our SLES is also robust
across different P300 speller implementations and different
subjects. Experimental results show that the minimal number
of sensors selected by our SLES method is lower than the
minimal number of sensors selected by other methods in
most cases. Therefore, our SLES can further reduce the
cost and power consumption of the P300 speller, thereby
promoting P300 spellers into people’s daily life.
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