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Abstract—Industrial Cyber-Physical Systems (CPS) are com-
plex heterogeneous and distributed computing systems, typically
integrating and interconnecting a large number of subsystems
and containing a substantial number of hardware and software
components. Producers of these distributed Cyber-Physical Sys-
tems (dCPS) face serious challenges with respect to designing the
next generations of these machines and require proper support
in making (early) design decisions to avoid expensive and time
consuming oversights. This calls for efficient and scalable system-
level Design Space Exploration (DSE) methods for dCPS.

In this position paper, we review the current state of the art
in DSE, and argue that efficient and scalable DSE technology
for dCPS is more or less non-existing and constitutes a largely
unchartered research area. Moreover, we identify several re-
search challenges that need to be addressed and discuss possible
directions for targeting such DSE technology for dCPS.

Index Terms—Distributed Cyber-Physical Systems, Design
Space Exploration, Workload Modelling, Performance Modelling,
Model Inference, Workload Dynamism

I. INTRODUCTION

CYBER-PHYSICAL SYSTEMS comprise one of the

largest information-technology sectors worldwide, driv-

ing innovation in other crucial industrial sectors, such as health

industries, industrial automation, robotics, avionics and space.

Nowadays, the embedded compute infrastructure of complex

CPS is based on heterogeneous multi-core or many-core

systems, which are distributed, and connected via complex

networks [1]. Manufacturing companies of dCPS, such as

ASML, Canon Production Printing, and Philips, face important

challenges in designing their next-generation lithography scan-

ner machines, industrial printers, and X-ray machines, respec-

tively [16]. Typically, these machines are very complex dCPS

that integrate and interconnect a large number of sub-systems

containing multiple dependent compute nodes (hardware and

software components) that perform different tasks, e.g., data

processing, control, monitoring, thereby realising a wide range

of functionality and features. Designers of such systems need
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quick answers to so-called “what-if” questions concerning

design decisions and their impact on non-functional aspects,

such as system performance, cost, or energy consumption.

Hence, the academic community, along with the industrial

sector, are calling for more research on efficient and scalable

system-level DSE methods for dCPS [32]. These need to

integrate appropriate application workload and system archi-

tectures models, simulation and optimisation techniques, as

well as supporting tools, to facilitate the exploration of a wide

range of design decisions.

In this position paper, we argue that such efficient and

scalable DSE technology for dCPS is more or less non-

existing and constitutes largely unchartered research area.

Moreover, we identify several research challenges that need

to be addressed and discuss possible solution directions when

targeting DSE technology for dCPS. The four major contri-

butions of this position paper are: (i) the presentation of an

abstracted general workflow that can be used to structure and

position work in the area of DSE (Sections II and III), (ii) the

identification and description of open scientific challenges in

the area of Design Space Exploration for dCPS (Section IV),

(iii) a simple experiment with a state-of-the-art DSE tool to

demonstrate some of the mentioned challenges (Section V),

and (iv) a description of our ongoing research addressing the

aforementioned challenges (Section VI).

II. BACKGROUND

Design Space Exploration (DSE) is the process of discov-

ering one or many design solutions that best satisfy defined

design objectives given a space of tentative solutions called

design points. Although this research field is often seen in the

context of hardware design, there is no explicit definition of

which kind of design is targeted. Hence, design points can

consist of pure hardware, or software, or a combination of

both. The complexity of the complete design space is based

on the defined design choices and is defined by the cartesian

product of all those choices (all possible combinations). In

general terms, DSE is either a single or multi-objective optimi-
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sation problem where a cost function of all design objectives is

maximised or minimised subject to several constraints. Classic

design objectives include energy consumption, cost, reliability,

throughput, or a combination thereof. DSE has a long history

in mathematics (as an optimisation problem) and computer

science research domains. Nonetheless, within the latter area,

it has been mainly researched and utilised within the field of

embedded Systems-on-a-Chip (SoC) design [12, 23].

The precise implementation of a DSE process is subject

to various factors, e.g., the specific system/use-case, desired

accuracy, abstraction level, restrictions, design objectives, and

available computing resources for the actual DSE process.

Nevertheless, each implementation and approach mostly share

similar steps, which can be abstracted in a typical workflow

outline shown in Fig. 1. This workflow concentrates on the

evolutionary aspect of DSE, i.e. desiging a new generation

of machines based on existing CPS. In more detail, DSE

can generally be defined by four steps: (i) the preparation

(description and creation) of the models based on existing

systems (Fig. 1a), (ii) the construction of the design space

(Fig. 1b), (iii) the systematic analysis of the set of all possible

design points in the design space, including the evaluation

of each individual design point based on specified criteria

(Fig. 1c), and (iv) the further processing/presentation of the

results (Fig. 1d).

The construction of design points is split up into two sub-

steps: Modelling and Design Space Construction. Modelling

(see Fig. 1a) is the preparation of the environment to be

explored. This includes discovering and describing the system

artefacts, like software applications, available/suitable archi-

tectural platforms, and design choices (e.g., various hardware

options, scheduling of tasks to specific processors, or the

system’s topology). Complex and too detailed descriptions

are often unsuitable for efficient, time-constrained analysis.

Hence, an appropriate level of abstraction needs to be chosen

for the models. The last substep is mapping all models into

one abstract system representation. This should result in one

designated model of combined software and hardware of the

system to which the further DSE steps can be applied.

As seen in Fig. 1b, the constructed models can then be

used to “span” a design space by creating all possible design

points based on the design choices the models capture. A

static/pre-exploration pruning can already be conducted based

on external constraints or apparent incompatibilities within

generated design points.

The third significant step of the general DSE workflow is

the exploration of the design points, followed by the results

of the DSE process. During exploration (shown in Fig. 1c),

a search algorithm is used to determine which design points

need evaluation. Each of these points is then evaluated, and

the results are stored. An evaluation of a design point is

defined as studying the extra-functional behaviour of system

configurations (models), producing measurable KPIs to op-

timise for. Design points are dynamically pruned depending

on the search strategy and information from newly obtained

evaluation results. This can drastically decrease the size of the
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Fig. 1: General DSE workflow

design space. The exploration either yields intermediate results

or a conclusive recommendation for design decisions (see

Fig. 1d). Intermediate results can be used to tune the models,

adjust the search algorithm via feedback loops, or validate

either. Consequently, the Design Space Exploration workflow

is able to be restructured as a multi-level, hierarchical approach

where the abstraction level can be decreased in multiple runs.

Nevertheless, in the end, recommendations for the design

decisions are presented in a suitable form (e.g. as pareto

fronts [19]) to the designer to guide decision making.

While the idea of this abstracted DSE workflow can be

observed in various forms in different implementations; the

explicit realisation is not limited to its specific arrangement.

Hence steps can be skipped, exchanged or added depending

on the use case. Nevertheless, this position paper will use

this workflow as the structure for related work and open

challenges.

III. RELATED WORK

The goal of this section is to present major related work

in form of general methods and techniques for specific steps

during DSE, as well as related scientific studies in the field.

This presentation is oriented to the abstract DSE workflow

presented in Fig. 1 and focusses especially on Models and

Exploration (Figs. 1a and 1c).

As already indicated in Section II, most implementations

have common features in their DSE workflow. One key obser-
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vation often used is the “separation of concerns” philosophy

during modeling which, e.g., Kienhuis [15] realized as the Y-
Chart methodology. Hereby, the functionality in the form of

the application workload, the architecture of the underlying

system, and the mapping between them are clearly separated.

This idea has been adopted in many system modeling ap-

proaches. It is also indicated in Fig. 1a in the form of various

models representing different concerns and their relationship

expressed by a mapping layer. It has been also identified as

an industry best practice for DSE by Van der Sanden et al.

[32]. The initial models are – in the overwhelming majority of

related work – created manually [20], but, with the increasing

complexity of the systems, efforts have been made to infer

them from recorded or discovered data [38].

In Fig. 1c, the evaluation of each design point, and the

search strategy through the design space have been briefly

mentioned. Pimentel [23] divides the evaluation of each de-

sign point in the design space roughly into three categories:

(i) benchmark measurements of prototype implementations,

(ii) simulation-based examination, and (iii) analytical model

estimations. Analytical models allow for efficient evaluation

of design points [23]. Mechanistic analytical models are built

in a bottom-up fashion and capture the actual behaviour

of the application and architectural elements by considering

and accounting for a variety of events (e.g., cache misses,

and resource contention) [13, 23]. In contrast to mechanistic

models, empirical models, statistical inference, and machine

learning techniques infer the performance from previously

learned data. This “black box” approach requires less intimate

knowledge of the mechanics of the modelled system and,

therefore, is easier to develop.

The simulation-based approach mimics the system’s be-

haviour and can be performed on various levels of abstraction.

While a high abstraction level increases evaluation speed,

details of the system are lost, and thus the accuracy is lower.

Register-transfer level simulation is the lowest meaningful

level for digital systems, whereby the digital signals between

registers and combinational logic is explicitly mimicked.

For each increasing level of abstraction there are various

frameworks and implementations available [23] (e.g., cycle-

accurate [5] or transaction-level modeling [6]). For exhaustive

and complex systems, all these program execution-driven
approaches are often still too cost-intensive and detailed for

efficient evaluation of a large number of design points. Hence,

the trace-driven approach focuses on collected application

artefacts called event traces, reducing the modeling com-

plexity [24]. While it potentially reduces the simulation cost

significantly, an initial system configuration from which traces

can be extracted has to exist already.

The second large sub-step of Fig. 1c are search strategies

which are categorized as; (i) exhaustively evaluating every

possible design point, (ii) random/intelligent sampling, or

(iii) incorporating domain knowledge of the environment [12].

Panerati, Sciuto, and Beltrame [21] present an overview of how

to choose the appropriate algorithm for the specific DSE use

case by classifyng and comparing fifteen methodologies based

on several metrics.

The final feature in Fig. 1c, orthogonal to the above-

explained sub-step, is static and dynamic pruning of the design

space. Gries [12] divides this into practical approaches: (i)

hierarchical exploration, (ii) subsampling of the design space,

and (iii) subdividing the design space. The hierarchical ap-

proach starts with a coarse model identifying promising design

space regions, followed by a low-level, more detailed model

exploration within each region. The subsampling approach

chooses regions based on randomness or patterns. The third

approach explores independent parts of the design space one

by one and combines the resulting sub-solutions afterwards. In

the end, all classes identify potential regions of design points

for further exploration while effectively pruning the design

space.

While the domain of DSE is an active topic in many research

areas, within the computer science domain, it mostly evolves

around Systems-on-a-Chip and Multiprocessor Systems-on-a-

Chip (MPSoC) designs. For example, SESAME [22] is a trace-

driven software framework for the latter category that allows

the designer to do system-level modeling and simulation at a

high level of abstraction with a Genetic Algorithm (GA) [8].

The framework follows the Y-Chart approach for trace-driven

modeling and supports scheduling during mapping. A GA is

used to search the design space [8], followed by a simulation-

based evaluation of the chosen design points.

Within the SoC/MPSoC domain, many efforts study the

allocation (spatial binding) of application tasks to (heteroge-

neous) processing elements. The temporal binding (schedul-

ing) is often removed from the scope since it dramatically

increases the design space. Nevertheless, some research has

been conducted around scheduling and allocation in various

environments [2, 3, 17, 26, 27, 28]. In 2022, Wan and Zeng

[35] proposed a novel but highly limited co-design methodol-

ogy specialized for modular CPS within a production setting.

In general, the domain of DSE for Cyber-Physical Systems

(CPS) has slowy received more attention from the scientific

community in recent years. While Mühleis et al. [18] mainly

focused on DSE on electronic system level, Vanommeslaeghe

et al. [33] incorporated domain knowledge to explore an

electric DC motor. DISPATCH is a two-step methodology

especially designed for CPS [30] that improved the sample

efficiency for electrical circuit benchmarks. Nevertheless, all

these explored CPS designs are relativly small arrangements.

The automotive sector is one of the leading forces for

more complex systems; Canedo and Richter [7] presented

a Functional Modeling Compiler approach for realistic au-

tomotive architectures (i.e., validate new Electronic Control

Units and control strategies). Other literature includes DSE

for controller area network (CAN) systems [36], or elec-

trical/electronic (E/E) architecture component platforms for

modern automotive systems [11].

While all authors explored different types of Cyber-Physical

Systems, none explored widely distributed architectures out-

side of a specific subsystem. Zhang et al. [37] conducted an

extensive gap analysis for state-of-the-art DSE methods in
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the context of the automotive sector in 2017 and concluded

that besides many other challenges, almost all of the DSE

methods made oversimplifying assumptions for the vehicle’s

subsystems (i.e., ECUs, network topology).

In a more general sense, DSE for distributed (hetero-

geneous) computing systems is also a largely unchartered

research area. In 2010, Fummi et al. [9] introduced a math-

ematical language to model distributed applications focussing

on exploring communication infrastructures like wireless sen-

sors or peer-to-peer networks. A similar but more practical

approach has been made by Tanganelli et al. [29]. Their

methodology looked at systems for smart environments with

“Fog Computing”. While this area has some similarities with

our domain of industrial distributed Cyber-Physical Systems,

their abstraction level is still too high (i.e., a fire detection and

surveillance system for an office floor plan).

To the best of the authors’ knowledge, very few to no stud-

ies have considered system-level DSE for distributed Cyber-

Physical Systems, and there still exists a significant number of

open scientific challenges in terms of scalability, performance,

and accuracy of these DSE methodologies.

IV. SCIENTIFIC CHALLENGES

Designers of industrial distributed Cyber-Physical Systems

(dCPS) face the challenge of highly complex systems that

cannot be realistically understood in reasonable detail by

one individual alone. Consequently, there is an enormous

amount of subsystems with heterogeneous hardware and ample

opportunities to modify each and every one of them. While

designing new and advanced products, a considerable number

of design objectives, highly complex models, an inconceivable

number of design decisions, and a lot of internal and external

factors have to be taken into account. This results in a vast

design space with a potentially much larger number of design

points that current methodologies cannot handle.

In the survey-based study of Van der Sanden et al. [32],

industrial dCPS companies express great interest to research

and develop efficient DSE methods to support the design

process. One example is ASML, a leading force in the

semiconductor industry, developing and manufacturing chip

lithography machines. The improvement goals for these in-

tricate dCPS include, but are not limited to, increasing the

throughput of produced wafers, improving the quality and

reliability of the final product, avoiding workflow disruptions,

and decreasing the required maintenance. These machines

consist of over 500 software processes distributed to tens of

processors with hundreds of cores distributed over a network.

Additionally, hundreds of specialised sensors and actuators

within smaller subsystems are (partly) controlled by these

software processors. Moreover, many more design decisions

need to be taken into account: e.g., network topology, speed

of links, the configuration of network components, or database

infrastructure. Although many of these design points can be

pruned early due to design constraints, the resulting design

space is still immense.

This section is dedicated to identifying, describing and

appraising (scientific) challenges based on observations during

our research. It has to be mentioned that we limit the scope

of this analysis to complex industrial, distributed Cyber-

Physical Systems (e.g., ASML lithography machines or Canon

industrial printers).

A. Modelling complex dCPS

The first step in having a comprehensive DSE is creating

the models of the system at an appropriate level of abstraction.

dCPS consist of multiple heterogeneous subsystems on a com-

plex network with much interaction, usually running a com-

bination of new and legacy software. Legacy software within

the industrial sector can be multiple years, or even decades,

old without detailed documentation. Hence, the creation of the

models is, in comparison to SoC and MPSoC systems, often

a huge challenge, and completely manual generation is not

feasible in a timely manner. (Semi-)automatic model inference
of the application and platform models is, therefore, the only

viable option for DSE of dCPS.

A sufficiently accurate model mimics the system’s be-

haviour by being a virtual “re-creation”. Based on the

separation-of-concerns idea, a comprehensive system repre-

sentation consists at least of an application workload and a

platform architecture model. As already depicted in Fig. 1a,

the discovery and gathering of relevant information is the first

step in describing a system (e.g., via doing static analysis

as well as dynamic analysis or monitoring and capturing of

event traces). A significant challenge during the abstraction of

this description is handling conflicting requirements regarding

evaluation speed, modeling effort and accuracy. Capturing the

software behaviour of the dCPS in the models needs to be

accurate enough to support trustworthy DSE. At the same time,

it also must allow for fast (co-)simulation (and should thus be

abstract enough). This calls for an extensive infrastructure that

helps move the abstraction level dynamically to find the best

balance to meet speed and accuracy requirements. This type

of knowledge-based and automatic modeling is challenging.

Thus, one specific scientific challenge is the development

of concepts and techniques to automatically infer the (initial)

platform architecture and application workload models. This

extends to the amalgamation of all models in application-to-

resource mappings and scheduling.

B. Scalable Design Space Exploration (DSE)

The fundamental problems of a vast design space has been

briefly discussed. The application workload (typically contain-

ing hundreds of software processes) and the various mappings

of the application workload on these platforms already make

the search space vast, but this is exacerbated by the fact that

application workloads in dCPS typically are not static. For

example, in the case of ASML lithography scanner machines,

the application workload behaviour is highly dependent on

factors such as the wafer size, recipe (mask) complexity,

required accuracy, application configuration settings, external

influences like customer or fab cronjobs, emergent dynamic

635



KPN
Description

Process codesProcess codes

Process network
execution engine

Input
stimulus

Process traces
Genetic Algorithms

Mapping

Arch topology Arch componentsArch components

Mapping
configuration

Discrete Event
SimulatorProcess traces

Fig. 2: SESAME workflow [10]

behaviour of the system, etc. All of these factors complicate

the previous modeling efforts and contribute to an ever-

increasing number of design points.

This calls for efficient and scalable search and pruning

strategies. It is unclear if, and actually not to be expected

that, state of the art in DSE (see Section III) is able to

handle the much larger design spaces of dCPS. This is further

exacerbated by the fact that design point evaluations take

longer for dCPS compared to classical DSE of on-chip systems

(SoCs and MPSoC) simply because of their complexity and,

hence, allows for fewer evaluations in the same amount of

time. Although the minimisation of the computational effort

is primarily dictated by the chosen abstraction level for the

models, there is also still limited but significant research

potential in, e.g., optimisation of the simulation codebase

(acceleration of each evaluation), exploitable parallelisation by

designing algorithms with limited dependencies, or support for

distributed parallel computing.

While the right search strategy highly depends on the design

space and its characteristics, a general observation can be

made; there is a trade-off between the effort required to

configure an algorithm for a given design space, the quality

of the results and the total number of design points evaluated.

Similar observations apply to choosing a pruning technique;

how many design points can be pruned before the accuracy

of the DSE is too low, while the cost of implementation and

execution is still feasible/balanced?

Consequently, another scientific challenge is the need for

new search and pruning strategies and efficient design point

evaluation, which all need to be sufficiently scalable. Since

there most likely will not be a perfect solution, combining

various concepts and algorithms is not out of the scope.

V. EXPERIMENTS

The previous section presented and discussed open scientific

challenges to be faced when developing the next generation

of DSE for complex dCPS. In this section, some of these

challenges are further motivated through a suite of simple DSE

experiments.

The experiments are designed using the SESAME (Sim-

ulation of Embedded System Architectures for Multilevel

Exploration) framework, which is a well-known system-level

modeling, simulation, and exploration framework for em-

bedded MPSoC systems introduced by Pimentel, Erbas, and

Polstra [22]. Fig. 2 shows the various components of the

SESAME modeling, simulation, and exploration framework.

The application models (modeling a network of application

processes and their interactions) are mapped onto architecture

models via a transitional scheduling layer. A process network

execution engine executes the application models generating

application event traces for every process. These process traces

are afterwards used to drive a transaction-level simulation

model of the underlying platform architecture via a Discrete

Event Simulation (DES). A Genetic Algorithm (GA) is used

to drive the search within the design space, exploring and

evaluating the fitness (using the DES) of different application-

to-architecture mappings. More detailed descriptions and ex-

planations can be found in [10, 22]. We selected SESAME

for this experiment since it models MPSoCs and their appli-

cation workload at a high level of abstraction, achieving high

performance in simulating and exploring these MPSoCs.

The structure of our experiment is based on exploring the

course of key performance metrics when scaling up a simple

DSE example. As a building block for our application models,

we picked a readily available (multi-media) application from

the domain of streaming applications since, at a high level of

abstraction, many industrial CPS can be modelled as streaming

applications. Since these MPSoC applications are typically

small in size (only six processes in our selected application),

we duplicated our application a number of times to simulate

larger workloads. As a basis for our platform model, we use

an MPSoC architecture in which four different processor types

can be deployed, each having a different cost and performance.

For simplification, all CPUs are connected to and communicate

via one bus and shared memory. To avoid the bus becoming

a bottleneck, we mimic a system with ideal communication.

This means that all memory and communication costs have

been set to zero. To model an industrial dCPS system, we

have scaled the MPSoC platform model so that it can contain

up to a few hundred cores.

In our experiment, we explored the different mappings

of the application workload (processes) onto the underlying

platform architecture. We used a GA with a population size

of 20, and each DSE run consists of 50 search iterations

(generations) of the GA (i.e., each DSE run explores 1000
design points). The metrics studied are (i) runtime of the

complete DSE, (ii) the convergence rate of the GA, and (iii) the

amount of generated infeasible design points, but we will focus

our discussion on the DSE runtime. Each experiment was

conducted between two and four times with the same input

parameters, averaging the results in the end. Due to limited

time and computing resources some experiments have been

performed only once or twice. These are indicated with a white

shading in Fig. 3. All experiments were run on a computer

with an Intel Xeon E5-2650v4 (12 cores) running at 2.2 GHz

using 64GB of RAM, running Ubuntu 18.04 LTS.

Fig. 3 shows the results for the DSE mean runtime when

varying the number of processes in the application workload

and the number of processing cores in the underlying platform

in the form of a heatmap. The 458 experiments had a combined

runtime of roughly 64 days and 2 hours. On average, the

results - within multiple runs of the same parameters - are

within a 3.8% deviation respectively (with a maximum of

13.99%).

Our results show that the DSE runtimes significantly in-
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Fig. 3: Heatmap of the DSE runtime results when varying the

number of application processes and number of cores

crease (superlinear) with the number of used application

processes and processing cores due to the higher simulation

overheads of the large(r) systems. This is especially true

when scaling the number of application processes. To put it

more simply, exploring a simplified design space with 100
applications and tens of cores is already a significant time

investment and cannot be efficiently evaluated by a currently

state-of-the-art framework. The previously described use case

of ASML machines already has a considerably higher number

of both parameters. In addition, these dCPS have a more

complex network with more communication and increased

dependencies. We would like to stress the fact that our simple

experiment does produce an extremely large mapping space

(i.e., different application processes to processor mappings).

However, the design space itself is still rather “predictable”.

Evidently, this is due to the simplicity of the modelled platform

(e.g., no distributed system but an idealized bus-based system,

limited component diversity, etc.), as well as the simplicity of

the modelled application workload (e.g., it does not contain

any dependencies between the small, replicated applications).

Considering this, we expect that the runtime of real-life use-

cases will be even higher than these results.

Since we have made simplifying assumptions that, e.g.,

guarantee that every application process can always commu-

nicate with another process irrespective to which processing

core it is mapped, our experiments do not show overhead for

invalid design point repairs. However, it is expected to increase

with a more complex and realistic use case significantly. Given

the above, we expect our experiment to constitute a best-case

scenario.

In conclusion, our experiments show that the current

state-of-the-art methodologies are - in the best case - only

partially capable of running DSE for dCPS. For more realistic

use cases, we believe that a slower convergence behaviour

and a less effective search process due to an increasing

number of infeasible design points will significantly slow

down the DSE process even further.

VI. PROPOSED APPROACH

Section IV presented the currently biggest scientific chal-

lenges in designing DSE for industrial, complex dCPS. Com-

panies of these systems have a growing interest in facilitating

DSE to support early design. Hence, in this section, we sketch

a possible approach to address these challenges in the context

of our collaboration with ASML. This discussion will mostly

focus on the first challenge of automatically inferring the

system models used in DSE. However, we want to remind

the reader that this is a position paper and therefore does not

present an actual implementation of the proposed solution.

Moreover, similary to Fig. 1, we focus on the evolutionary

aspect of DSE.

A. Modelling

For the models, we are following the well-known

principle of “separation of concerns” [14]. Therefore, the

(distributed) platform architecture model, the application

workload model (i.e., the software processes executing

on the platform architecture), and the mapping of the

application processes/tasks to the platform resources are

modelled separately. This approach allows for easy re-use

of the different models involved. Consequently, it facilitates

effective DSE of various platform architectures, application

workload variants, and application-to-resource mappings.

Application Workload Model: We are following a prag-

matic step-wise approach, starting with an initial definition and

investigation of a first-order model and applying it on (part of)

an ASML scanner machine software infrastructure to evaluate

the ability of the model to capture the workload behaviour of

such a complex real-world infrastructure accurately enough.

Then, if needed, we will perform several model refinement

steps to fine-tune the (first-order) model to increase or decrease

its accuracy.

Our first-order model is based on the observation that a

complex dCPS software infrastructure could be considered –

at a high level – as hundreds of software processes triggered by

events and exchanging messages among each other. Different

processes perform different tasks, such as data processing,

control, monitoring, logging/reporting, etc. Once a process is

triggered, it performs a certain amount of computation and

communication (this is called firing), and when ready, it exits
(it stops and waits to be triggered again). Such fire-and-exit

behaviour repeats during the whole life cycle of a process.

Therefore, we model the workload behaviour of the software

infrastructure as a directed graph defined by the tuple (P,
Ch). As depicted in Fig. 4, P is a set of processes (P =
{p0, p1, . . . , po}), where each process models/corresponds to

a process of the dCPS software infrastructure. Ch is a set of

communication channels (Ch = {ch0, ch1, . . . , chk}) model-

ing the exchange of control messages (triggering events), status

messages (process state), and data messages (chunks of data

to be processed or stored).

ASML machines, as a dCPS, can have different modes of

operation. Hence, we consider that each process consists of
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Fig. 4: Our first-ordered workload model

a set of traces T (T = {t0, t1, . . . , tm}). T allows capturing

dynamically changing workload behaviour of a process since

each trace captures, in an abstract way, the workload behaviour

of a process in a specific system mode (configuration) during

a single firing. Each trace is defined as a finite sequence of

coarse-grained abstract events ({e0, e1, . . . , en}), modeling the

type and order of actions performed during a single firing.

Event e can be compute (C), read (R) or write (W). The

compute events imitate computational actions with an abstract

workload described by the number of cycles needed to execute

that computation. Events read and write mimic communica-

tion actions happening over communication channel Ch (e.g.,

memory accesses, communication between processors, or disk

I/O depending on the mapping of Ch). Communications are

described by the size (in terms of bytes) and type (control,

data, or status) of a message they transfer besides the source

and destination processes.

All in all, our first-order application workload model,

adresses the challenges of system-level DSE of complex dCPS

(see Section IV-A) with the following characteristics:

1) The model is abstract and coarse-grained. This po-

tentially allows capturing the whole software infras-

tructure behaviour of a complex dCPS effectively at a

high, system-level abstraction. The process traces can be

(re)played, and their events synchronised relatively fast,

thereby generating a proper workload for the platform

model of the dCPS;

2) The model is as timing and architecture agnostic as
possible. Avoiding timing and architecture artefacts in the

model attributed to a specific hardware platform gives us

very high flexibility to efficiently explore alternative map-

pings (alternative resource allocations, process bindings,

and scheduling strategies) of the application workload

onto a wide variety of existing/new hardware platforms;

3) The model is dependency-aware. Analysing the depen-

dencies between processes, captured explicitly by the

channels in the model and due to the exchange of mes-

sages of different types, allows us to effectively explore

and exploit different degrees of parallelism when the

application workload is mapped onto a platform;

4) The model is mode-aware. Capturing different modes by

the set of traces in a process allows us to model dif-

ferent workload scenarios, thereby representing different

system configurations and enabling workload dynamism

modeling by switching between traces when generating

workloads for the platform model.

Our first-order model does not follow the semantics of any

well-known Model of Computation (MoC) [25]. Initially,

our DSE should not be limited to the specific analysis and

expressive power of a formal MoC to effectively capture

the heterogeneous nature of the software infrastructure

behaviour. As we explained before in Section IV-A, the

software infrastructures of dCPS, such as ASML lithography

machines, are too complex to be modelled manually.

Hence, automated model inference is required. To infer

our first-order model, we need runtime monitoring and

data collection to obtain real software execution traces that

typically contain time-stamped computation, communication,

and synchronisation events with descriptors (e.g., the unique

ID of a process, source/destination of a communicated

message, etc.). The timing information in the traces depends

on the platform architecture of the dCPS and the specific

scheduling/mapping of the software infrastructure on this

platform. Therefore, we need to transform this data in order to

reduce time- and hardware-dependent information to extract

the time and platform architecture agnostic workload model.

Architecture Platform Model: The platform architecture

models represent the underlying system infrastructure of the

dCPS. The inference of the model is initially based on the cur-

rent architecture of the dCPS. Hence, we use a custom pipeline

to discover, describe and abstract the available infrastructure:

1) Discover network topology. Firstly, starting at a main

entry point, we record topology data by observing the

network traffic and network interfaces. This includes, e.g.,

network connections, configurations of interfaces and

network components (e.g., switches, routers, or hubs).

Ethernet information like DNS/DHCP configurations,

forwarding tables, etc., as well as data from custom

connection techniques, are collected. This may or may

not be manually supplemented with custom data from

the designer. After that, all data are used to generate a

network topology model.

2) Computational components. The first steps should have

identified all components within the dCPS. Every compo-

nent is addressed based on the network topology model,

and hardware information (e.g., processor, memory, or

storage) can be obtained.

3) Description. The information from the first two steps can

then be combined by adding the discovered computational

information (step 2) of the components to the network

topology model (step 1). This results in a complete

description of the used hardware.

4) Abstraction. The resulting network topology and com-

ponents model is then abstracted to a discrete-time

model. Key performance metrics are summarised into

performance indices that describe each component’s ca-

pabilities (e.g., a processing index, which describes how

many computations can be executed per time unit). This

abstraction is highly dynamic since it depends on the

defined abstraction level, i.e., an index can describe the

fundamental component (e.g., database write entries per
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second) or specific characteristics (e.g., separate indices

for processing speed and memory capabilities).

It has to be noted that depending on the specific use-case

and dCPS custom discovery and description techniques may

need to be implemented (e.g., for specific sensors or actuators).

Mapping: The mapping concept determines the binding of

application processes (i.e., their event traces) to the modelled

platform resource. The mapping model allocates the compu-

tational events to the platform resources by considering the

mapping policy, hardware platform specification, inter-process

communications, and several other constraints (i.e., access to

specialized hardware like sensors). Since this step of allocation

and scheduling already chooses specific parameters for design

decisions, it is integrated into our approach’s design space

generation.

B. Scalable Design Space Exploration (DSE)

While generating the design space, we distinguish between

structural and behavioural design decisions, resulting in two

virtual design spaces. Structural design decisions change the

models’ structural integrity, e.g., modifying the network topol-

ogy, creating or deleting communication channels between

components, or exchanging key characteristics of a component

(e.g., switching a GPU to an ASIC). The behavioural design

decisions do not modify the structure of the system, but change

the behaviour of the models, e.g., increasing or decreasing

a performance index, or changing the mapping of specific

processes to a different computing component.

Each dCPS design instance will be evaluated using a

discrete-event simulation model of the workload model

mapped onto the platform model using event traces. These

simulations will be structured in campaigns [4, 34] – paral-

lelising the evaluation of multiple independent design points

simultaneously on a distributed computing cluster. While

structural design decisions result in the need to rebuild a

simulation model, behavioural decisions can be implemented

as input parameters for simulation models. This allows for

optimising the search strategy by creating and compiling a

few design points in the structural design space with a range

of parameters for behavioural design decisions. Additional

techniques to deal with the vast design space can, for starters,

be borrowed (and then extended) from the state-of-the-art in

MPSoC DSE, such as hierarchical DSE methods (see [23]),

and design space pruning by adding domain knowledge to the

search algorithm (see [31]).

VII. CONCLUSION

In this position paper, we argued for the need for efficient

and scalable Design Space Exploration (DSE) technology for

distributed Cyber-Physical Systems (dCPS). Although there

already exists a large body of research on DSE of SoC and

MPSoC designs, there are no comprehensive research efforts

to integrate DSE for the much more complex dCPS. Hence,

we presented some of the major (scientific) challenges for

this endeavour, namely the automatic generation of sufficiently

accurate (application and platform) models and the need for

efficient and scalable exploration techniques. To support some

of our claims, we have demonstrated, using a simple experi-

ment, that the DSE runtime, even for a best-case scenario, is

significantly increasing with the number of used application

processes and processing cores. Finally, we positioned our

ongoing research in light of these challenges. In particular, the

development of a workload and platform model that can be

automatically inferred from process traces of industrial dCPS,

as well as efforts to optimise the exploration of the vast design

spaces in the domain of dCPS.
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