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ABSTRACT
New emerging embedded system platforms in the realm of high-
throughput multimedia, imaging, and signal processing will consist
of multiple microprocessors and reconfigurable components. One
of the major problems is how to program these platforms in a sys-
tematic and automated way so as to satisfy the performance need
of applications executed on these platforms.

In this paper, we present our system design approach as an effi-
cient solution to this programming problem. We show how for an
application written in Matlab, a Kahn Process Network specifica-
tion can automatically be derived and systematically mapped onto
a target platform composed of a microprocessor and an FPGA.
Furthermore, we illustrate how the mapping approach is applied
on a real-life example, namely an M-JPEG encoder.

1. INTRODUCTION
New emerging embedded system platforms in the realm of high-

throughput multimedia, imaging, and signal processing consist of
multiple microprocessors and reconfigurable components. To sat-
isfy the performance needs of tomorrows applications, these emerg-
ing platforms leverage task-level parallelism, i.e., the microproces-
sors and the reconfigurable components run concurrently. To ex-
ecute an application on these platforms, the platforms have to be
programmed, which implies writing software for the microproces-
sors using languages like C and writing hardware descriptions using
languages like VHDL to configure the reconfigurable components.

To use the concurrency available in the platforms, we need to
program them in a way that we exploit distributed control and dis-
tributed memory. Distributed control means that the individual com-
ponents on a platform can proceed autonomously in time without
much interference with other components. Distributed memory means
that the exchange of data is contained in the communication struc-
ture between individual components and not pooled in a large global
memory. Although distributed memory and control are key require-
ments to take advantage of the new emerging platforms, we observe
that imperative programming languages like C, Java, or Matlab are
still the preferred way to write applications that execute on these
platforms. The imperative model of computation makes it easy to
reason about a program as only a single thread of control needs to be
considered. Also, memory is global and all the data comes from the
same memory source. But precisely the single memory and single
thread of control in the imperative model of computation are contra-
dictory to the need for distributed control and memory. Therefore,
programming these new platform is a very tedious, error prone, and
time consuming process.

Instead, we believe that a much more appropriate model of com-
putation is the Kahn Process Network model as it inherently ex-
presses applications in terms of distributed control and memory. As

said before, most applications are written in an imperative model of
computation. To facilitate the migration from an imperative applica-
tion to a KPN specification, we have developed the COMPAAN/LAURA

approach. This approach allows parts of an application written in
a subset of Matlab to be converted automatically to KPNs (COM-
PAAN). This conversion is fast and correct by construction. The
obtained processes in a KPN can subsequently be mapped either in
software or on hardware (LAURA).

In this paper, we present our system design approach that is cen-
tered around exploiting the Kahn Process Network model charac-
teristics. We present our approach by illustrating how we map an
M-JPEG application written in Matlab onto a target architecture that
consists of a CPU and an FPGA. Our design approach consists of
two major steps. In the first step, we convert the Matlab specifi-
cation of the M-JPEG to a KPN specification. In the second step,
we map one process in hardware on the FPGA whilst the remaining
processes are mapped in software on the CPU. Before we explain
our approach in more detail, we first look at the KPN model and its
specific characteristics.

1.1 Kahn Process Networks
The KPN model of computation [1][2] assumes a network of con-

current autonomous processes that communicate in a point-to-point
fashion over unbounded FIFO channels, using a blocking-read syn-
chronization primitive. Each process in the network is specified as a
sequential program that executes concurrently with other processes.
A KPN has the following favorable characteristics:

� The KPN model is deterministic, which means that irrespective
of the schedule chosen to evaluate the network, always the same
input/output relation exists. This gives us a lot of scheduling free-
dom that we can exploit when mapping processes to hardware or
software.

� The inter-process synchronization is done by a blocking read. This
is a very simple synchronization protocol that can be realized eas-
ily and efficiently in hardware and software.

� Processes run autonomously and synchronize via the blocking
read. When mapping processes on hardware like an FPGA, you
get autonomous islands on the FPGA that are only synchronized
via blocking reads.

� As control is completely distributed to the individual processes,
there is no global scheduler present. As a consequence, parti-
tioning a KPN over a number of reconfigurable components or
microprocessors is a simple task.

� As the exchange of data has been distributed over the FIFOs, there
is no notion of a global memory that has to be accessed by multi-
ple processes. Therefore, resource contention does not occur.



1.2 Compaan/Laura
Our system design approach is centered around the COMPAAN

and LAURA tools which we have developed to facilitate this ap-
proach. The COMPAAN compiler, introduced in [3] and further de-
veloped in [4, 5], fully automates the transformation of Matlab code
into Kahn Process Network (KPN) specifications. The applications
COMPAAN can handle, have to be specified as parameterized static
nested loop programs, which is a subset of the Matlab language.
COMPAAN consists of three tools. The first tool transforms the ini-
tial Matlab code into single assignment code (SAC), which resem-
bles the dependence graph (DG) of the initial nested loop program.
The second tool converts the SAC into a Polyhedral Reduced Depen-
dence Graph (PRDG) data structure, which is a compact mathemat-
ical representation of the DG in terms of polyhedra. The third tool
converts the PRDG into a process network by associating a process
with each node of the PRDG. The parallel processes communicate
with each other according to the data-dependency given in the DG.

LAURA [6] maps a KPN specification onto hardware, for exam-
ple, FPGAs. The LAURA tool operates as a back-end for the COM-
PAAN compiler. First, the KPN specification is converted into a func-
tionally equivalent network of virtual processors, called hardware
model. This is a platform independent step as no information on
the target platform is taken into account. Second, platform specific
information is added as well as IP cores to this hardware model lead-
ing to a network of synthesizable processors. Finally, the hardware
model is converted into synthesizable VHDL code.

1.3 Related Work
Mapping applications like MPEG and JPEG codecs onto a target

architecture consisting of a CPU and an FPGA has been the cen-
tral question in Hardware/Software codesing in the last decade [7].
Researchers have already mapped successfully multi-media applica-
tions on such kind of platforms in a systematic way. The retargetable
framework Nimble [8] and the work presented in [9] automatically
compiles system-level applications specified in C onto a target archi-
tecture of a combined CPU and FPGA. However, the compiler only
exploits instruction-level parallelism (ILP) in loops but not task-level
parallelism. Loops are executed purely sequentially according to
their original C specification even if mapped onto the FPGA for ac-
celeration. In [10, 11], reconfigurable logic is used as a co-processor
attached to a CPU. The co-processor is typically used to speeds-up
certain instructions of the CPU.

All of the related work, mentioned above, exploits only ILP in
loops mapped onto an FPGA that runs mutually exclusive with the
CPU. In the work presented in this paper, however, we show a sys-
tematic and automated approach to map an application onto a CPU
and an FPGA in such a way that the CPU and the FPGA run concur-
rently, exploiting task-level parallelism.

Some recent efforts in mapping applications onto a CPU con-
nected to reconfigurable logic (FPGAs) exploiting task-level par-
allelism has led to approaches that are somehow related to the ap-
proach presented in this paper. Gokhale et al. [12] have developed a
compiler that takes stream-based application specified in Streams-
C and generates synthesizable hardware for FPGAs and a multi-
threaded software program for the control CPU. The Stream-C pro-
gramming task-level model is the CSP [13] model of computation.
The work in [14] also presents an approach to map applications spec-
ified as CSPs onto a platform that consists of a CPU and FPGA. Con-
ceptually, our approach differs from these approaches in the sense
that we use the Kahn Process Network (KPN) model which speci-
fies more naturally and efficiently (compared to CSP) the task-level
parallelism in stream-based applications. The UC Berkeley’s project
SCORE [15] has developed a stream-based compute model which
virtualizes reconfigurable computing resources (compute, storage,

and communication) by dividing a computation up into fixed-size
”pages” and time-multiplexing the virtual pages on available physi-
cal hardware. The specific language TDF is used to specify applica-
tions using the SCORE’s model. This stream-based model is similar
to the KPN model we use in this paper.

In the three approaches [12, 14, 15], mentioned above, the in-
put application has to be analyzed and specified manually in terms
of concurrent task-level model of computation using very specific
languages (Stream-C, Handle-C, TDF). This is very time consuming
and error prone process because the system designer has to do manu-
ally the dependence analysis as well as to learn a specific description
language. In contrast, our approach relies on a compiler that fully au-
tomatically derives KPN specifications form applications described
in common languages like Matlab or C.

2. OUR DESIGN FLOW
To illustrate our design approach that is centered around the use of

the KPN model of computation, we show how we integrate the tools
COMPAAN and LAURA, we have developed, in a system design flow
together with other tools in order to map automatically an application
onto a target platform architecture. To make the design flow specific,
we demonstrate and evaluate our design flow in the context of a case
study in which we map an M-JPEG application onto a platform that
consists of a microprocessor and an FPGA running in parallel and
communicating with each other via shared memory banks. We have
organized the paper in the following way. We give a brief description
of the M-JPEG application and the target platform in Section 2.1.
This is followed by a step-by-step description of our system design
flow in Section 2.2. In Section 3, we present some results that we
have obtained. Section 4 concludes the paper.

2.1 M-JPEG and the Platform Architecture
The application we consider is a modified Motion JPEG (M-JPEG)

encoder. We have chosen this application because it is a real-life
application that is not too complicated, but has enough features to
illustrate the use and usefulness of our design flow. Like traditional
M-JPEG encoders, the modified M-JPEG encoder compresses a se-
quence of video frames, applying JPEG [16] compression to each
frame in the video sequence. M-JPEG is used for motion pictures
compression like MPEG [17] but without inter-frame predictive cod-
ing. Our modified M-JPEG encoder, which we further refer to as M-
JPEG*, operates on video data in 4:2:2 YUV format and can process
each incoming video frame with a different set of quantization and
Huffman tables, depending on the output bit-rate and the accumu-
lated statistics from previous video frames. The M-JPEG* encoder
application is depicted as a block diagram in Figure 1-a).
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Figure 1: Block diagrams: a) M-JPEG*; b) target platform

We map and run the M-JPEG* application on our target platform
architecture which is depicted in Figure 1-b). The platform architec-
ture consists of a microprocessor (i.e., a Pentium IV) running Win-
dowsNT and connected via PCI bus to the ADM-XRCII board manu-
factured by Alpha Data Parallel Systems, Ltd [18]. The ADM-XRC-



II board is a high performance PCI Card, designed for supporting
development of applications using the Xilinx Virtex-II series of FP-
GAs. The board consists of a Virtex-II 2V6000 FPGA and six ZBT
memory banks of size 256k � 32 bit.

2.2 The Mapping
Our system design flow maps an application onto a target plat-

form in a systematic and automated way in a number of steps. We
illustrate these steps by mapping the M-JPEG* application onto our
platform. Central to our system design flow are the COMPAAN and
LAURA tools as shown in Figure 2. The figure shows that an applica-
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Figure 2: The System Design Flow.

tion written in a subset of Matlab is converted to a KPN specification
by COMPAAN. Using workload analysis, candidate processes of this
specification are selected for mapping on hardware (FPGA). The re-
maining processes are mapped on the CPU as software. The KPN is
written in a particular format in C++ called YAPI [19]. Using a stan-
dard C++ compiler, the processes are compiled to run on the CPU
on top of a lightweight multi-threading package. The processes that
need to be mapped onto the hardware are further processed by COM-
PAAN to obtain a hierarchical subnetwork. This subnetwork, which
is again a KPN, is compiled into hardware using the LAURA tool.
Using commercial synthesizers, we obtain the bitstream to map one
or more processes onto the FPGA. The communication between the
FPGA and the CPU is automatically generated by LAURA.

We now look at the various steps in more detail and see how they
apply to our M-JPEG* application.

2.2.1 STEP 1
The input of our design flow is an application described in a subset

of Matlab. It can be debugged easily and the functional correctness
of the application can easily be verified. For the M-JPEG* applica-
tion, we started from a public domain JPEG codec implementation
in C [20]. First, we extracted the encoder part from the implemen-
tation and modified it to obtain the M-JPEG* application. Next, we
structured our M-JPEG* C-code as a set of routines (functions) that
are called by the Matlab code shown in Figure 3.

The Matlab program in Figure 3 is a convenient way to describe
the M-JPEG* application. Nonetheless, this program does not reveal
the inherent task-level parallelism available in the M-JPEG* due to
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%parameter NumFrames 8 100;
%parameter VNumBlocks 16 100;
%parameter HNumBlocks 8 100;

for k = 1:1:1,
[ QTables, HuffTables,

TablesInfo, EndOfFrame ] = P2_l_DefaultTables();
end

for k = 1:1:NumFrames,

[ HeaderInfo ] = P1_l_VideoInInit();

for j = 1:1:VNumBlocks,
for i = 1:1:HNumBlocks,
[ Block(j,i) ] = P1_l_VideoInMain();

end
end

for j = 1:1:VNumBlocks,
for i = 1:1:HNumBlocks,
[ Block(j,i) ] = DCT( Block(j,i) );

end
end

for j = 1:1:VNumBlocks,
for i = 1:1:HNumBlocks,

[ Block(j,i) ] = Q( Block(j,i), QTables );

[ Packets, StatisticsB ] = VLE( Block(j,i),
EndOfFrame,
HuffTables );

[ BitRate, StatisticsF,
EndOfFrame ] = CtrlF1( StatisticsB );

[ ] = VideoOut( HeaderInfo, TablesInfo,
Packets );

end
end

[ QTable , HuffTables,
TablesInfo ] = P2_l_CtrlF2( BitRate,

StatisticsF,
QTables,
HuffTables,
TablesInfo );

end

Figure 3: Task-Level specification of the M-JPEG* application
in Matlab.

the sequential nature of the program. Therefore, the first step in
our system design flow is to convert this sequential program into an
executable parallel specification, in our case Kahn Process Network
(KPN).

In general, deriving an executable KPN specification by hand for
an application is difficult and time consuming. Instead, we relay on
the COMPAAN compiler to convert fully automatically the M-JPEG*
Matlab program into the KPN specification shown in Figure 4-a).
COMPAAN generates a Kahn Process Network as C++ code using
the Y–chart Applications Programmers Interface (YAPI) [19]. In
YAPI, each process is modeled as a light-weight thread that com-
municates data with other threads (processes) via unbounded FIFO
channels. These channels are accessed using the primitives read
and write to read/write data from/to FIFO channels. The read
primitive blocks the execution of a process, if the current channel
from which a process reads data is empty. The write primitive
is non-blocking. The blocking-read mechanism accomplishes the
inter-process synchronization.

The P1, DCT, Q (Quantizer), VLE (Variable Length Encoding),
and VideoOut processes form the central data-flow processing of
the M-JPEG encoding algorithm. The CtrlF1 and P2 processes take
care of the quantization and Huffman tables adaptation. The CtrlF1
process receives statistics from the VLE process for every incoming
block of the current frame that is processed. At the end of the frame,
CtrlF1 sends to process P2 a global statistics for the frame as well
as the compression bit-rate. Based on the statistics and the bit-rate,
P2 computes and sends updated quantization and Huffman tables to
process Q and process VLE, respectively.

To obtain a specification that exploits distributed memory, all shared
variables in the Matlab code shown in Figure 3 are replaced by
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Figure 4: The hierarchical KPN for the M-JPEG* Application.

FIFO channels in the KPN shown in Figure 4-a). For example, the
shared variable Block(j,i) is distributed over three FIFO chan-
nels called Block in Figure 4-a). The type of data communicated over
the FIFO channels is the same as the type of the shared variables
from which the channels originate. For instance, the type of the vari-
able Block(j,i) and the date communicated over the channels
with the name Block is the structure shown in the left-up corner of
Figure 4.

At the end of step 1 in our design flow, we have obtained an exe-
cutable specification of the M-JPEG* application as a KPN in YAPI
code. When the specification is executed, the YAPI code gener-
ates statistics on computational and communicational workload of
the application. Based on this information, we perform a manual
HW/SW partitioning of the application. We identify the most com-
putational intensive process as a candidate we want to put on hard-
ware to speedup the computation. This is done in step 3 of the system
design flow. For the Kahn Process Network shown in Figure 4-a), the
most computational intensive process is DCT that performs the Dis-
crete Cosine Transform on every incoming block of pixels. The rest
of the processes in the network will be implemented as software and
mapped onto the microprocessor.

2.2.2 STEP 2
The processes selected to be put in software, need to execute on

the microprocessor of our target platform. For this purpose, we use
the YAPI multi-threading environment which is a light-weight multi-
threading environment. A standard C/C++ compiler is used to com-
pile the YAPI code of the processes.

All the processes of the M-JPEG* KPN are mapped onto the mi-
croprocessor, except for the DCT process which is to be mapped on
the FPGA. To integrate the execution of the DCT process on hard-
ware with the software processes on the microprocessor, a small
piece of interface code needs to execute on the microprocessor too.
This code is given in Figure 5.
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void DCT::main() {
for (int k=1; k <= NumFrames; k++) {

for (int j=1; j <= VNumBlocks; j++) {
for (int i=1; i <= HNumBlocks; i++) {
read(inPort, inBlock);
outBlock = DCT( inBlock );
write(outPort, outBlock);

}
}

}
}

Figure 5: Interface code in YAPI format to connect the Soft-
ware Processes with the Hardware implementation of DCT.

In line 5 of the code, the YAPI primitive read() is used to get
data from the input FIFO channel which is connected to the DCT
process. The data read from this channel is stored in the variable
inBlock. The type of this variable is the data structure shown in
the left-up corner of Figure 4. This structure consists of four 8 � 8-
pixel blocks. Two blocks for the luminance component (Y1 and Y2)
and two for the chrominance component (U and V). Similarly, in line
7, the YAPI primitive write() is used to put data that is stored in
the variable outBlock to the output FIFO channel which is con-

nected to the DCT process. The type of the variable outBlock is
the same as the type of the variable inBlock.

In line 6, the function DCT() is called. This function executes a
Discrete Cosine Transform (DCT) task implemented as hardware on
the FPGA component shown in Figure 1-b). First, the data stored in
the input argumentinBlock of the DCT() is uploaded to the mem-
ory Bank0 of the Memory block shown in Figure 1-b). This is done
via the PCI bus and the Host Interface. Next, the HW Design block
executes the DCT task and stores the data in the memory Bank1. Fi-
nally, this data is downloaded from the memory Bank1 and returned
in output argument outBlock of function call DCT() in line 6.

2.2.3 STEP 3
By performing a workload analysis, we identify a candidate pro-

cess that is the most computational intensive process of a given KPN.
Typically, the code of such process is a nested loop program [10]. We
want to implement this process as hardware running on the FPGA
in the HW Design block of the target platform. For that purpose,
we have developed the LAURA tool which generates synthesizable
VHDL code from a KPN specification. This VHDL code is suitable
for mapping onto FPGAs.

In our case, the candidate process is the DCT process of the KPN
in Figure 4-a). Initially, the candidate DCT process is not specified
as a KPN. Using again COMPAAN we derive a KPN for this pro-
cess. This KPN, shown in Figure 4-b), is a hierarchical subnetwork
in the M-JPEG*. For this hierarchical subnetwork, we generate syn-
thesizable VHDL. By creating the subnetwork, we exploit more effi-
ciently the parallelism available inside the DCT process. Moreover,
we apply automatic type conversion as the hierarchical input/output
to/from the DCT subnetwork is data of type Block. Inside the subnet-
work, this is converted to streams of pixels (integers). By moving to
streams of pixels, we get more fine-grained communication that can
be mapped more efficiently onto the FPGA. The type conversion is
automatically handled by COMPAAN.

The generation of hardware for the DCT process starts by convert-
ing the code in the function call DCT() in line 6 of Figure 5, into
a Kahn Process Network specification. This is done again by our
compiler COMPAAN- step 3 in Figure 2. The code for the DCT()
function call is described in Matlab as shown in Figure 6.
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for k = 1:1:4,
for j = 1:1:64,

[ Pixel(k,j) ] = Source( inBlock );
end

end

for k = 1:1:4,

if k <= 2,
for j = 1:1:64,
[ Pixel(k,j) ] = PreShift( Pixel(k,j) );

end
end

for j = 1:1:64,
[ Block ] = P_l_PixelsToBlock( Pixel(k,j) );

end
[ Block ] = P_l_2D_dct( Block );
for j = 1:1:64,

[ Pixel(k,j) ] = P_l_BlockToPixels( Block );
end

end

for k = 1:1:4,
for j = 1:1:64,

[ outBlock ] = Sink( Pixel(k,j) );
end

end

Figure 6: Matlab code of the DCT Process.

The Kahn Process Network (KPN) generated by COMPAAN that
corresponds to the Matlab code of the DCT is depicted in Figure 4-
b). It shows that this KPN is a subnetwork that implements the DCT
process in the M-JPEG* network. The subnetwork consists of four
processes. The Source and the Sink processes serve as hierarchical



interfaces to the M-JPEG* network. The Source process transforms
the incoming Block data structures to pixels and distributes the pixels
corresponding to the luminance components to the PreShift process
for preprocessing, while the pixels corresponding to the chrominance
components go directly to the P process. The P process executes
a 2D-DCT transformation. The Sink process groups the stream of
pixels that comes out from the P process in Block data structures.

2.2.4 STEP4
In step 4 of the design flow shown in Figure 2, our tool LAURA

transforms the KPN specification generated in step 3 together with
predefined IP cores into synthesizable VHDL code. In our example,
we provide to LAURA the KPN specification of the DCT. The gen-
eration of the VHDL code for this KPN takes place in a number of
steps.

First, LAURA creates a platform independent hardware model (HM)
for the KPN of the DCT. The obtained hardware model is depicted
in Figure 7. It consists of four concurrent virtual processors VP1,
VP2, VP3, and VP4 connected in a network that communicate data
with each other asynchronously via FIFO buffers. The topology of
the HM network is the same as the topology of the input KPN shown
in Figure 4-b), as LAURA performs a one-to-one mapping. The vir-
tual processors VP1, VP2, VP3, and VP4 implement the processes
Source, PreShift, P, and Sink, respectively.
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Figure 7: The LAURA hardware model of the DCT subnetwork.

In the second step in LAURA, the hardware model is annotated
with additional information about the target platform. This is in-
formation about IP cores that are used in the virtual processors, the
bit-width of the communicated data, and the type of this data. Also,
the size of the hardware FIFO buffers is specified. Furthermore, the
notion of a clock event is taken into consideration.

In the last step in LAURA, synthesizable VHDL code is generated
that describes the annotated hardware model (HM). We have imple-
mented in LAURA a software procedure called VHDL Visitor that
generates for each hardware component the correct VHDL syntax.
By simply implementing other Visitor procedures, we can generate
code in other formats, for example, Verilog or SystemC.

2.2.5 STEP5
In the last step of our design flow, we use commercial tools to

synthesize and map the VHDL code, generated in step 4, onto the
FPGA shown in Figure 1-b). For the synthesis, we used the Sinpli-
fyPro tool [21] of Synplicity, Inc. For the placement and routing and
for the generation of the configuration file for the FPGA, we used
the ISE Foundation package [22] provided by Xilinx.

3. EXPERIMENTS AND RESULTS
In this section, we present some of the results we have obtained

by mapping the M-JPEG* application onto the target platform using
our system design flow presented in Section 2.

The input to our system design flow was an application described
in a subset of Matlab. We started with publicly available sequential
C code of a JPEG codec. This code was modified and structured by
hand to meet the subset of Matlab that our design flow accepts and
to match the features of the M-JPEG* application. The only reason
we used Matlab is because COMPAAN uses a simple Matlab parser.

Since the model of computation of Matlab and C is the same, you
can read ”C” every time we speak about Matlab.

The writing of the Matlab code took four days together with the
functional testing and debugging. After this preparation work, which
is a one-time effort only, we started with the mapping of the M-
JPEG* application using our system design flow.

Our first experiment was to measure how much time it takes to
map the M-JPEG* application onto the target platform using our
system design flow. Table 1 shows the processing times for every
step in the flow. The last column shows the time needed for every

Table 1: Processing Times (hh:mm:ss).
COMPAAN LAURA Other tools Manually Total

STEP 1 00:00:22 – – 00:30:00 00:30:22
STEP 2 – – 00:00:35 – 00:00:35
STEP 3 00:00:08 – – – 00:00:08
STEP 4 – 00:00:07 – 03:00:00 03:00:07
STEP 5 – – 00:13:10 – 00:13:10
Overall 00:00:30 00:00:07 00:13:45 03:30:00 03:44:22

step to finish. The overall time of the whole design flow for the M-
JPEG* experiment is around 3 hours and 45 minutes. The column
Manually indicates that we had to do some manual manipulations.
For example, at the end of STEP 1, we had to do a manual HW/SW
partitioning that took 30 minutes. In STEP 4, we had to download
from Internet, modify and add some IP cores to our library of com-
ponents, which took 3 hours. However, once the IP cores are in the
library any manual manipulations in STEP 4 will disappear.

The results show that the mapping of the M-JPEG* application
onto the target platform is done in a short amount of time - a few
hours. The main reason is the great time performance of our tools
COMPAAN and LAURA. COMPAAN derives fully automatically a
KPN for the M-JPEG in less than a minute after the 4-day prepa-
ration work described above. For comparison, a KPN for the same
M-JPEG encoder was derived by hand in [23] that took four weeks.
LAURA converts fully automatically the KPN of the DCT process
in synthesizable VHDL code in a few seconds. For comparison, a
hand-made design of this KPN in VHDL will take several days.

In the second experiment, we use our design flow to evaluate the
performance of the Kahn Process Network of the DCT mapped onto
the FPGA. We measured the time needed for the FPGA implemen-
tation to process a single datum of type Block. It took 35 micro
seconds at clock frequency of 40MHz. In contrast, the execution of
the DCT process running as a program on the microprocessor (clock
frequency 1.2GHz) took 98 micro seconds. We conclude, that we got
a speedup of 2.8 on the FPGA. We can even improve the speedup by
using high-level transformations of the MATTRANSFORM [24] tool-
box in STEP 3 (Figure 2). By performing unfolding (unrolling) and
skewing (re-timing) transformations, we expect to obtain a speedup
of up to 10.

The mapping of the KPN of the DCT is efficient in terms of re-
source usage. Table 2 shows the FPGA resource utilization. The

Table 2: DCT KPN on VirtexII 2V6000: Device utilization
FPGA resource Utilization %
Number of MULT18X18s 8 out of 144 5%
Number of RAMB16s 4 out of 144 2%
Number of SLICEs 2367 out of 33792 7%
Number of BUFGMUXs 2 out of 16 12%

numbers in the table show that on average only 7% of the FPGA re-
sources are used – 6% is taken by the IP cores and only 1% is taken
by the FIFOs and the distributed control generated by LAURA to in-
tegrate these IP cores in the KPN of the DCT process. This suggests



that we can map on the FPGA not only the DCT process but also
other processes of the M-JPEG* network shown in Figure 4-a).

In the final experiment we measured the performance of the com-
plete system: the M-JPEG* Kahn Process Network running on the
target platform. We looked at the throughput of this system, mea-
sured in frames per second. For frames in CIF format of 128 � 128
pixels, the throughput of the system is 10.5 frames per second. This
is below the standard minimum real-time throughput of 25 CIF frames
per second. We found that the problem is not in the output of our
design flow, but in the slow communication of data between the mi-
croprocessor and the FPGA. The bottleneck is the 32-bit width PCI
bus operating at 33MHz. By switching the PCI bus to 64-bits at a
frequency of 66MHz, we can increase the communication speed ap-
proximately 4 times. As a consequence, the system should be able
to process 25 frames per second in CIF format of 128 � 128 pixels.

4. CONCLUSIONS
This paper presents a system design flow in which an application

written in a subset of Matlab is mapped onto a target platform com-
posed of a CPU and an FPGA in a systematic and automated way.
The novelty in this flow is that the CPU and the FPGA run concur-
rently, thereby exploiting efficiently task-level parallelism. Central
to the flow is the use of the Kahn Process Network model of com-
putation. This model inherently expresses applications in terms of
distributed control and memory. This is required to get an efficient
mapping onto the CPU and the FPGA. In realizing the flow, we have
developed and used the COMPAAN and LAURA tools. These tools
allow us to quickly go from an application specification in Matlab to
an implementation of the application running on the target platform.
The hardware mapping shows that LAURA is capable of generating
efficient implementations of KPNs. In conclusion, the use of COM-
PAAN and LAURA (that are still subject to further research) together
with other tools results in an efficient design flow for systems that ex-
ecute high-performance real-time signal processing and multimedia
applications.

In this paper, we have demonstrated our system design flow by
mapping the M-JPEG* application onto a platform that consists of
a CPU and an FPGA. However, our flow is general enough to be
used for a systematic mapping of applications onto multiple CPUs
and FPGAs. The main reason for this is the Kahn Process Network
(KPN) model of computation used in our flow. As the control and
memory are distributed in a KPN, no global scheduler is needed.
Hence, partitioning a KPN over a number of CPUs and FPGAs can
easily be done.

Although we used in our system design flow a standard C++ com-
piler, a simple research multi-threading environment, and a simple
target platform, the obtained results are already promising. Even
better results should be achievable when employing, for example,
more optimized and robust commercial solutions.
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