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ABSTRACT
Deep learning (DL) algorithms have already proved their effective-
ness on a wide variety of application domains, including speech
recognition, natural language processing, and image classification.
To foster their pervasive adoption in applications where low latency,
privacy issues and data bandwidth are paramount, the current trend
is to perform inference tasks at the edge. This requires deployment
of DL algorithms on low-energy and resource-constrained comput-
ing nodes, often heterogenous and parallel, that are usually more
complex to program and to manage without adequate support and
experience. In this paper, we present ALOHA, an integrated tool
flow that tries to facilitate the design of DL applications and their
porting on embedded heterogenous architectures. The proposed
tool flow aims at automating different design steps and reducing
development costs. ALOHA considers hardware-related variables
and security, power efficiency, and adaptivity aspects during the
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whole development process, from pre-training hyperparameter op-
timization and algorithm configuration to deployment.
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1 INTRODUCTION
Deep Learning (DL) algorithms are at the forefront of Artificial
Intelligence (AI) techniques [7]. Ever-growing research and im-
plementation efforts are dedicated to the development of novel
algorithm configurations able to increase prediction and classifi-
cation accuracy of always more advanced DL applications. How-
ever, improvement in performance comes at the cost of a higher
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computational complexity and additional memory and processing
power requirements [15]. While this excessive resource demand
is not a problem for the training phase that is typically executed
on high-performance computing facilities, it can represent an issue
for exploiting the emerging Edge Computing paradigm [13], which
calls for deploying the inference task on embedded devices with
limited area and power budget.

Deploying the inference task of DL models at the edge has be-
come a popular trend in particular for those applications where
power, privacy, bandwidth, latency, and reliability are critical con-
straints. In order to cope with the increasing need for computational
power and, at the same time, with the limited energy budget, mod-
ern mobile systems are based on complex AI-optimized chipset ar-
chitectures featuring heterogeneous computing devices, including
Graphical Processing Units (GPUs), Application-Specific Integrated
Circuits (ASICs), Neural Network Processing Units (NNPUs), multi-
core processors and Field-Programmable Gate Arrays (FPGAs). In
these devices, different processing cores can cooperate by executing
different computing kernels, maximizing performance and reducing
power consumption [10, 17].

Despite the variety of resources available, optimizing these het-
erogeneous computing architectures for performing low-latency
and energy-efficient DL inference tasks without compromising per-
formance is still a challenge [5]. This mainly because productivity
in DL algorithm development is typically reduced by a deep-rooted
dichotomy: the design and training of the learning algorithm and
the inference of the resulting model are two distinct activities. The
main problem with the current DL solutions development flow is
that the training phase leads to the selection of an optimal algorithm
configuration mainly considering accuracy as the only main design
objective. The selected algorithm configuration has little or no cor-
respondence with the specific features of the processing hardware
architecture in charge of executing the inference task. Developers
of hardware-software systems dealing with the inference process
commonly start from pre-trained networks, trying to optimize as
much as possible their execution on the target computing platform.
This dichotomy determines the need for multiple design iterations,
potentially leading to long tuning phases, overloading designers
and with results highly depending on their skills.

In this paper, we present ALOHA, an integrated tool flow that
tries to make the design of DL applications and their porting on
embedded heterogenous architectures as simple and painless as
possible. The proposed tool flow aims at automating different de-
sign steps and reducing development costs by bridging the gap
between DL algorithm training and inference phases. The tool con-
siders hardware-related variables and security, power efficiency,
and adaptivity aspects during the whole development process, from
pre-training hyperparameter optimization and algorithm configu-
ration to deployment.

2 ALOHA FRAMEWORK
The overall ALOHA framework is shown in Figure 1. It essentially
automates three different steps: algorithm selection, application
partitioning and mapping, and deployment on target hardware.
Through the user interface, the tool flow receives as inputs the

following data: a starting neural network, a dataset, a target ar-
chitecture description, a configuration file containing information
about the target application, and a set of constraints on accuracy,
security, performance and power that the application must satisfy.
Starting from this set of user-specified inputs, the tool flow gener-
ates a partitioned and mapped neural network configuration, ready
to be ported on the target processing architecture, that co-optimizes
both the application-level accuracy and the required security level,
inference execution time and power consumption.

A RESTful microservices approach is used to structuring the
proposed tool flow architecture implementing an Agile develop-
ment methodology. As shown in Figure 1, each step of the devel-
opment flow is broken into smaller, completely independent com-
ponents, which interact and influence each other by exchanging
HTTP request/response API (Application Programming Interface)
calls. Docker containers are used to create loosely isolated running
environments, so that each component can be independently built
and deployed to implement a specific feature of the ALOHA tool. All
the components have access to a shared storage image containing a
MongoDB database. Deployments of the different components are
managed through a container orchestration platform. The standard
ONNx (Open Neural Network Exchange) is used for exchanging
deep learning models between the different tool flow components.

The main role of the user interface is to provide ease-of-use
and accessibility to the tool flow, ensuring adoption among deep
learning practitioners. The graphic interface guides the user during
the definition of a use-case, shows work in progress and provides
visualization of results on the implemented tasks in the form of
graphs and tables.

In the following sections, we provide full details on all the three
steps required in the ALOHA tool flow and a description of the
developed user interface.

2.1 Tool flow environment
This section describes the three steps of the proposed tool flow.

Step 1 - Automation of the algorithm design process. The first
step is guided by a Design Space Exploration (DSE) engine, which
performs a multi-objective exploration using a genetic algorithm
and accesses a set of refinement and evaluation tools to generate the
optimal DNN configuration, depending on the target application,
the constraints imposed, and the target hardware platform selected
by the user (see Figure 1). Each evaluation tool is able to estimate
a specific parameter for each design point. The DSE engine starts
its operation using an initial DNN configuration provided as input
by the user, or generating itself a first population of design points
corresponding to random algorithm configurations in terms of
number of layers, kernel size, layer connectivity. Then, to refine
and evaluate the generated design points the DSE engine cooperates
with the following set of satellite tools:

• Refinement tool for parsimonius inference. It tries to reduce
the computational workload associated with the inference
execution of a candidate design point, the size of the memory
footprint, and the IO bandwidth requirements, by applying
quantization and pruning techniques;

• Accuracy evaluation tool. It assesses the accuracy of a can-
didate design point. This tool is based on a training engine,
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Figure 1: General architecture of the ALOHA software
framework. Nodes in the upper part of the figure represent
the key inputs of the tool flow specified by the users.

which can be configured to train a DNN model from scratch
or to apply transfer learning techniques to it. In the latter
mode, the engine tries to reuse pre-trained network models,
personalizing them for the target use case. The accuracy eval-
uation tool offers local hyper-parameter exploration, flexible
data parsing (multiple input formats) and flexible use-case
configuration (multiple AI tasks, such as classification, de-
tection, tracking).

• Security evaluation tool. It evaluates the robustness of a
candidate design point to adversarial attacks happening in
prediction phase. Adversarial attacks are testing data that are
maliciously altered to be misclassified by a candidate DNN
model [2, 3]. These attacks are generated simulating the
worst case, by algorithmically computing the modifications
which maximize the error rate of the DNN.

• Performance and Power evaluation tool. It evaluates the
performances and the power consumption associated with
the execution of the inference of a candidate design point on
a target architecture. It converts the DNNmodel coming from
the DSE engine to an analyzable application model (i.e. a
Cyclo-Static DataFlow model). Taking into consideration the
target architecture description received as input, this satellite
tool allows to pre-estimate what will be the execution time
and power consumption of the actors inside the generated
model.

When the exploration is finished and the most suitable design
choice is identified, the DSE engine triggers the next step of the
tool flow.

Step 2 - Optimization of the partitioning and mapping. The sec-
ond step of the tool flow is guided by a System-level DSE engine,

which identifies the best partitioning of the algorithm configuration
generated by step 1 in sub-tasks, and finds the optimal mapping
scheme of these sub-tasks on the different processing units avail-
able in the target hardware platform, able to satisfy requirements
and constraints specified by the user (i.e. throughput, latency and
power). Similarly to the previous step, this is done using a genetic
algorithm for surfing the design space and requiring evaluation
of the candidate partitioning and mapping scheme to two satel-
lite tools: Sesame [11] and Architecture Optimization Workbench
(AOW) [8]. These tools simulate computation and task-to-task com-
munication and provide approximates on execution (cycle) times,
energy consumption, hardware utilization and resource contention.
AOW explores the whole design space using an analytic approach,
while Sesame performs more precise simulation over a more limited
search space.

The System-level DSE engine can also deploy transformations
on the DNN algorithm graph by, for example, merging or splitting
tasks (i.e., increasing or decreasing the concurrency in the DNN
algorithm), to find more efficient mappings of sub-tasks, to opti-
mize the usage of the available hardware resources and to adapt to
different operating modes [1].

Alternatively, it can access the post-training algorithm refine-
ment tool for parsimonious inference to achieve a workload re-
duction by considering specific features of the target architecture
(see Figure 1). This satellite tool tries to reduce the computational
workload by applying both a sophisticated on-line data-dependent
kernel/component pruning mechanism [16] and a conversion from
static to dynamic computing graph to the DNN model. The pruning
process is performed by gradually weakening the contribution of
unnecessary kernels and layers in the CNN architecture. In the
dynamic pruning, several components (i.e. convolutional kernels,
groups of kernels, layers etc.) are conditionally executed according
to learned rules, and based on the respective data being processed,
by the means of special, trainable processing modules called LKAMs
(Learning Kernel Activation Modules). These modules are capable
to switch on and off individual kernels of any layer, depending on
its input, which is the output of the previous convolutional layer.

If the execution of the self-pruning processes allow to deliver a
more parsimonious inference while simultaneously ensuring the
accuracy of the initial model within specified margins, the post-
training refinement tool generates as output a modified DNNmodel,
otherwise notifies the system-level DSE engine to proceed with the
initial trained model.

When the system-level exploration is finished and the more
efficient mapping of the DNN configuration is identified, the last
step of the tool flow can be carried out.

Step 3 - Automation of the porting process. The last step of the
tool flow is the porting of the DNN configuration on the target
hardware architecture. A programming interface receives as input
the partitioning and mapping information generated by step 2, and
translates them into specific calls to computing and communication
primitives exposed by the target hardware architecture. The gen-
erated platform-specif code is then customized to reduce as much
as possible power consumption and improve performance using,
when possible, optimization techniques such as power gating, clock
gating and frequency scaling.
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2.2 User interface design
The ALOHA user interface provides users with the ability to moni-
tor the state of each step of multiple projects through the tool flow
at any time. It is built using a JavaScript-based Kanban board within
React framework. As shown in Figure 2, the Kanban approach al-
lows to have a simple and intuitive graphic interface, with only the
important information highlighted.

Figure 2: ALOHA user interface.

The visual board is divided into three columns, each of them
representing a specific development step of the tool flow process.
Each column is populated with cards that represent work items of
different types. Cards can be added in a column, deleted, or dragged
from one column to the other. Each card goes moves from left to
right until the full workflow is completed and the work is done. To
implement a new use-case, the user starts creating and configuring
a new project. This is done by:

• editing a project title and a description;
• uploading an architecture specification file, which provide
information about the target hardware platforms in terms of
population of computing elements, connectivity, and avail-
able operating modes (i.e. data types, working frequency and
gating conditions).

• designating the desired values for accuracy, security, execu-
tion time and power consumption;

• specifying a link to the shared folder location that stores the
dataset to be used;

• uploading an initial DNN configuration;
• specifying information about the target application to be
implemented (i.e. task type, training rate, number of training
epochs, batch size, optimization method, loss function).

3 EXPERIMENTAL RESULTS
In this section we present the capabilites of some of the utilities
involved in the ALOHA toolflow. Namely, we show:

• an evaluation of a CNN with respect to the possibility of
applying parsimonious inference, during algorithm selection,
see Section 3.1;

• an evaluation of a CNN with respect to its resilience to ad-
versarial attacks, see Section 3.2;

• the effectiveness of applying run-time parsimonious infer-
ence, to reduce the computational burden and to speed-up
the CNN inference on one of the project reference processing
platforms, see Section 3.3;

All the presented results are obtained using the toolflow instruments
on state-of-the-art network topologies and image benchmarks.

3.1 Algorithm refinement for parsimonious
inference

To preliminary evaluate the functionality of the algorithm configu-
ration refinement tool envisioned in Step 1, we iteratively fine-tuned
a MobilNet topology to lower precision using a quantization/re-
training scheme based on the PArameterized Clipping acTivation
(PACT) function [4]. We used a pre-trained full-precision version
of MobilNet (on CIFAR-10) as input, and we applied the following
iterative approach:

(1) fine-tuning the current version of the network;
(2) evaluating its convergence rate to stop fine-tuning when

convergence is flat;
(3) lowering the precision of the data representation.

Figure 3 shows that both weights and activations can be quan-
tized to 4-bits of precision while still achieving accuracy comparable
to a full precision MobileNet network. Starting directly from 8 bits
and lowering to 4 bits, the quality drop in terms of accuracy is
below 5% within around 280 epochs.
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3.2 CNN robustness to adversarial attacks
To evaluate the capability of the tool flow to assess the security of
a candidate design point to adversarial examples, we considered
a pre-trained CNN on the CIFAR 10 dataset (93.78% accuracy).1
We manipulated 1000 test samples with the Iterative Fast Gradient
Sign Method (I-FGSM) attack algorithm, using 20 iterations [6].
This attack bounds the max-norm distance between the source
image x and its adversarial counterpart x′ as ∥x − x′∥∞ ≤ ε . This
amounts to manipulating each pixel p in x′ independently in the
interval [p − ε,p + ε]. We run this attack for 100 different values
of perturbation ε . In Figure 4 we show some adversarial examples
obtained with low (ε = 0.03) and high (ε = 0.1) perturbation.

frog (0.99) Ɛ = 0.03
frog (0.0)

truck (0.66)

Ɛ = 0.03

Ɛ = 0.1

Ɛ = 0.1

frog (0.0)
car (0.8)

ship (0.0)
dog (0.77)

ship (0.0)
deer (0.37)ship (0.99)

Figure 4: Examples of adversarial attacks with ε = 0.03 (low
perturbation) and ε = 0.1 (high perturbation). The noise
masks are magnified for visibility purposes.

In Figure 5 we report the results of the complete security evalua-
tion procedure, showing how accuracy decreases as the perturba-
tion ε increases, originally by considering 1,000 images (green line,
slow evaluation). Considering that this evaluation can be compu-
tationally demanding (it required 1, 843 seconds to complete on a
workstation with 128GB RAM and a GPU NVIDIA Quadro M6000
24GB), we performed a second evaluation to evaluate the usability
inside an iterative DSE process, as envisioned in ALOHA. To reduce
the computational cost, we simply used 100 samples (instead of
1, 000) and 20 values for ε (instead of 100) to estimate the security
evaluation curve (red line, fast evaluation). The trend is equivalent
to the previous experiment, but required only 35 seconds, suggest-
ing the possibility of using a faster security evaluation process
when iterative DSE is involved.

3.3 Run-time parsimonious inference
effectiveness

To evaluate the effectiveness of the support for run-time reduction
of the computational load during inference, we performed two dif-
ferent experiments. In the first experiment, we considered a general
image recognition problem utilizing the ImageNet ILSVRC 2012
dataset [12] and we evaluated the proposed post-training parsimo-
nius inference technique on the well known VGG-16 model [14].
This enables to showhow this technique can be applied to quite com-
plex and compute intensive network structures and datasets. In the
second experiment, to evaluate the achievable benefits, we refer to a
1https://github.com/aaron-xichen/pytorch-playground

slow evaluation
fast evaluation

Perturbation (Ɛ)

A
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u
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cy

Figure 5: Security evaluation curves computed with 1000
(green line) and 100 (red line) images.

simpler algorithm (LeNet [7]) on a resource constrained processing
platform, integrating an ARM processor (software implementation)
and a FPGA-based CNN accelerator (hardware implementation),
and we measure the speed-up when run-time parsimonious infer-
ence (PI) is enabled.

Computational load reduction evaluation. Using the utility inte-
grated in ALOHA, we performed an initial model analysis to iden-
tify the demanding nodes and algorithmic components delivering
the largest computational gains. Then, we defined a set of special-
ized hyper-parameters based on the architecture of the VGG-16
model, and we added LKAM modules into all convolutional layers
to control the kernels activity. Finally, we performed a specialized
post-training refinement process to appropriately refine the model.

LKAM modules identify which filtering kernels can be activated.
This is shown in Figure 6, where we report the resulting kernel
activity profile for each layer of the trained parsimonious model.
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Figure 6: Kernel activity profile.

In the graph, the vertical axis corresponds to the activation fre-
quency of a particular kernel throughout the validation dataset,
while each value in the horizontal axis corresponds to a specific
kernel in a layer. For visualization purposes, the horizontal axis
has been normalized. Each curve represents a layer. A step-like
curve implies that kernels in the corresponding layer are either
permanently active or inactive, while a smooth curve indicates that
most kernels whose operation is data-dependent.
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The statistical analysis on the switching activity showed that,
on average, only 66.14% of the kernels are active in the layers of
the network throughout the target validation dataset. Seven of
the convolutional layers are operating in a static or close-to-static
mode, enabling the permanent pruning of the redundant kernels
from the model. The resulting model achieves a respectable of 70.4%
accuracy, presenting a ∼ 2% deficit to the reference model, but with
an impressive 48.31% reduction in terms of FLOPs.

Inference speed evaluation. Weapplied LKAMmodules to a LeNet-
5 network model, pre-trained on CIFAR-10 dataset. The LeNet
model implements three convolutional layers, as shown in Table
1, thus we added two LKAM modules linking respectively, Conv1
to Conv2 and Conv2 to Conv3. In Table 2, we report the resulting
kernel activity profile on 3 test images.

Table 1: Architecture of the LeNet model.

Layer Image Input Output Kernel
(name; description) size Features Features size
Conv1; Convolution 32x32 3 32 5x5
Conv2; Convolution 16x16 32 32 5x5
Conv3; Convolution 8x8 32 64 5x5

Table 2: Percentage of the number of inactive kernels for
each convolutional layer of the target model.

Layer Test 1 Test 2 Test 3
Conv1 0% 0% 0%
Conv2 31,25% 43,75% 40,63%
Conv3 31,25% 51,56% 40,63%

We then measured the inference time needed to execute the mod-
ified model on NEURAghe [9], a Zynq-based processing platform
that contains both a dual ARM Cortex A9 processor (667 MHz)
and a CNN accelerator implemented in the programmable logic.
We performed two different experiments, one using only the ARM
processor and one exploiting the accelerator. The results are shown
in Table 3 and Table 4.

Table 3: Comparison between the execution time needed to
implement the baseline and the modified model on ARM.
For each convolutional layer, the execution time in ms and
the percentage of speedup after the application of the post-
training parsimonious inference is reported.

Baseline Test 1 Test 2 Test 3
model (t; speedup) (t; speedup) (t; speedup)

Conv2 112 78.69; -30% 64.03; -43% 67.55; -40%
Conv3 56 40.66; -27% 31.28; -44% 35.54; -36%
Total 168 119.35; -29% 95.31; -43% 103.09; -39%

As may be noticed, kernel deactivation results in significant
speed-up in both experiments. Parsimonious inference is more
effective on pure software execution, since it more directly deacti-
vates operations in the convolution process. When the accelerator

Table 4: Comparison between the execution time needed
to implement the baseline and the modified model on
NEURAghe, configured on a Xilinx Zynq Z-7010 SoC. For
each convolutional layer, the execution time in ms and the
percentage of speedup after the application of the post-
training parsimonious inference is reported.

Baseline Test 1 Test 2 Test 3
model (t; speedup) (t; speedup) (t; speedup)

Conv2 9.4 7.58; -19% 6.34; -33% 6.49; -31%
Conv3 16.97 12.9; -24% 10.82; -36% 11.91; -30%
Total 26,37 20.48; -22% 17.16; -35% 18.4; -30%

is used, even if execution time is significantly decreased, some over-
head related with accelerator preparation and activation slightly
limits the speed-up due to kernel deactivation.

4 CONCLUSION
We have presented ALOHA, a software framework for automat-
ing the development process of deep learning inference tasks on
heterogeneous computing architectures. Our approach relies on
considering both hardware-related variables and security, power ef-
ficiency, and adaptivity aspects during the whole development pro-
cess, from pre-training hyperparameter optimization and algorithm
configuration to deployment. We have presented the capabilities of
the utilities involved in the toolflow.
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