
Parametrized System Level Design:
Real-Time X-Ray Image Processing Case Study

Tsvetan Shoshkov1, Todor Stefanov2, and Bart Kienhuis2

1Faculty of Electronics, Technical University of Sofia, Sofia, Bulgaria
2Leiden Institute of Advanced Computer Science, Leiden University, Leiden, The Netherlands

Email: tsh@tu-sofia.bg, t.p.stefanov@liacs.leidenuniv.nl, a.c.j.kienhuis@liacs.leidenuniv.nl

Abstract—Complex embedded systems are used to facilitate
real-time data processing applications. To cope with their sur-
roundings, these systems need to provide some form of pa-
rameterization. Developing such systems is challenging as the
system needs to execute in a stable and consistent way with
the parameterization. In this paper, we want to present how
we can develop such a system from C-code using the Compaan
technology and show a real-time medical X-Ray image processing
case study. Our purpose is to evaluate the system level synthesis
flow of Compaan and to assess if the Compaan technology is
capable of realizing such complex parametrized system.

I. INTRODUCTION

Complex embedded systems are used to facilitate real-
time data processing applications. The embedded systems we
are interested in typically have to process large amount of
data that represents, for example, medical images, astronomy
data, network traffic, or even stock exchange information. To
cope with their surroundings, these systems need to provide
some form of dynamic parameterization. For example, to
adjust parameters of filters, to switch in or out particular
computational blocks or to select regions for further analysis;
all at runtime.

The development of such systems is challenging as a
designer needs to develop a high-performing system that exe-
cutes in a stable and consistent way with the parameterization.
In this paper, we want to present how we can develop such a
system using the Compaan technology and show a real-time
medical X-Ray image processing case study. The Compaan
technology realizes this design faster and more reliable than
traditional design approaches that rely on more low level or
adhoc development techniques to realize parameterization.

A. Problem Description

We assume that the general structure of a high-performance
processing design is given in Fig. 1. It shows how an incoming
data-stream (data_in) is processed by a number of blocks
into an outgoing data-stream (data_out). These blocks perform
functions on the data stream; an example would be a filter.
The transformation from the input stream to the output stream
is the data flow processing. This typically happens on huge
data volumes in real time, i.e., the design can cope with
the throughput of the incoming data stream as indicated
by the "data flow" arrow. The blocks processing the stream
can be configured by dynamic parameters. For example, the
coefficients used in a Filter in Block 1 can be modified at
runtime. In case of Block 2, it not only takes parameter values
but also produces parameter values that could for example

drive a gauge. Block N is presented dashed as the system may
include a certain number of blocks. These blocks might be
switched on and off at runtime depending on values measured
by another block (e.g., Block 2) or under user control. The
parameterization of the blocks is represented by the "control"
arrow and describes the control flow. The control flow is
operating at a much lower frequency than the data flow. It is
considered orthogonal to the data flow as the control requires
another view than the data flow.

Block 1 Block N

Processing
data_in data_out

Block 2

dynamic parameters

data flow

co
nt

ro
l

Fig. 1. General Processing Block Structure

So given a high-level description in C-code, the problem is
to obtain a deep pipelined design that processes the incoming
data with a certain throughput, while interacting in a consistent
and reliable way with the control path.

B. Motivating Example
A real-time medical X-Ray image processing system uses

the general processing block structure in Fig. 1 for its pro-
cessing. Such a system is used for example when performing
a vascular dottering procedure (balloon catheterization). In
this procedure, a patient is laying on a table and the heart
is exposed to a continuous X-Ray beam to produce a live
image of the heart on a screen. A doctor inserts a catheter in
a blood vessel and follows the way the catheter traverse to the
heart on the screen until it reaches the location which requires
dottering.

Processing

Post
Processing

∆t

Display

Human

Detection Plate

other 
equipment

disturbance

X-Ray Source

Rays

Fig. 2. Real-Time Medical X-Ray Image Processing System

The complete X-Ray set-up is shown in Fig. 2. It shows
how X-Rays go from a X-Ray source through a human body



to a detection plate. The X-Ray hitting the detection plate
form a raw image that is further processed by the processing
phase and is projected on a display. A doctor performing the
procedure watches this display.

In this paper, we are interested in the gray processing block
in Fig. 2. This block is typically realized on a FPGA be-
cause real-time image processing is involved. A FPGA offers
enough parallelism to handle the real-time requirements [1].
In realizing the processing block, a number of problems need
to be solved. For example, unwanted artifacts must be filtered,
system response time must be satisfied, and parameters must
be used to make the system flexible.

There are unwanted artifacts in the output image due to
other equipment present in the X-Ray engine. This equipment
leads to magnetic disturbance that results into unwanted ar-
tifacts that show up as stripes on the image. Therefore, the
image must be processed before it is transmitted further for
post processing and displaying.

The response time of the processing system is very impor-
tant and has to stay below a certain limit given by Mt. In
practice, this limit has to remain below 150 milliseconds. If
a doctor moves a catheter, an update on the display needs to
happen within this limit to make sure the image and the actual
position of the catheter are the same.

The X-Ray machine is operating in different environments.
For example, the contrast of an image of the X-Ray detection
plate is sensitive to temperature. For correct processing, the
medical personnel have to adjust the system to the operating
temperature. Also, they need to be able to observe the image
with or without certain filters applied. These modifications to
the system, require the concept of dynamic parameters.

C. Paper Contributions

The main contributions of the work presented in this paper
are:

• We present an existing technology (the Compaan tech-
nology) that is capable of producing a complete pa-
rameterized system solution on FPGAs from a C-code
specification;

• We validate the solution on a simplified industrial X-Ray
image processing system;

• We quantify that we meet requirements and discuss the
FPGA solution in terms of robustness and consistency.

In the remainder of this paper, we present related work in
Sec. II and background in Sec. III. In Sec. IV, we present
a simplified version of a real industrial X-ray processing
pipeline. We present experiments and analyze the results in
Sec. V and concluded the paper in Sec. VI.

II. RELATED WORK

The field of medical image processing benefits greatly from
hardware acceleration. It allows that complex functions can
be realized and operated in real-time in an embedded context.
This makes new diagnostic machines possible to be used by
a doctor. Besides the medical field, the use of FPGAs for
acceleration is also relevant for the field of astronomy, finance,
and networking. The overall problem is that the development
process to program a FPGA is complex and takes too long.

Also, the offered environment to program a FPGA requires
hardware expertise which further limits the use of FPGAs.

To speed up development time, one can use High-Level
Synthesis (HLS) tools [2]. HLS tools can convert C-code
into efficient IP Cores as shown in [2]–[4]. HLS tools can
implement hardware processing cores but do not provide
full system integration. It is still the task of a designer to
combine the IP cores into a complete system. The SDAccel
tool of Xilinx [5] further automates the combination of IP
cores into a system, but a designer still has to manually
partition his design into a collection of tasks. This means
a designer has to investigate the original sequential C-code
and figure out opportunities for parallelization. HLS systems
based on OpenCL [6] are able to handle in particular data level
parallelism. Having its root in software development for GPUs,
it is natural to generate a complete system. More advanced
forms of task parallelism are still rudimentary in OpenCL let
alone for hardware.

Using dataflow to express stream-based application is al-
ready done by many researchers for many years. Specialized
languages exist to express the dataflow like StreamIt [7] and
CAL [8]. StreamIt focuses on multi-core platforms while CAL
targets FPGAs. In both cases, a designer needs to express
its application directly into a dataflow format. The CASH
tool [9] converts arbitrary C-code into a dataflow model that is
subsequently expressed in hardware. The CASH tool, like the
mentioned HLS tools, uses control dataflow graphs (CFDG)
as the basis as opposed to process networks (PN) used by the
Compaan technology.

In the case study of the medical X-Ray processing system,
we want to use the Compaan technology. This technology
can produce a complete system solution on FPGAs from a
C-code specification. It performs the High Level Synthesis
(HLS) required to realize the processing system on a FPGA.
But, it also takes care of the synchronization between the data
flow and control flow providing system consistency. The use
of the process networks provides a framework to handle the
parameterization of a design in a consistent way as compared
to adhoc or low level solutions offered by other techniques.

III. DESIGN FLOW

The Compaan technology is developed at Leiden University
and has resulted in a complete design flow to program FPGAs
from C-code. The foundation work is presented in [10]–
[13] and the first system concept was presented in [14].
The Compaan design flow is centered around the Compaan
compiler [11] and its backend that is based on the ESPAM
tool [12]. Fig. 3 presents a block diagram of the flow.

The design flow starts with an application written in se-
quential C-code. The application needs to be specified as
a parameterized static affine nested loop program (SANLP).
This is an important subset of the C language that does not
allow for data dependent conditions or pointers. Although this
sounds limited, many relevant applications can be specified by
this subset.

The Compaan compiler automates the conversion of the
input C code specification into a Process Network (PN) model
of computation [15]. This is a parallel execution model in



C Code
Specification

COMPAAN
Compiler

P1

P3
PN

ESPAM

Synthesizable
VHDL

VHDL
Synthesizer

FPGA

Target Platform

P2

Consistency
Check

Links
Optimization

Simulation

Verification

Fig. 3. Compaan Design Flow

which processes are connected by point-to-point communica-
tion links (i.e., FIFOs). A process may be a process on itself, or
contain a hierarchical subnetwork. The communication links
are given a particular buffer size such that the network will
never deadlock. A process network is a data flow parallel
representation of the original sequential C-code.

To obtain the parallel representation, the Compaan compiler
employs polyhedral techniques to do the conversion from se-
quential C-code into the parallel PN representation. Compaan
uses exact dataflow analysis to find all dependencies in the
original C-code. Based on these dependencies, the original C-
code is converted into processes and FIFO channels [11]. In
the obtained PN, each process has its own notion of where
it is located in the global execution. This location is derived
from the for-loops in the original C-code and is exploited to
determine precisely when it is safe to have control flow and
dataflow interact with each other. Because of the localization,
each process knows when a new frame or line starts and thus
when it is safe to update parameter if needed.

The process network is converted into synthesizable VHDL
code using ESPAM [12]. Each process is realized on HW
using the LAURA processor model [13]. A LAURA processor
consists of three separate blocks - read, execute and write. The
read block waits until data tokens are ready to be read. The
execute block processes the data. When tokens are ready to
be sent, the write block writes them into the corresponding
communication link if space is available. The execute block
can integrate deep pipelined IP blocks that are hand designed
or obtained from commercial High-Level Synthesis (HLS)
synthesizes like Vivado-HLS or Catapult-C. Once all the
VHDL is obtained for a process network, commercial tools
realize a bit stream for one or more FPGAs.

The Compaan tool allows for simulation and verification
of the system at each stage of development. Especially in
the development of the tooling, this is a very important
step. It allows us to check if all stages lead to equivalent

input/output behavior. A process network can be simulated as
a multi-threaded program. This way, Compaan validates that
the parallel process network is input/output equivalent to the
original sequential C-code. Furthermore, the obtained VHDL
code can also be simulated to validate that it is again equivalent
to the input/output relation of the original C-code.

IV. CASE STUDY

In the case study, we implement a simplified real-time
medical X-Ray image processing application based on an
industrial design. The simplified processing block structure is
given in Fig. 4, which is an instance of the general processing
system given in Fig. 1. It shows that the incoming raw X-Ray
image is first processed by the Pixel Correction block, the
EP filter block, the Gain block, the Zoom Window block and
finally the Zoom Average block.

Pixel
Correction

Processing

data_in

data_out

switch_pixel

split_x

average

EP
Filter

Gain

switch_ep switch_gain

Zoom
Window

Zoom
Average

contrast

px py

Fig. 4. X-Ray Image Processing Structure

A. System Components

The first block is the Pixel Correction block. The X-Ray
detection plate in Fig. 2 typically has some broken pixels.
This results in missing data in the X-Ray image. The Pixel
Correction block restores the value of the missing pixel by
taking the average value of four neighbor pixels.

The second element of the pipeline is the EP Filter block.
Before X-Rays hit the detection plate, they received magnetic
disturbance that results into stripes on the X-Ray image. The
EP Filter is an application used in industrial X-Ray products
to filter out these image artifacts. This filter is in itself a big
and a complex piece of design.

The next element of the pipeline is the Gain block. The X-
Ray image contrast is dependent on the operation temperature.
Temperature variations are compensated by the Gain block that
applies contrast adjustment to the image.

Doctors sometimes need to observe the image in larger
scales to be able to make better judgment. The Zoom Window
block provides such functionality. The doctor can move a
window over the image with a mouse. The image inside the
window is then enlarged two times.

The Zoom Average block is implemented to calculate the
average value of the pixels inside the zoom window. This block
is realized to show the capability of calculating certain impor-
tant parameters of the image in real time and communicate
this value to the outside world. We can attach for example a
graph to the average parameter to see how the average values
change from frame-to-frame for the X-Ray images.



B. System Parameters

Parameters are making the system flexible and capable of
interaction with its environment. We defined 8 parameters
in our X-Ray processing structure in Fig. 4. The parameters
switch_pixel, switch_ep and switch_gain are used to allow a
doctor to switch blocks on or off at run-time. We provide a
contrast parameter to adjust the gain coefficient. Parameters
px and py are used to move the Zoom Window to the location
where more details must be visible. Parameter split_x is used
to split the display image between the original raw input
image and the processed image. This allows for a comparison
between the two images to quickly assess the improvements
in the output image. Parameter average is used to output the
average value of all pixels in the zoomed window. This value
is calculated for every frame.

C. Design Flow

To develop an actual implementation of the X-Ray process-
ing structure in Fig. 4, we follow the steps of the Compaan
Design Flow shown in Fig. 3.

1) Input Specification: The first step is to create the input
SW specification. A small snippet of the C-code specification
is presented in Listing 1. This snippet shows some concepts
in Compaan like (de)-linearization, hierarchy, and parameter-
ization.

Listing 1. Snippet of X-Ray processing block C-code specification
//Stream in data and initialize output
for (i = 0; i < frames * frame_size; i++) {

img_1D[i] = data_in[i];
}
for (y = 0; y < img_height; y++) {

for (x = 0; x < img_width; x++) {
//Deserialize data 1D -> 2D
img_2D[y][x] = img_1D[(img_width) * y + x];

}
}
//Hierarchical call
if (switch_pixel <= 0) {

img_pixel = ep_filter(img_2D);
} else {

img_pixel = pass_filter(img_2D);
}
// split screen
for (y = 0; y < img_height; y++) {

for (x = 0; x < img_width; x++) {
if (x < split_x) {

img_out[y][x] = img_2D[y][x];
dump(img_pixel[y][x]);

} else {
img_out[y][x] = img_pixel[y][x];

}
}

}

The data comes in via variable data_in as a number of
frames of a particular frame size. This 1-D array is deserialized
into the 2-D array img_2D. Next, the complex ep_filter
or the pass_filter function is applied, depending on the
value of parameter switch_pixel. Then we iterate over
all the pixels of the image. Based on the value of parameter
split_x, we show either the original image (i.e., img_2D)
or the processed data (i.e., img_pixel). If the original image
is used, we need to dump the data of img_pixel to avoid
buffers to fill up and cause deadlock. We use the function
dump for this purpose. In the C-code, the ep_filter

and pass_filter are expressed as hierarchical calls. This
hides complexity and makes reuse of components possible.
Especially ep_filter is a complex filter in itself expressed
in C-code.

Compaan distinguishes between two types of parameter
updates: synchronous and immediate. A synchronous param-
eter value is updated synchronously with, for example, the
start of a new line or new frame. Such a start happens at
different moments for the different nodes in the data flow
graph, but Compaan uses the dataflow to make sure nodes
update parameters at the appropriate moment. The parameters
split_x and switch_pixel are examples of synchronous
parameters. An immediate parameter update happens imme-
diately; it synchronizes with nothing and no guarantee is
given when the change is picked up. Of all parameters, the
contrast parameter in Fig. 4 is an immediate parameter.

2) PN Model of Computation: The second step in the
development of the X-Ray processing structure is to generate
a PN with the Compaan compiler. For the complete sequential
C-code (750 lines of C), the resulting PN is shown in Fig. 5. In
this figure, edges represent communication channels, ellipses
represent processes, and rectangular boxes represent hierar-
chical structures. For example, the rectangular box ND_12 is
represented again by a process network as shown in Fig. 6.

TABLE I
NUMBER OF PROCESSES AND CHANNELS

PN processes channels
System 24 36
EP_Filter 10 118
Pixel_Filter 5 12
Gain_Filter 3 2
Pass_Filter 3 2

The complete hierarchical PN consists of 51 processes and
174 edges. In Table I, the number of processes and channels
are given for the various PNs that make up the complete
system. All edges have a size of 1, except for 8 edges. These
edges have a size between 512 and 8196 pixels.

In a PN, all ellipses represent processes that run au-
tonomously. All flow dependencies present in the original
C-code specification are converted into FIFO communication
links. This means that all memory accesses in the C-code are
partitioned and serialized over 1-D channels. When looking
at the C-code in Listing 1, it seems that the functions in the
hierarchical call to the ep_filter or pass_filter can
only execute when the complete array img_2D is present.
However, since data is partitioned and serialized, the functions
can already start as soon as the first data token appears; the
array img_2D has, thus, become a stream.

3) Implementation: The third step is to select a target
platform for our system and map the processes and channels
onto the target platform resources. We have to select an
interface to stream in and out the data on the platform. We
use PCI Express (PCIe) for this purpose. Once the PN, the
target platform, and the mapping specifications are ready,
synthesizable VHDL code and the register file for the dynamic
parameters is generated by ESPAM (see Fig. 3). To the
synthesizable VHDL code, the PCIe interface is added and
synthesized by any third party tools to a FPGA bit stream for
our target platform.



pixel_correction

Short2Intpasspass

gain
dump

epfilter

average

zero

pass
data_out

data_in

SPLIT_X PY

PXSWITCH_PIXEL SWITCH_GAIN

SWITCH_EP

ND_2 ND_4 ND_5

Int2Short

ND_7

ND_6

ND_10

ND_9

ND_13

ND_12

ND_15

ND_8 ND_11
ND_14

ND_16

ND_17

ND_18 ND_20

ND_19

ND_21

ND_22

ND_23

ND_24

ND_26

ND_25 ND_27

ND_28 ND_29

ND_3

ND_30

Fig. 5. System PN

data_out
data_in

ND_1
ND_2 ND_3

filter_gain
contrast

Fig. 6. ND_12 (Gain) as PN Sub-network

V. EVALUATION

The main objective of our evaluation is to verify that we
can make a parameterized design from C-code that satisfies
the application requirements in an acceptable amount of de-
velopment time. This is discussed in this section. We also
highlight some particular features we found convenient in the
process of developing the application.

A. Environment

The Compaan design flow provides full system integration.
This means that it realizes the complete HW to program the
FPGA and the hooks to integrate with PCIe and SW to set
and read parameter values. To validate if the system works,
we process raw x-ray images of a heart containing the visual
artifacts (stripes). Each image consists of 806x806 samples of
16 bits. We used OpenCV to stream in and out the sequence
of images. To set and read the parameters, we made a simple
Java application. We connected GUI widgets to the parameters
to provide user control. We used a check_box widget for
the switch parameters, a slider for x_split and contrast and
a mouse driver for the px and py parameters. We also added a
Graph widget to show live the average value inside the zoom
window. The resulting system is shown in Fig. 7. It shows
the connections between a computer running the SW and the
FPGA running the HW. The structure of the HW processing
design is as shown in Fig. 4.

Terminal FPGA

Display

X-Ray Image

Configuration

PCIe

input image

output image

parameters

Processing

SW SW HW HW

Registers

Fig. 7. System Environment

We use the Xilinx Virtex-6 FPGA ML605 evaluation board
as our target platform. It is installed on a PCIe slot in a
regular workstation. We use Xilinx ISE Design Suite 14.5
to simulate, synthesize, and program the target device. The
OpenCV application is launched on the workstation to stream
in and out the image data through the PCIe interface. Our
PCIe driver uses DMA to move data to and from the ML605
evaluation board. The PCIe driver also accesses the registers
for parameter values on the FPGA. These registers are set/-
modified by the Java application at execution runtime.

B. Functional Requirements

To test our design as shown in Fig. 4, we use a sequence
of 40 images with a moving phantom object that simulates a
beating heart. It has horizontal stripes and bad pixels so we can
functionality verify if our blocks can remove these artifacts.
By observing the output image we verify that all stages
of the design are working. We set parameters switch_pixel,
switch_ep, and switch_gain to switch on and off the block
Pixel Correction, EP Filter, and Gain respectively and observe
if their impact is present or not in the output image. We also
adjust the contrast parameter and we verify that it has the
required impact on the image contrast. Moving a mouse, we
are moving the position of the zooming window using the
parameters px and py and we see the window moving in the
output image. We set the parameter split_x and we see the
comparison between the raw image and the processed one.
Fig. 8 shows a frame of the output image. The image shows
the difference between the input (left), the output data (right).
It also shows the zoom window. The line in the middle is
determined by the value for the split_x parameter in Listing 1.

Fig. 8. Demo Output Image

C. Performance

The latency of the X-Ray processing structure in Fig. 4
is one of the main performance requirements. The latency
between the input and the output of the processing structure
must be in the range of tens of milliseconds. The complete
system is synthesized at 200MHz and can process a new
pixel every clock cycle. The observed latency of the design is
157.775 cycles, which translates into a Mt of 0.8 miliseconds
which is way below the 150 miliseconds.

The system PN consists of 51 processes and hence 51 IP
hardware blocks. One of these IP blocks has been realized with
Vivado-HLS. This was the calculation of the average value of



the Zoom window. 7 IP blocks have been developed by hand;
they are mainly used in the EP_Filter PN. The remaining 43
processes have an IP block that is so simple that ESPAM
can generate the IP blocks. The final design without PCIe,
takes 12.496 Slice LUT, 10.336 Slice Registers and 100 RAM
components. The design can easily follow the throughput of
the PCIe which is the bottleneck for the streaming speed.

The X-Ray processing structure in Fig. 4 has been devel-
oped in 2.5 man months. This includes the time necessary to
simulate, implement and verify the design. We exclude the
time consumed by modifications necessary to the Compaan
compiler to generate the required design. Two persons have
worked on the design; only one person had hardware skills.
Most of the time is spent on modifying the input C-code.

D. Robustness

The designs made with the Compaan design flow are very
robust. The use of automatic detection of parallelism and
converting it into a VHDL model, leads to very robust designs.
The use of the many parameters can lead to all kinds of
synchronization issues. Nevertheless, they are all dealt with by
the dataflow concepts used. We made a software application
that modifies randomly all available parameters. This means
that functions are switched on and off at random time and in
a random order. Also the position of the mouse is constantly
changed. We have run the design for two whole days and
the system never crashed or deadlocked. Also, observe the
switching of the ep_filter in Listing 1. The ep_filter
has a pipeline latency of at least 806*18 clock cycles whereas
the pass_filter has only 9 cycles. The dataflow handles
switching between these large difference in pipeline depth
without problems.

E. Localy Synchronous, Globally Asynchronous

Designs obtained by the Compaan design flow are always
globally asynchronous and locally synchronous. Each ellipse
in Fig. 5 works independently of others and communicate only
via FIFO channels. The asynchronous behavior allows us to
lock-step through a design and trace how data flows through
the FIFOs. This improves much the observability of a design,
making it easier to track how data moves through a design.

F. IP Integration

ESPAM only generates VHDL code for the processes and
the connections between the processes. The synchronous IP
block running inside a LAURA processor corresponding to
a process has to be developed by hand or using a HLS
synthesizer. Since each process is autonomous, each IP-block
can be developed and verified independently before it is
integrated into its LAURA processor and merged together with
the other processors into the complete system design. This way
it is easier to develop and verify its functionality avoiding any
additional problems caused by the complexity of the whole
design.

G. Memory Controller

In the conversion from sequential C-code into a process
network, the global memory space is distributed over FIFO
buffers (in this example 174). As a result, the implementation

of the X-ray engine does not require a memory controller. All
memory is distributed as FIFOs in the FPGA. If, however,
large FIFOs are needed, they can be efficiently mapped on
external memory as shown in [16].

VI. CONCLUSIONS

In this paper, we evaluated if the Compaan technology can
generate a full system implementation in the medical domain
from C-code. We have shown that we could implement the
design that uses extensively parameterization to interact con-
sistently with its environment. The synchronization between
data flow and control is handled automatically and the final
design is therefore very robust while satisfying the functional
and timing requirements. The presented design automation will
spare a lot of time and efforts, so developers can focus on
developing the application itself in software and less on the
complex hardware description.

REFERENCES

[1] A. P. D. Binotto et al., “A CPU, GPU, FPGA system for X-ray image
processing using high-speed scientific cameras,” in 25th International
Symposium on Computer Architecture and High Performance Comput-
ing, 2013, pp. 113–119.

[2] J. Cong et al., “High-level synthesis for FPGAs: From prototyping to de-
ployment,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems,, 2011.

[3] F. Winterstein, S. Bayliss, and G. Constantinides, “High level synthesis
of dynamic data structures: A case study using vivado HLS,” Interna-
tional Conference on Field-Programmable Technology (FPT), 2013.

[4] Z. Guo, B. Buyukkurt, W. Najjar, and K. Vissers, “Optimized generation
of data-path from c codes for FPGAs,” in Design, Automation and Test
in Europe (DATE), 2005, pp. 112–117.

[5] xilinx. (2014) The xilinx sdaccel development environment.
[Online]. Available: http://www.xilinx.com/publications/prod_mktg/sdx/
sdaccel-backgrounder.pdf

[6] altera. (2013) Implementing FPGA design with the OpenCL standard.
[Online]. Available: https://www.altera.com/content/dam/altera-www/
global/en_US/pdfs/literature/wp/wp-01173-opencl.pdf

[7] W. Thies, M. Karczmarek, and S. Amarasinghe, “Streamit: A language
for streaming applications,” in In International Conference on Compiler
Construction, 2001, pp. 179–196.

[8] J. W. Janneck, I. D. Miller, D. B. Parlour, G. Roquier, M. Wipliez, and
M. Raulet, “Synthesizing hardware from dataflow programs,” Journal of
Signal Processing Systems, vol. 63, no. 2, pp. 241–249, 2009.

[9] G. Venkataramani et al., “C to asynchronous dataflow circuits: An end-
to-end toolflow,” in International Workshop on Logic synthesis (IWLS),
Temecula, CA, June 2004, pp. 501–508.

[10] B. Kienhuis et al., “Compaan: Deriving process networks from matlab
for embedded signal processing architectures.” in 8th International
Workshop on Hardware/Software Codesign (CODES’2000), may 2000.

[11] A. Turjan, B. Kienhuis, and E. Deprettere, “Translating affine nested-
loop programs to process networks,” in international conference on com-
pilers, architecture, and synthesis for Embedded Systems (CASES’04),
Washington D.C., USA, sept 2004.

[12] H. Nikolov, T. Stefanov, and E. Deprettere, “Systematic and automated
multi-processor system design, programming, and implementation,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems (TCAD), vol. 27, no. 3, pp. 542–555, mar 2008.

[13] C. Zissulescu, T. Stefanov, B. Kienhuis, and E. Deprettere, “Laura:
Leiden architecture research and exploration tool,” in International
Conference on Field Programmable Logic and Applications (FPL),
Lisbon, Portugal, sept 2003.

[14] T. Stefanov, C. Zissulescu, A. Turjan, B. Kienhuis, and E. Depret-
tere, “System design using kahn process networks: The compaan/laura
approach,” in Design, Automation and Test in Europe conference
(DATE04), feb 2004.

[15] E. Lee and T. Parks, “Dataflow process networks,” Proceeding of the
IEEE, vol. 83, no. 5, pp. 773–801, may 1995.

[16] H. Nikolov, T. Stefanov, and E. Deprettere, “Efficient external memory
interface for multi-processor platforms realized on FPGA chips,” in
17th Int. Conference on Field Programmable Logic and Applications
(FPL’07), 2007.


