
Todor Stefanov

Leiden Embedded Research Center,

Leiden Institute of Advanced Computer Science

Leiden University, The Netherlands

Extensions of Daedalus

Embedded Systems and Software by Todor Stefanov 2024 22

Overview of Extensions in Daedalus

System-level synthesis

Sequential

application

Parallel application

specification

Automatic

Parallelization

Mapping

specification

System-level design space exploration

Explore, modify, select instances

Library of

IP cores

Synthesizable

VHDL
C/C++ code for

processors
MP-SoC

Sequential

application

Platform

specification

◼ Parallelization limited to static programs

◼ Program behavior known at compile time

◼ Research Challenge

◼ Parallelize dynamic programs

◼ Exact behavior unknown at compile time

◼ DSE limited to best-effort systems

◼ Real-time behavior not guaranteed

◼ Research Challenge

◼ Support for (Hard/Soft) Real-time

◼ Support for Mixed-Criticality

◼ Synthesis limited to static mapping

◼ Task mapping fixed at design time

◼ Cannot be changed at run-time

◼ Research Challenge

◼ Run-time Adaptability support

◼ SW/HW facilitating task migration

◼ Benefits:

◼ Improved reliability/availability

◼ Fault tolerance support

◼ Efficient dynamic workload balance

Embedded Systems and Software by Todor Stefanov 2024 3

DaedalusRT:

Automated Design of
Hard-Real-Time Embedded

Streaming MPSoCs

Embedded Systems and Software by Todor Stefanov 2024 4

Introduction

◼ Complexity of modern applications is increasing

◼ This means that many systems require now:

◼ Hard-real-time execution on MPSoC platforms

◼ Running multiple applications on a single platform

◼ Support for adding/removing applications at run-time

Interventional Radiology image filtering.

Source: Philips Healthcare

Software-Defined Radio Architecture.

Source: Green Hills Software Inc.

Embedded Systems and Software by Todor Stefanov 2024 5

◼ How to design an embedded MPSoC that:

◼ Runs multiple streaming applications

simultaneously

◼ Provides (Hard-) Real-time Quality of Service

◼ Temporal isolation of applications

◼ Strict timing deadline guarantees of tasks

◼ Uses the minimum amount of resources

◼ Processor

◼ Memory

While minimizing the design time and effort?
5

What is the Problem?

Embedded Systems and Software by Todor Stefanov 2024 6

Existing Solutions

◼ Existing design flows can be classified based on

QoS and multiple applications support into:

◼ Soft-real-time/Best-effort, single app/multiple apps

◼ Hard-real-time, multiple apps

6

Use DSE to determine:

• min # of processors needed to schedule apps

• efficient mapping of tasks to processors

Very Complex and Time Consuming Approach!

Embedded Systems and Software by Todor Stefanov 2024 7

Our Novel Answer to the Problem

◼ Utilize 40+ years of hard-real-time scheduling

theory!

◼ Bridge real-time scheduling and embedded MPSoC

design

◼ Using hard-real-time scheduling theory and

algorithms, we can:

◼ Schedule apps while providing temporal isolation and

hard-real-time QoS

◼ Analytically determine min # of processors needed to

schedule apps

◼ Determine efficient mapping of tasks to processors

All of the above is achieved without performing DSE!

Embedded Systems and Software by Todor Stefanov 2024 8

The DaedalusRT Design Flow

◼ New features compared to the initial Daedalus
◼ Multi-Application Support

◼ DSE replaced by
◼ Analysis Model Derivation

◼ Hard-Real-Time Analysis

◼ Two MoCs used – PPN and CSDF! Why?

Embedded Systems and Software by Todor Stefanov 2024 9

Key Ingredients – the MoCs

◼ Polyhedral Process Networks (PPN)

◼ Used for code generation and optimization

◼ Optimizations based on solving Integer Linear Programing Problems

◼ Cyclo-Static Dataflow (CSDF)

◼ Used for temporal analysis / performance-constrained

scheduling

F2

F3F1

[1,1,1,0,0]

[0,0,0,1,1] [0,0,0,1,1]

[1,1,1,0,0]1 1

F3F1

F2

FIFO
p1 p5

p6

p4

p2

p3

int M = 5, P = 3;

for(j=1; j <= M; j++)

 for(i=1; i <= M; i++) {

 out = F1(j, i);
 if(i < = P)

 write(p2, out);

 else

 write(p1, out);

 }

Embedded Systems and Software by Todor Stefanov 2024 10

CSDF Model Derivation

◼ Input:

◼ A set of PPNs

◼ Worst-case execution time (WCET) information

◼ Output:

◼ A set of CSDFs annotated with WCET for each task

Embedded Systems and Software by Todor Stefanov 2024 11

CSDF Model Derivation
◼ Any PPN has an equivalent CSDF graph

◼ How to derive production/consumption patterns?

F3F1

F2

FIFO
p1 p5

p6

p4

p2

p3

PPN CSDF F2

F3F1

[1,1,1,0,0]

[0,0,0,1,1] [0,0,0,1,1]

[1,1,1,0,0]1 1

CSDF Actor

[1, 1, 1][0, 0, 1]

while(1){

 for(i=0;i<=9;i++){

 for(j=0;j<=2;j++){

 if(j<=1)

 READ(IP1,&in1);

 if(j==2)

 READ(IP2,&in1);

 READ(IP3,&in2);

 F(in1,in2,out);

 WRITE(OP3,out);

}}}

PPN Process

?

Embedded Systems and Software by Todor Stefanov 2024 12

Step1: Variant Domain Extraction
◼ Variant domain is a set of process iterations where:

◼ Process accesses the same set of input/output ports

while(1){

 for(i=0;i<=9;i++){

 for(j=0;j<=2;j++){

 if(j<=1)

 READ(IP1,&in1);

 if(j==2)

 READ(IP2,&in1);

 READ(IP3,&in2);

 F(in1,in2,out);

 WRITE(OP3,out);

}}}

PPN Process

V2 = { IP2, IP3, OP3}

V1 = { IP1, IP3, OP3}

Variant Domains:

1 2 3 4 5

2

1

0

0 6 7 8 9

1 2 3 4 5

2

1

0

0 6 7 8 9

1 2 3 4 5

2

1

0

0 i6 7 8 9

DIP2

DIP1

DIP3
j

1 2 3 4 5

2

1

0

0 i6 7 8 9

DV1

DV2

Intersection of Polyhedrons

j

Embedded Systems and Software by Todor Stefanov 2024 13

Step2: Variant Domain Traversal
◼ Traverse variant domains according to loops order to

◼ Express behavior of a process as sequence of variants

◼ The traversal results in a sequence (string) S

◼ S can be very long!

◼ At the same time, it might consist of a repeating sub-string

S = V1V1V2V1V1V2V1V1V2V1V1V2V1V1V2V1V1V2V1V1V2V1V1V2V1V1V2V1V1V2

1 2 3 4 5

2

1

0

0 i6 7 8 9

DV1

DV2

while(1){

 for(i=0;i<=9;i++){

 for(j=0;j<=2;j++){

 if(j<=1)

 READ(IP1,&in1);

 if(j==2)

 READ(IP2,&in1);

 READ(IP3,&in2);

 F(in1,in2,out);

 WRITE(OP3,out);

}}}

j

Variant Domains Traversal:

V2 = { IP2, IP3, OP3}
V1 = { IP1, IP3, OP3}

Variant Domains:

Embedded Systems and Software by Todor Stefanov 2024 14

Step3: Find Repeating Sub-string

◼ Use Suffix Tree representing string S

◼ Path from root to any internal node represents

repetitive sub-string

◼ For any internal node:

#occurrence of sub-string = #child nodes

◼ Example: S = V1V2V1V2V1V2$
◼ ROOT-to-RED node represents V1V2

◼ # Children of RED node = 3

◼ V1V2 occurs 3 times in S

◼ Search Suffix Tree

◼ For shortest repeating sub-string

◼ Covering entire string S

$

V2

$

Embedded Systems and Software by Todor Stefanov 2024 15

Step4: Production/Consumption
Rates Generation

IP1 IP2 IP3 OP3

V1 1 0 1 1

V1 1 0 1 1

V2 0 1 1 1

CSDF Actor

PPN Process

Repeating Pattern in S is: V1V1V2

Variant Domains are:
 V1 = { IP1, IP3, OP3}
 V2 = { IP2, IP3, OP3}

while(1){

 for(i=0;i<=9;i++){

 for(j=0;j<=2;j++){

 if(j<=1)

 READ(IP1,&in1);

 if(j==2)

 READ(IP2,&in1);

 READ(IP3,&in2);

 F(in1,in2,out);

 WRITE(OP3,out);

}}}

S = V1V1V2V1V1V2V1V1V2V1V1V2V1V1V2V1V1V2V1V1V2V1V1V2V1V1V2V1V1V2

[1, 1, 1][0, 0, 1]

Every column is

Rate Pattern!

Build a Table

Embedded Systems and Software by Todor Stefanov 2024 16

Hard-Real-Time Analysis and
Scheduling

◼ Input:

◼ A set of CSDFs annotated with WCET for each task

◼ User may specify the Hard-Real-Time schedule type to be used

◼ Output:

◼ Platform Specifications

◼ Mapping Specifications

Embedded Systems and Software by Todor Stefanov 2024 17

Exisitng Analysis and Scheduling
Approaches

◼ Self-timed scheduling (STS)

◼ Proven to achieve the maximum throughput and

minimum latency

◼ BUT no temporal isolation! 

◼ Complex and time consuming DSE needed to find the

minimum number of processors! 

◼ Time Division Multiplexing (TDM)

◼ Provides temporal isolation ☺

◼ BUT complex and time consuming DSE needed to

find the minimum number of processors! 

Embedded Systems and Software by Todor Stefanov 2024 18

Our Analysis and Scheduling
Approaches

◼ Use hard-real-time multiprocessor scheduling
theory
◼ Proven timing guarantees

◼ enables Hard-Real-Time execution

◼ Temporal isolation
◼ enables multiple apps + add/remove of apps @ runtime

◼ Fast schedulability analysis
◼ enables fast admission control + platform sizing

◼ This theory received little attention in the
MPSoC design community!  Why?

Embedded Systems and Software by Todor Stefanov 2024 19

The Problem is …

◼ In contrast, MPSoC methodologies assume:

◼ Applications are represented as tasks/actors with

Data dependencies (in our case CSDF model is used)

A

C

B

D

◼ Most hard-real-time scheduling algorithms

assume that:

◼ Applications are represented as

Independent periodic or sporadic tasks

◼ Each task is characterized by:

◼ Start time s

◼ Worst-Case Execution Time µ

◼ Period λ (assumed as an implicit deadline)

WCET

Period

Time

Tasks

Start time
B

A

C

D

◼ Problem Statement

◼ Can we represent CSDF actors as strictly periodic tasks?

◼ Find a minimum period λ for each actor

◼ Find a start time s for each actor

◼ s and λ must satisfy the data dependencies

?

Embedded Systems and Software by Todor Stefanov 2024 20

Our Answer to the Problem is

Formally we have proven the following:

◼ Actors in any acyclic CSDF graph

can be scheduled as a set of

strictly periodic tasks with

◼ Periods λ given by the solution to

 q1* λ1 = q2* λ2 = … = qN* λN

◼ Starting times s proportional to

 α = qi* λi

Our Proof enables applying classical

Hard-Real-Time scheduling theory to

embedded streaming applications

modeled as acyclic CSDF graphs! ☺

A

C

B

D

WCET

Period

Time

Tasks

B

A

C

D

YES

Embedded Systems and Software by Todor Stefanov 2024 21

Finding Task Periods
◼ Example of acyclic CSDF graph with

◼ Four actors { A, B, C, D }

◼ Repetition vector q = [qA, qB, qC, qD] = [2, 2, 4, 2]

◼ WCET vector µ = [µA, µB, µC, µD] = [2, 4, 1, 3]

◼ Equalize time needed to complete actor iteration

for all actors in order to find the minimum periods of actors:

 2* λA = 2* λB = 4* λC = 2* λD

 and λ = [λA, λB, λC, λD] = [4, 4, 2, 4]

λA ≥ 2, λB ≥ 4, λC ≥ 1, λD ≥ 3,

A

C

B

D

2

time

actors

WCET

Period = 4

Actors Iteration = α = 8

4

1

3

B

A

C

D

Next Actors Iteration = 8

Embedded Systems and Software by Todor Stefanov 2024 22

Finding Start Times

2

time

actors

WCET

Period = 4

Actors Iteration = α = 8

4

1

3

B

A

C

D

Next Actors Iteration = 8

◼ To ensure correct strictly periodic execution:

◼ Shift stepwise the Start Time of each actor by α = qi* λi = 8 time-units

◼ Such that the data dependencies are satisfied

2

time

actors

WCET

Period = 4

α = 8

1

3

B

A

C

D

4

α = 8

Equalize

A

C

B

D

Embedded Systems and Software by Todor Stefanov 2024 23

Optimizations

◼ However, do we have to shift the Start Times by α?

◼ Starting the actors earlier reduces latency and buffer sizes

◼ Earliest start times and minimum buffer sizes can be found

A strictly periodic schedule exists! ☺

2

time

actors

WCET

Period = 4

α = 8

1

3

B

A

C

D

4

α = 8

We have devised proven approaches to determine the

minimum values for start times and buffer sizes ☺

A

C

B

D

Embedded Systems and Software by Todor Stefanov 2024 24

Platform Sizing Problem

◼ How many processors M needed to schedule the actors?

◼ Computing M depends on the used HRT schedule

◼ Example: CSDF application with 4 actors {A, B, C, D}

A B C D

5 2 3 2

8 8 4 6

5/8 2/8 3/4 2/6

47/24 = 1.9583

M(Optimal)

M(P-EDF+FF)

Complex DSE is NOT needed to find M! ☺

Embedded Systems and Software by Todor Stefanov 2024 25

Results: Flow Execution Times

◼ Multiple Applications:

◼ Edge-detection filter (Sobel)

◼ Motion JPEG decoder

◼ Motion JPEG encoder

◼ Run simultaneously

DaedalusRT

Number of applications 3

Phase Time Automation

Parallelization 0.48 sec. Yes

WCET Analysis 1 day No

Deriving the CSDFs 5 sec. Yes

Deriving the Platform/Mapping 0.03 sec. Yes

System Synthesis 2.16 sec. Yes

Total ~1 day -

Total excluding WCET ~8 sec. -

DaedalusRT :

significantly reduces

design time & effort! ☺

Embedded Systems and Software by Todor Stefanov 2024 26

Results: Quality of Schedule

◼ How Good is our Strictly Periodic Scheduling (SPS)?

◼ Use 19 real-life applications

◼ Compute throughput using our SPS

◼ Compare with maximum achievable throughput using STS

Our SPS achieves

maximum throughput

for 17 out of 19 apps! ☺

	Slide 1: Extensions of Daedalus
	Slide 2: Overview of Extensions in Daedalus
	Slide 3: DaedalusRT: Automated Design of Hard-Real-Time Embedded Streaming MPSoCs
	Slide 4: Introduction
	Slide 5
	Slide 6
	Slide 7: Our Novel Answer to the Problem
	Slide 8: The DaedalusRT Design Flow
	Slide 9: Key Ingredients – the MoCs
	Slide 10: CSDF Model Derivation
	Slide 11: CSDF Model Derivation
	Slide 12: Step1: Variant Domain Extraction
	Slide 13
	Slide 14: Step3: Find Repeating Sub-string
	Slide 15: Step4: Production/Consumption Rates Generation
	Slide 16: Hard-Real-Time Analysis and Scheduling
	Slide 17: Exisitng Analysis and Scheduling Approaches
	Slide 18: Our Analysis and Scheduling Approaches
	Slide 19: The Problem is …
	Slide 20: Our Answer to the Problem is
	Slide 21: Finding Task Periods
	Slide 22: Finding Start Times
	Slide 23: Optimizations
	Slide 24: Platform Sizing Problem
	Slide 25: Results: Flow Execution Times
	Slide 26: Results: Quality of Schedule

