Extensions of Daedalus

Todor Stefanov

Leiden Embedded Research Center,
Leiden Institute of Advanced Computer Science
Leiden University, The Netherlands

"7 Universiteit Leide

Overview of Extensions in Daedalus

m Parallelization limited to static programs
Program behavior known at compile time

DSE limited to best-effort systems
|
Research Challenge

|
= Real-time behavior not guaranteed
m Research Challenge M
= Support for (Hard/Soft) Real-time = Parallelize dynamic programs
= Support for Mixed-Criticality = Exact behavior unknown at compile time
m Synthesis limited to static mapping
' m Task mapping fixed at design time

)
1
I .
! Sequential
application

' T .
' = Cannot be changed at run-time

Explore, modify, select instances ,
= | 1
Ao
l l T m Research Challenge
f Parall spplcation__| = Run-time Adaptability support
= SW/HW facilitating task migration

Mapping
specification specification

! v Il
System-level synthesis BenefitS:
= Improved reliability/availability

Synthesizable | | C/C++ code for
VHDL processors \
= Fault tolerance support
Efficient dynamic workload balance

Platform
specification

-
-
-
-
-
-

Embedded Systems and Software by Todor Stefanov 2024

DaedalusRT:
Automated Design of

Hard-Real-Time Embedded
Streaming MPSoCs

Embedded Systems and Software by Todor Stefanov 2024

Introduction

s Complexity of modern applications is increasing

= This means that many systems require now:
= Hard-real-time execution on MPSoC platforms
= Running multiple applications on a single platform
= Support for adding/removing applications at run-time

Radio application | Radio application | Radio application SETIS () l=]3
LCE LU Developed

SCA core framework

H
b
CORBA bl Software
=l Defined
POSIX.1 conformance (SCA v2.2) o Radio
Operating
INTEGRITY RTOS Environment

BSP

I E=8==7 11
ES8E L
! e v
| | A‘
N 34
A

Interventional Radiology image filtering. Software-Defined Radio Architecture.
Source: Philips Healthcare Source: Green Hills Software Inc.

Hardware Reference Platform

Embedded Systems and Software by Todor Stefanov 2024

What is the Problem?

m How to design an embedded MPSoC that:

= Runs multiple streaming applications
simultaneously

= Provides (Hard-) Real-time Quality of Service
m Temporal isolation of applications
m Strict timing deadline guarantees of tasks

m Uses the minimum amount of resources
m Processor
= Memory

While minimizing the design time and effort?

Embedded Systems and Software by Todor Stefanov 2024

Existing Solutions

m EXxisting design flows can be classified based on
QoS and multiple applications support into:
= Soft-real-time/Best-effort, single app/multiple apps
= Hard-real-time, multiple apps

Use DSE to determine:
* min # of processors needed to schedule apps
« efficient mapping of tasks to processors
Very Complex and Time Consuming Approach!

Embedded Systems and Software by Todor Stefanov 2024

Our Novel Answer to the Problem

m Utilize 40+ years of hard-real-time scheduling
theory!
= Bridge real-time scheduling and embedded MPSoC
design
= Using hard-real-time scheduling theory and
algorithms, we can:

= Schedule apps while providing temporal isolation and
hard-real-time QoS

= Analytically determine min # of processors needed to
schedule apps

= Determine efficient mapping of tasks to processors

All of the above is achieved without performing DSE!

Embedded Systems and Software by Todor Stefanov 2024 7

The DaedalusR' Design Flow

User Input : —
(e.g., scheduler type) WCET Analysis Application

Analysis Model: Analysis Model

Analysis Derivation

Parallelization: pn

Platform Spec. Mapping Spec. Application Spec.: PPN

System Synthesis: ESPAM

= New features compared to the initial Daedalus
= Multi-Application Support

= DSE replaced by
m Analysis Model Derivation
m Hard-Real-Time Analysis

= Two MoCs used — PPN and CSDF! Why?

Embedded Systems and Software by Todor Stefanov 2024

Key Ingredients — the MoCs

m Polyhedral Process Networks (PPN)

= Used for code generation and optimization
= Optimizations based on solving Integer Linear Programing Problems

intM=5,P =3; T pl p5
for(j=1;) <= M; j++)
for(i=1;i<=M; i++) { >,
out =F1(j,i); -7 p2 p6

if(i < = P) %
write(p2, out); i V.
else o p3 p4
write(p1, out); i
} gl

s Cyclo-Static Dataflow (CSDF)
= Used for temporal analysis / performance-constrained

scheduling [0,0,0,1,1] [0,0,0,1,1] ‘

1,1,1,0,0 1 1,1,1,0,0
[11,1,00] : L 11100

Embedded Systems and Software by Todor Stefanov 2024

CSDF Model Derivation

m [nput:
= Aset of PPNs
m Worst-case execution time (WCET) information

= Output:
m A set of CSDFs annotated with WCET for each task

User Input : o
(e.g., scheduler type) WCET Analysis Application

Analysis Analycs;s.nl‘ugodel: A"ggrsifam%dm Parallelization: pn

Platform Spec. Mapping Spec. Application Spec.: PPN

System Synthesis: ESPAM

Embedded Systems and Software by Todor Stefanov 2024

10

p1

CSDF Model Derivation

= Any PPN has an equivalent CSDF graph

" P\

3o

[0,0,0,1,1]

[0,0,0,1,1]

[1,1,1,0,0] 1 1 [1,1,1,0,0]1

CSDF

J

= How to derive production/consumption patterns?

PPN Process

while (1) {

for (i=0;1<=9;i++) {

for (j=0;3j<=2;j++) {
if (j<=1)
READ (IP1, &inl) ;
if (J==2)
READ (IP2, &inl) ;
READ (IP3, &in2) ;
F(inl,in2,out);

WRITE (OP3, out) ;

o Y

(1,

\’i]

mmp 01 S
-—"——1;\
>
CSDF Actor

Embedded Systems and Software by Todor Stefanov 2024 11

Stepl: Variant Domain Extraction

m Variant domain is a set of process iterations where:
m Process accesses the same set of input/output ports

PPN Process

while (1) {
for (1i=0;1<=9;1i++) {
for (j=0;3j<=2;j++) {
if (§<=1)

READ (IP1, &inl) ;
if (3==2)

READ (IP2, &inl) ;
READ (IP3, &in2) ;
F(inl,in2,out);
WRITE (OP3, out) ;

o Y

Variant Domains:

V2 = {IP2, IP3, OP3}

V1 = {IP1, IP3, OP3}

12

Embedded Systems and Software by Todor Stefanov 2024

Step2: Variant Domain Traversal

m Traverse variant domains according to loops order to
m EXxpress behavior of a process as sequence of variants

w1f111<? (12){ : | {\ Variant Domains: V2 = {1P2,1P3, OP3}

or (i=0;i<=9;i++ —

o[s e P) | V1 ={IP1,IP3, OP3}
i1f (j<=1) Variant Domains Traversal:

READ (IP1, &inl) ;

if (3==2)]

READ (IP2, &inl) ; 2

READ (IP3, &in2) ; 1

F(inl,in2,out);

WRITE (OP3, out) ; 0
e /

m The traversal results in a sequence (string) S

S=V1ViIV2ViVIV2VIV1IV2ViViV2VIVIV2VIVIV2ViViV2ViVIV2VIVIV2ViViV2

= S can be very long!
= At the same time, it might consist of a repeating sub-string

Embedded Systems and Software by Todor Stefanov 2024 13

Step3: Find Repeating Sub-string

m Use Suffix Tree representing string S

= Path from root to any internal node represents
repetitive sub-string

= For any internal node:
#occurrence of sub-string = #child nodes

s Example: S = V1V2V1V2V1V2$ e

= ROOT-to-RED node represents V1V2
= # Children of RED node = 3
= V1V2 occurs 3timesin S O

m Search Suffix Tree

= For shortest repeating sub-string [=]
= Covering entire string S ‘

Embedded Systems and Software by Todor Stefanov 2024

V2

A

14

Step4: Production/Consumption
Rates Generation

S=VIVIV2ViViV2ViViIV2VIVIV2VIVIV2VIVIV2ViVIV2VIVIV2VIVIV2ViV1V2

IP1 [P2 IP3 OP3

Repeating Patternin Sis: VIiViV2

Variant Domains are: ‘

V1= {IP1,1P3, OP3} Build a Table
V2 = {1P2, IP3, OP3}

Every column is
Rate Pattern!

PPN Process

while (1) {
for (i=0;1i<=9;1i++) {
for (7=0; j<=2; j++) {
if (j<=1)
READ (IP1, &inl) ;
if (J==2)
READ (IP2, &inl) ;
READ (IP3, &in2) ;

F(inl,in2,out); ——_——J"
\

WRITE (OP3, out) ;

NG % *'X’&

Embedded Systems and Software by Todor Stefanov 2024

CSDF Actor

15

Hard-Real-Time Analysis and
Scheduling

= [nput:
= Aset of CSDFs annotated with WCET for each task
= User may specify the Hard-Real-Time schedule type to be used

= Output:
= Platform Specifications
= Mapping Specifications

User Input : o
(e.g., scheduler type) WCET Analysis Application

Analysis Model
Derivation

Parallelization: pn

Platform Spec. Mapping Spec. Application Spec.: PPN

System Synthesis: ESPAM

Embedded Systems and Software by Todor Stefanov 2024

16

Exisitng Analysis and Scheduling
Approaches

m Self-timed scheduling (STS)

= Proven to achieve the maximum throughput and
minimum latency

= BUT no temporal isolation! ®
= Complex and time consuming DSE needed to find the
minimum number of processors! ®
= Time Division Multiplexing (TDM)
= Provides temporal isolation ©

= BUT complex and time consuming DSE needed to
find the minimum number of processors! ®

Embedded Systems and Software by Todor Stefanov 2024 17

Our Analysis and Scheduling
Approaches

m Use hard-real-time multiprocessor scheduling
theory

= Proven timing guarantees
m enables Hard-Real-Time execution

= Temporal isolation
m enables multiple apps + add/remove of apps @ runtime

= Fast schedulability analysis
m enables fast admission control + platform sizing

m This theory received little attention in the
MPSoC design community! ® Why?

Embedded Systems and Software by Todor Stefanov 2024

18

The Problem is ...

= Most hard-real-time scheduling algorithms TRy
assume that: AN BN
. Start time —
m Applications are represented as 3 B N B B
Independent periodic or sporadic tasks
penaent p orsp qd § B
m Each task is characterized by: b
m Starttime s ﬁ
. . WCET Time
m Worst-Case Execution Time Soriod
m Period A (assumed as an implicit deadline) t
= In contrast, MPSoC methodologies assume:

= Applications are represented as tasks/actors with e
Data dependencies (in our case CSDF model is used) /

m Problem Statement ° e

m Can we represent CSDF actors as strictly periodic tasks? \e/
m Find a minimum period A for each actor

m Find a start time s for each actor

m S and A must satisfy the data dependencies

Embedded Systems and Software by Todor Stefanov 2024 19

Our Answer to the Problem is

Formally we have proven the following:

m Actors in any acyclic CSDF graph
can be scheduled as a set of resks

| N _ A DN BN
strictly periodic tasks with e

CHIN BN

0, AL =0," A = ... =A™ Ay Dm
= Starting times S proportional to @
a =g A YES T
Our Proof enables applying classical
Hard-Real-Time scheduling theory to

embedded streaming applications
modeled as acyclic CSDF graphs! ©

= Periods A given by the solution to

Embedded Systems and Software by Todor Stefanov 2024

20

Finding Task Periods

m Example of acyclic CSDF graph with

A

N

= Four actors {A,B,C,D}
= Repetition vector q = [da, 9s: A Ap] = [2, 2, 4, 2] G\ /Q
= WCET vector L =1[Ha U, M Up] = [2, 4, 1, 3] e

m Equalize time needed to complete actor iteration
for all actors in order to find the minimum periods of actors:

and - A=A A Ac, Ap] = [4, 4, 2, 4]

M 22 A 24, .21, Ay 23,

actors T ; ;
D _--_— _____

CHE BN BN BN SN BN BN BN BN BN BN BN

0 500 7 s | S [|

A Il
WCET tlme
Period = 4

<

I‘Actors Iteration=a =8 Next Actors Iteration = 8
Embedded Systems and Software by Todor Stefanov 2024 21

\ A 4

Finding Start Times

actors T :
D NN N S .

Q =) CHE HE FW NN N NN NN N N AN RN
e Equalize B 4 ———

A

time

<Period =4

vV VY

<

P
<«

[. .
Actors lteration=a =8 Next Actors Iteration = 8

m To ensure correct strictly periodic execution:
m Shift stepwise the Start Time of each actor by a=qg;* A = 8time-units
= Such that the data dependencies are satisfied

actors P a=8
() D I— B 3 .
Cloo B BN KN BN BN BN BN
Bl _-——
A -_g_-_-_-_L :
WCET time
“Period =4
a=8

Embedded Systems and Software by Todor Stefanov 2024 22

Optimizations

A strictly periodic schedule exists! ©

actors < a=8 >
/e\ S
° e ‘ Cloo N moN B N N B B
\e/ Bl _-——
A-—g—-—-—-—L :
WCET tlme
Period=4
< — >

s However, do we have to shift the Start Times by a?
m Starting the actors earlier reduces latency and buffer sizes

m Earliest start times and minimum buffer sizes can be found

We have devised proven approaches to determine the
minimum values for start times and buffer sizes ©

Embedded Systems and Software by Todor Stefanov 2024 23

Platform Sizing Problem

= How many processors M needed to schedule the actors?
= Computing M depends on the used HRT schedule

Complex DSE is NOT needed to find M! ©

m Example: CSDF application with 4 actors {A, B, C, D}

WCET;

Period;
_ WCET;
~ Period;

- Yy, 47/24 = 1.9583

L]SHTH

TiET
M(Optimal) [Usyum | = [47/24] = 2
M(P-EDF+FF) min{x € N:B is x-partitionof tand Ug,,,, < 1Vy € B} =3

Embedded Systems and Software by Todor Stefanov 2024

24

Results: Flow Execution Times

User | : .. _
. siﬁ;d'ﬂﬁ’gﬁ type) WCET Analysis Application E MUltlple Appllcatlons.

: , m Edge-detection filter (Sobel)
: Analysis Model: Analysis Model e
Analysis CSDF e, Parallelization: pn - MOtiOI’] JPEG decoder
= Motion JPEG encoder

® Run simultaneously

Platform Spec. Mapping Spec. Application Spec.: PPN

System Synthesis: ESPAM

DaedalusRT

Parallelization Yes

Daedalus®
3 | significantly reduces
P | design time & effort! ©

System Synthesis Yes
o | dey | -
Total excluding WCET | ~8sec. | - |

Embedded Systems and Software by Todor Stefanov 2024 25

Results: Quality of Schedule

s How Good is our Strictly Periodic Scheduling (SPS)?
= Use 19 real-life applications

= Compute throughput using our SPS
= Compare with maximum achievable throughput using STS

Our SPS achieves
maximum throughput
for 17 out of 19 apps! ©

e
-
Q
£
(=]
>
(o]
s
-
'_

Embedded Systems and Software by Todor Stefanov 2024 26

	Slide 1: Extensions of Daedalus
	Slide 2: Overview of Extensions in Daedalus
	Slide 3: DaedalusRT: Automated Design of Hard-Real-Time Embedded Streaming MPSoCs
	Slide 4: Introduction
	Slide 5
	Slide 6
	Slide 7: Our Novel Answer to the Problem
	Slide 8: The DaedalusRT Design Flow
	Slide 9: Key Ingredients – the MoCs
	Slide 10: CSDF Model Derivation
	Slide 11: CSDF Model Derivation
	Slide 12: Step1: Variant Domain Extraction
	Slide 13
	Slide 14: Step3: Find Repeating Sub-string
	Slide 15: Step4: Production/Consumption Rates Generation
	Slide 16: Hard-Real-Time Analysis and Scheduling
	Slide 17: Exisitng Analysis and Scheduling Approaches
	Slide 18: Our Analysis and Scheduling Approaches
	Slide 19: The Problem is …
	Slide 20: Our Answer to the Problem is
	Slide 21: Finding Task Periods
	Slide 22: Finding Start Times
	Slide 23: Optimizations
	Slide 24: Platform Sizing Problem
	Slide 25: Results: Flow Execution Times
	Slide 26: Results: Quality of Schedule

