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Overview of Extensions in Daedalus 
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◼ Parallelization limited to static programs

◼ Program behavior known at compile time

◼ Research Challenge

◼ Parallelize dynamic programs

◼ Exact behavior unknown at compile time 

◼  DSE limited to best-effort systems

◼ Real-time behavior not guaranteed

◼ Research Challenge

◼ Support for (Hard/Soft) Real-time

◼ Support for Mixed-Criticality

◼ Synthesis limited to static mapping

◼ Task mapping fixed at design time

◼ Cannot be changed at run-time

◼ Research Challenge

◼ Run-time Adaptability support 

◼ SW/HW facilitating task migration

◼ Benefits:  

◼ Improved reliability/availability

◼ Fault tolerance support

◼ Efficient dynamic workload balance
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DaedalusRT: 

Automated Design of 
Hard-Real-Time Embedded 

Streaming MPSoCs
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Introduction

◼ Complexity of modern applications is increasing 

◼ This means that many systems require now:

◼ Hard-real-time execution on MPSoC platforms

◼ Running multiple applications on a single platform

◼ Support for adding/removing applications at run-time

Interventional Radiology image filtering. 

Source: Philips Healthcare

Software-Defined Radio Architecture. 

Source: Green Hills Software Inc.
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◼ How to design an embedded MPSoC that:

◼ Runs multiple streaming applications 

simultaneously

◼ Provides (Hard-) Real-time Quality of Service 

◼ Temporal isolation of applications

◼ Strict timing deadline guarantees of tasks

◼ Uses the minimum amount of resources

◼ Processor

◼ Memory

While minimizing the design time and effort?
5

What is the Problem?
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Existing Solutions

◼ Existing design flows can be classified based on 

QoS and multiple applications support into:

◼ Soft-real-time/Best-effort, single app/multiple apps

◼ Hard-real-time, multiple apps

6

Use DSE to determine:

• min # of processors needed to schedule apps

• efficient mapping of tasks to processors 

Very Complex and Time Consuming Approach!
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Our Novel Answer to the Problem

◼ Utilize 40+ years of hard-real-time scheduling 

theory!

◼ Bridge real-time scheduling and embedded MPSoC 

design

◼ Using hard-real-time scheduling theory and 

algorithms, we can:

◼ Schedule apps while providing temporal isolation and 

hard-real-time QoS

◼ Analytically determine min # of processors needed to 

schedule apps

◼ Determine efficient mapping of tasks to processors

All of the above is achieved without performing DSE!
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The DaedalusRT Design Flow

◼ New features compared to the initial Daedalus 
◼ Multi-Application Support

◼ DSE replaced by 
◼ Analysis Model Derivation

◼ Hard-Real-Time Analysis

◼ Two MoCs used – PPN and CSDF! Why?
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Key Ingredients – the MoCs

◼ Polyhedral Process Networks (PPN) 

◼ Used for code generation and optimization

◼ Optimizations based on solving Integer Linear Programing Problems

◼ Cyclo-Static Dataflow (CSDF)

◼ Used for temporal analysis / performance-constrained 

scheduling

F2

F3F1

[1,1,1,0,0]

[0,0,0,1,1] [0,0,0,1,1]

[1,1,1,0,0]1 1

F3F1

F2

FIFO
p1 p5

p6

p4

p2

p3

int M = 5, P = 3;

for( j=1; j <= M; j++)

   for( i=1; i <= M; i++) {

      out = F1( j, i );
      if( i < = P)

         write( p2, out );

      else 

         write( p1, out );

   }
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CSDF Model Derivation

◼ Input:

◼ A set of PPNs 

◼ Worst-case execution time (WCET) information 

◼ Output:

◼ A set of CSDFs annotated with WCET for each task
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CSDF Model Derivation
◼ Any PPN has an equivalent CSDF graph

◼ How to derive production/consumption patterns?

F3F1

F2

FIFO
p1 p5

p6

p4

p2

p3

PPN       CSDF F2

F3F1

[1,1,1,0,0]

[0,0,0,1,1] [0,0,0,1,1]

[1,1,1,0,0]1 1

CSDF Actor

[ 1, 1, 1 ][ 0, 0, 1 ]

while(1){

 for(i=0;i<=9;i++){

  for(j=0;j<=2;j++){

   if(j<=1) 

    READ(IP1,&in1);

   if(j==2)

    READ(IP2,&in1);

   READ(IP3,&in2);

   F(in1,in2,out);

   WRITE(OP3,out);

}}}

PPN Process

?



Embedded Systems and Software by Todor Stefanov 2024 12

Step1: Variant Domain Extraction 
◼ Variant domain is a set of process iterations where: 

◼ Process accesses the same set of input/output ports

while(1){

 for(i=0;i<=9;i++){

  for(j=0;j<=2;j++){

   if(j<=1) 

    READ(IP1,&in1);

   if(j==2)

    READ(IP2,&in1);

   READ(IP3,&in2);

   F(in1,in2,out);

   WRITE(OP3,out);

}}}

PPN Process

V2 = { IP2, IP3, OP3}

V1 = { IP1, IP3, OP3}

Variant Domains:

1          2          3         4           5

2

1

0

0 6          7          8          9

1          2          3         4           5

2

1

0

0 6          7          8          9

1            2             3            4           5

2

1

0

0 i6             7             8            9

DIP2

DIP1

DIP3
j

1           2             3            4            5

2

1

0

0 i6            7             8           9

DV1

DV2

Intersection of Polyhedrons

j
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Step2: Variant Domain Traversal 
◼ Traverse variant domains according to loops order to 

◼ Express behavior of a process as sequence of variants

◼ The traversal results in a sequence (string) S 

◼ S can be very long!

◼ At the same time, it might consist of a repeating sub-string

S = V1V1V2V1V1V2V1V1V2V1V1V2V1V1V2V1V1V2V1V1V2V1V1V2V1V1V2V1V1V2

1          2               3            4           5

2

1

0

0 i6             7             8           9

DV1

DV2

while(1){

 for(i=0;i<=9;i++){

  for(j=0;j<=2;j++){

   if(j<=1) 

    READ(IP1,&in1);

   if(j==2)

    READ(IP2,&in1);

   READ(IP3,&in2);

   F(in1,in2,out);

   WRITE(OP3,out);

}}}

j

Variant Domains Traversal:

V2 = { IP2, IP3, OP3}
V1 = { IP1, IP3, OP3}

Variant Domains:
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Step3: Find Repeating Sub-string 

◼ Use Suffix Tree representing string S

◼ Path from root to any internal node represents

repetitive sub-string

◼ For any internal node: 

#occurrence of sub-string = #child nodes

◼ Example: S = V1V2V1V2V1V2$
◼ ROOT-to-RED node represents V1V2

◼ # Children of RED node = 3

◼ V1V2 occurs 3 times in S  

◼ Search Suffix Tree

◼ For shortest repeating sub-string

◼ Covering entire string S  

$

V2

$
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Step4: Production/Consumption 
Rates Generation 

IP1 IP2 IP3 OP3

V1 1 0 1 1

V1 1 0 1 1

V2 0 1 1 1

CSDF Actor

PPN Process

Repeating Pattern in S is: V1V1V2

Variant Domains are:
    V1 = { IP1, IP3, OP3}
    V2 = { IP2, IP3, OP3}

while(1){

 for(i=0;i<=9;i++){

  for(j=0;j<=2;j++){

   if(j<=1) 

    READ(IP1,&in1);

   if(j==2)

    READ(IP2,&in1);

   READ(IP3,&in2);

   F(in1,in2,out);

   WRITE(OP3,out);

}}}

S = V1V1V2V1V1V2V1V1V2V1V1V2V1V1V2V1V1V2V1V1V2V1V1V2V1V1V2V1V1V2

[ 1, 1, 1 ][ 0, 0, 1 ]

Every column is

Rate Pattern!

Build a Table
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Hard-Real-Time Analysis and 
Scheduling

◼ Input:

◼ A set of CSDFs annotated with WCET for each task 

◼ User may specify the Hard-Real-Time schedule type to be used

◼ Output:

◼ Platform Specifications

◼ Mapping Specifications
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Exisitng Analysis and Scheduling 
Approaches

◼ Self-timed scheduling (STS)

◼ Proven to achieve the maximum throughput and 

minimum latency

◼ BUT no temporal isolation! 

◼ Complex and time consuming DSE needed to find the 

minimum number of processors!  

◼ Time Division Multiplexing (TDM)

◼ Provides temporal isolation ☺

◼ BUT complex and time consuming DSE needed to 

find the minimum number of processors!  
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Our Analysis and Scheduling 
Approaches

◼ Use hard-real-time multiprocessor scheduling 
theory
◼ Proven timing guarantees

◼ enables Hard-Real-Time execution 

◼ Temporal isolation 
◼ enables multiple apps + add/remove of apps @ runtime 

◼ Fast schedulability analysis
◼  enables fast admission control + platform sizing

◼ This theory received little attention in the 
MPSoC design community!   Why?
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The Problem is …

◼ In contrast, MPSoC methodologies assume:

◼ Applications are represented as tasks/actors with 

Data dependencies (in our case CSDF model is used)

A

C

B

D

◼ Most hard-real-time scheduling algorithms 

assume that:

◼ Applications are represented as 

Independent periodic or sporadic tasks

◼ Each task is characterized by:

◼ Start time s

◼ Worst-Case Execution Time µ

◼ Period λ (assumed as an implicit deadline)

WCET

Period

Time

Tasks

Start time
B

A

C

D

◼ Problem Statement

◼ Can we represent CSDF actors as strictly periodic tasks?

◼ Find a minimum period λ for each actor

◼ Find a start time s for each actor 

◼ s  and λ must satisfy the data dependencies

?



Embedded Systems and Software by Todor Stefanov 2024 20

Our Answer to the Problem is

Formally we have proven the following:

◼ Actors in any acyclic CSDF graph 

can be scheduled as a set of 

strictly periodic tasks with

◼ Periods λ given by the solution to

        q1* λ1 = q2* λ2 = … = qN* λN

◼ Starting times s proportional to 

     α = qi* λi                                        

Our Proof enables applying classical 

Hard-Real-Time scheduling theory to 

embedded streaming applications 

modeled as acyclic CSDF graphs! ☺

A

C

B

D

WCET

Period

Time

Tasks

B

A

C

D

YES
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Finding Task Periods 
◼ Example of acyclic CSDF graph with

◼ Four actors                { A, B, C, D }

◼ Repetition vector q = [ qA, qB, qC, qD ] = [2, 2, 4, 2]

◼ WCET vector       µ = [ µA, µB, µC, µD ] = [2, 4, 1, 3]

◼ Equalize time needed to complete actor iteration 

for all actors in order to find the minimum periods of actors:

    2* λA = 2* λB = 4* λC = 2* λD 

  and              λ = [ λA, λB, λC, λD ] = [4, 4, 2, 4] 

λA ≥ 2, λB  ≥ 4, λC  ≥ 1, λD  ≥ 3,

A

C

B

D

2

time

actors

WCET

Period = 4

Actors Iteration = α = 8

4

1

3

B

A

C

D

Next Actors Iteration = 8
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Finding Start Times

2

time

actors

WCET

Period = 4

Actors Iteration = α = 8

4

1

3

B

A

C

D

Next Actors Iteration = 8

◼ To ensure correct strictly periodic execution:

◼ Shift stepwise the Start Time of each actor by α = qi* λi = 8 time-units

◼ Such that the data dependencies are satisfied  

2

time

actors

WCET

Period = 4

α = 8

1

3

B

A

C

D

4

α = 8

Equalize

A

C

B

D
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Optimizations

◼ However, do we have to shift the Start Times by α?

◼ Starting the actors earlier reduces latency and buffer sizes

◼ Earliest start times and minimum buffer sizes can be found

A strictly periodic schedule exists! ☺

2

time

actors

WCET

Period = 4

α = 8

1

3

B

A

C

D

4

α = 8

We have devised proven approaches to determine the 

minimum values for start times and buffer sizes ☺

A

C

B

D
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Platform Sizing Problem

◼ How many processors M needed to schedule the actors?

◼ Computing M depends on the used HRT schedule

◼ Example: CSDF application with 4 actors {A, B, C, D}  

A B C D

5 2 3 2

8 8 4 6

5/8 2/8 3/4 2/6

47/24 = 1.9583

M(Optimal)

M(P-EDF+FF)

Complex DSE is NOT needed to find M! ☺
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Results: Flow Execution Times

◼ Multiple Applications: 

◼ Edge-detection filter (Sobel)

◼ Motion JPEG decoder

◼ Motion JPEG encoder

◼ Run simultaneously

DaedalusRT

Number of applications 3

Phase Time Automation

Parallelization 0.48 sec. Yes

WCET Analysis 1 day No

Deriving the CSDFs 5 sec. Yes

Deriving the Platform/Mapping 0.03 sec. Yes

System Synthesis 2.16 sec. Yes

Total ~1 day -

Total excluding WCET ~8 sec. -

DaedalusRT :

significantly reduces 

design time & effort! ☺
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Results: Quality of Schedule

◼ How Good is our Strictly Periodic Scheduling (SPS)?

◼ Use 19 real-life applications 

◼ Compute throughput using our SPS  

◼ Compare with maximum achievable throughput using STS 

Our SPS achieves 

maximum throughput 

for 17 out of 19 apps! ☺
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