
Todor Stefanov

Leiden Embedded Research Center,

Leiden Institute of Advanced Computer Science

Leiden University, The Netherlands

System-level Synthesis

2Embedded Systems and Software by Todor Stefanov 2024

System-level Synthesis:
 ESPAM tool

Sesame

Explore, modify, select instances

Library of

IP cores

Sequential

application

PNgen

Common XML

Interface

Library of

IP cores

Platform

specification
Parallel application

specification

Mapping

specification

System-level synthesis

Multi-processor System on Chip
(Synthesizable VHDL and C/C++ code for processors)

RTL-level

Models

RTL-level

Models

High-level

Models

High-level

Models

3Embedded Systems and Software by Todor Stefanov 2024

ESPAM
Embedded System-level Platform Synthesis and

Application Mapping

Library of

IP cores

Platform Spec

in XML

IP cores

in VHDL

PPN

in XML

Platform

topology

description

Virtex

FPGA

Auxiliary

files

Program code

Processor 1

Program code

Processor 2

Program code

Processor 3

System-Level

Specification

RTL-Level

Specification

Gate-Level

Specification

ESPAM

Mapping Spec

in XML

Xilinx Platform Studio (XPS) Tool

C/C++

code for

processors

▪ FPGA-based prototyping

with Xilinx boards

▪ Simple descriptions in

XML format

▪ Automated System-to-RTL

Level conversion and

software code generation

▪ Ready for direct

implementation

▪ All of this in a matter

of hours

4Embedded Systems and Software by Todor Stefanov 2024

ESPAM: Internal Structure

Component

Library

System-level

specification

Platform Spec

in XML

Mapping Spec

in XML

Appl. Spec

in XML

Parsers and (Cross-)Consistency Check

Platform Model Mapping Model ADG Model Schedule Model

Model Initialization

(front-end)

IP cores

in VHDL

Code Generation

Platform Instance

Parameters Setting

Platform

netlist
C code for

processors
Memory

Map

RTL

specification

System Generation

(back-end)

Platform Elaboration

Elaborated Platform Model Parameterized PN Model

Process Network Synthesis

Refined Platform Model

Platform Refinement Mapping Elaboration

Process/Channel Map

System Synthesis

5Embedded Systems and Software by Todor Stefanov 2024

MP-SoCs currently considered
Library of parameterized components:

Many alternative platforms can be

constructed fast and easily by instantiating

different type/number of components and

setting their parameters.

… …

P1

IP1

Pn

IPm

C
o

m
m

u
n

ic
a

ti
o

n

C
o

m
p

o
n

e
n

t

◼ Processing Components:

◼ Programmable processors

◼ Hardware IP Cores

◼ Memory Components:

◼ Program, Data (on-chip and

external) Memory (MEM)

◼ Communication Memory (CM)

◼ Communication Components:

◼ Point-to-point network

◼ Crossbar switch

◼ Shared bus with Round-Robin,

Fixed Priority, or TDMA arbitration

◼ Communication Controller (CC) – interface between processing, memory, and

communication components

CC

CC

CC

CC

MEMMEM CMCM

CMCM

6Embedded Systems and Software by Todor Stefanov 2024

Communication and Synchronization

◼ Data communication and synchronization between processors only

through FIFOs mapped in the Communication Memories (CM)

◼ The synchronization mechanism is implemented by Read and Write

SW primitives that interact directly with the Communication

Controllers

P/D

Mem

Proc.

Comm.

Comp.

P/D

Mem

Proc.

Request Request

CC CC

CM CM

◼ A processor can access other CMs only for read operations through

the communication component using requests

◼ A processor can write only to its local CM

7Embedded Systems and Software by Todor Stefanov 2024

◼ FIFOs to CMs mapping

Platform Synthesis and Programming

◼ Platform Elaboration and Refinement

◼ Mapping of processes

◼ Memory map of the system

◼ Program code for each processor

◼ Read and write synchronization primitives

int q=0;

. . .

for (int i=0; i<=N; i++) {

 A(&q) ;

 B(&q) ;

}

. . .

Program Fragment

CB
CC1 CC2

MEM CM1 MEMCM2

B

FIFO1

A FIFO2… …x y zp1 p2

p3 p4

Polyhedral Process Network

. . .

A -> MB1

B -> MB2

. . .

MappingPlatform

#define p1 0xe0000008 // write addr. FIFO1

#define p2 0x00010000 // read addr. FIFO1

#define p3 0xe0000008 // write addr. FIFO2

#define p4 0x00020000 // read addr. FIFO2

Read/Write addresses of the FIFOs

int x=0;

for (int i=0; i<=N; i++) {

 execute_A(&x) ;

}

Code of MB1

int y=0, z=0;

for (int i=0; i<=N; i++) {

 execute_B(y, &z) ;

}

Code of MB2

(x) (y, z)(FIFO1) (FIFO2)

MB1
(B)(A)

MB2

write(p1, x, 1);

read(p2, y, 1);

write(p3, z, 1);

1 2

8Embedded Systems and Software by Todor Stefanov 2024

Write and Read Primitives

#define writeCM(pos, value, n) \

 int i;\

 volatile int *isFull;\

 volatile int *outPort = (volatile int *) pos;\

 isFull = outPort + 1;\

 for (i = 0; i < n; i++) {\

 while (*isFull) { };\

 *outPort = ((volatile int *) value)[i];\

 }\

Write Synchronization Primitive

#define readCM(pos, value, n) \

 int i;\

 volatile int *isEmpty;\

 int inPort = (int) pos;\

 (volatile int *) dataReqReg = (volatile int *) 0xE0000000;\

 isEmpty = dataReqReg + 1;\

 *dataReqReg = 0x80000000 | inPort;\

 for (i = 0; i < n; i++) {\

 while (*isEmpty) { };\

 ((volatile int *) value)[i] = * dataReqReg;\

 }\

 *dataReqReg = 0x7FFFFFFF & inPort;\

Read Synchronization Primitive

9Embedded Systems and Software by Todor Stefanov 2024

FSL
(FIFO3)

FSL
(FIFO1)

FSL
(FIFO2)

MEM

MEM
MEM

CC1

PPN

C

F
IF

O
3

Mapping

A -> MB1

B -> PPC1

C -> MB2

MB2

MB1

Platform

PPC1

A

B

Platform Synthesis: Point-to-Point

◼ Number of processes in PPN is equal to number of processors in

the platform

(A)

(C)
(B)

◼ Only one process mapped onto one processor

◼ No Communication Component, no communication overhead!

10Embedded Systems and Software by Todor Stefanov 2024

Write and Read Primitives

#define write(pos, value, n) \

 int i;\

 volatile int *isFull;\

 volatile int *outPort = (volatile int *) pos;\

 isFull = outPort + 1;\

 for (i = 0; i < n; i++) {\

 while (*isFull) { };\

 *outPort = ((volatile int *) value)[i];\

 }\

Write FIFO Synchronization Primitive

#define read(pos, value, n) \

 int i;\

 volatile int *isEmpty;\

 volatile int *inPort = (volatile int *) pos;\

 isEmpty = inPort + 1;\

 for (i = 0; i < n; i++) {\

 while (*isEmpty) { };\

 ((volatile int *) value)[i] = *inPort;\

 }\

Read FIFO Synchronization Primitive

#define writeFSL(pos, value, n) \

 int i;\

 for (i = 0; i < n; i++) {\

 microblaze_bwrite_datafsl(

 ((volatile int *) value)[i], pos);\

 }\

Write FSL Synchronization Primitive Read FSL Synchronization Primitive

#define writeFSL(pos, value, n) \

 int i;\

 for (i = 0; i < n; i++) {\

 microblaze_bread_datafsl(

 ((volatile int *) value)[i], pos);\

 }

11Embedded Systems and Software by Todor Stefanov 2024

◼ To meet higher application requirements,

◼ integrate hardware IP cores into ESPAM generated systems

◼ Done by automated HW Module (wrapper)

generation
◼ including/wrapping third-party IP core

◼ Features of a generated HW module

◼ modularity, i.e., HW Module consisting of well defined

parameterized components

◼ clearly defined interfaces between components of a

HW module

Dedicated Hardware IPs
Integration with ESPAM

12Embedded Systems and Software by Todor Stefanov 2024

PPN to Heterogeneous System

◼ Processes mapped to

programmable processors and/or

dedicated HW IPs

◼ Hardware Modules – wrappers

around predefined IP cores
◼ Read Block

◼ Execute Block, i.e., the IP core

◼ Write Block

◼ Control Block

◼ HW IPs must provide:
◼ Function call behavior

◼ Unidirectional I/O data interfaces

◼ Enable/Valid control interface

CH1
P2

CH3
OP2

IP1 OP1

CH2

P3P1

CH4

OP1

IP1 OP1

IP1IP2

CONTROL

EXECUTE WRITE
IP1

IP2

OP1

OP2READ

CCuP2

uP1

FIFO4

FIFO1

FIFO3

FIFO2

IP1 OP1

CC

OP2

IP2 HM

CC

IN
T

E
R

C
O

N
N

E
C

T

13Embedded Systems and Software by Todor Stefanov 2024

Structure of a HW Module

◼ Read Block

◼ Fetch data from communication channels

◼ For each input argument select from
which port to fetch the data using the
control information derived from the PPN

◼ Execute Block

◼ A functional sub-wrapper for the IP core

◼ Write Block

◼ Write back the results from the execution
to the communication channels

◼ For each output argument select which
port to receive the corresponding data

◼ Control Block

◼ Control and synchronize reading, writing
and execution

EVALUATION

LOGIC READ

COUNTERS

READ

CONTROL

HW IP

Core

EXECUTE

EVALUATION

LOGIC WRITE

COUNTERS

WRITE

in out
IP1

IP2

OP1

OP2

D
e

M
U

X

HW IP
COREM

U
X

CONTROL

WRITE

EXECUTE

READ

1 // process P2

2 void main() {

3 for(int i=2; i<=N; i++)
4 for(int j=1; j<=M+i; j++) {

5 if(i-2 == 0)

6 read(IP1, in_0, size);

7 if(i-3 >= 0)
8 read(IP2, in_0, size);

9 execute(in_0, out_0);

10 if(-i+N-1 >= 0)

11 write(OP1, out_0, size);

12 if(i-N == 0) {

13 write(OP2, out_0, size);
14 } // for j

15 } // main

14Embedded Systems and Software by Todor Stefanov 2024

HW Module Structure in Detail

◼ Composed of well defined components

◼ Clearly defined component interfaces

WRITE DeMUX

IP CORE

PAR_DT

PAR_LD

CONTROL

UNIT

PARAMETERS

PARAMETERS

EXIST FULL

WRITE

DONE_WRDONE_RD

READ

DONE

EN

BOUNDS

ITERATORS

GENERIC

COUNTER

EVALUATION

LOGIC READ

DONE

EVALUATION

LOGIC WRITE

READ MUX

IP_OUTIP_IN

EN

ITERATORS

READs

EXISTs

DATA

GENERIC

COUNTER

BOUNDS

FULLs

WRITEs

DATA

ENABLE VALID

IP
2

IP
1

O
P

2
O

P
1

IP
3

IP
n

O
P

k
O

P
3CONTROLS CONTROLS

15Embedded Systems and Software by Todor Stefanov 2024

ESPAM Summary

◼ Reduced design time:

◼ Implementations correct by construction

◼ no simulations are needed

◼ Complete implementation and programming

◼ about 2 hours for systems with 5 processors

◼ Design space exploration is feasible at
implementation level

◼ 100% accuracy

Making system-level design take off

http://daedalus.liacs.nl

http://daedalus.liacs.nl/

	Slide 1: System-level Synthesis
	Slide 2
	Slide 3
	Slide 4: ESPAM: Internal Structure
	Slide 5
	Slide 6: Communication and Synchronization
	Slide 7: Platform Synthesis and Programming
	Slide 8: Write and Read Primitives
	Slide 9: Platform Synthesis: Point-to-Point
	Slide 10: Write and Read Primitives
	Slide 11
	Slide 12: PPN to Heterogeneous System
	Slide 13: Structure of a HW Module
	Slide 14: HW Module Structure in Detail
	Slide 15: ESPAM Summary
	Slide 16

