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System-level Synthesis:
 ESPAM tool
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▪ FPGA-based prototyping 

with Xilinx boards
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▪ Automated System-to-RTL 
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▪ Ready for direct 

implementation

▪ All of this in a matter 

of hours
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ESPAM: Internal Structure 
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MP-SoCs currently considered
Library of parameterized components:

Many alternative platforms can be 

constructed fast and easily by instantiating 

different type/number of components and 

setting their parameters.  
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◼  Processing Components:

◼  Programmable processors

◼  Hardware IP Cores 

◼  Memory Components:

◼  Program, Data (on-chip and 

external) Memory (MEM) 

◼  Communication Memory (CM)

◼ Communication Components:

◼  Point-to-point network

◼  Crossbar switch

◼  Shared bus with Round-Robin, 

Fixed Priority, or TDMA arbitration

◼ Communication Controller (CC) – interface between processing, memory, and 

communication components
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Communication and Synchronization

◼ Data communication and synchronization between processors only 

through FIFOs mapped in the Communication Memories (CM)

◼ The synchronization mechanism is implemented by Read and Write 

SW primitives that interact directly with the Communication 

Controllers

P/D

Mem

Proc.

Comm.

Comp.

P/D

Mem

Proc.

Request Request

CC CC

CM CM

◼ A processor can access other CMs only for read operations through 

the communication component using requests

◼ A processor can write only to its local CM
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◼ FIFOs to CMs mapping

Platform Synthesis and Programming

◼ Platform Elaboration and Refinement

◼ Mapping of processes 

◼ Memory map of the system

◼ Program code for each processor

◼ Read and write synchronization primitives

int q=0;

. . .

for (int i=0; i<=N; i++) {

     A( &q ) ;

     B( &q ) ;

}

. . .

Program Fragment

CB
CC1 CC2

MEM CM1 MEMCM2

B

FIFO1

A FIFO2… …x y zp1 p2

p3 p4

Polyhedral Process Network

. . .

A -> MB1

B -> MB2

. . . 

MappingPlatform

#define p1 0xe0000008 // write addr. FIFO1

#define p2 0x00010000 // read addr. FIFO1

#define p3 0xe0000008 // write addr. FIFO2 

#define p4 0x00020000 // read addr. FIFO2

Read/Write addresses of the FIFOs

int x=0;

for (int i=0; i<=N; i++) {

     execute_A( &x ) ;

     

}

Code of MB1

int y=0, z=0;

for (int i=0; i<=N; i++) {

    

    execute_B( y, &z ) ;

    

}

Code of MB2

(x) (y, z)(FIFO1) (FIFO2)

MB1
(B)(A)

MB2

write( p1, x, 1 );

read( p2, y, 1 );

write( p3, z, 1 );

1 2



8Embedded Systems and Software by Todor Stefanov 2024

Write and Read Primitives

#define writeCM( pos, value, n ) \

    int i;\

    volatile int *isFull;\

    volatile int *outPort = (volatile int *) pos;\

   

    isFull = outPort + 1;\

    for (i = 0; i < n; i++) {\

        while ( *isFull )  {  };\

        *outPort = ((volatile int *) value)[ i ];\

    }\

Write Synchronization Primitive

#define readCM( pos, value, n ) \

    int i;\

    volatile int *isEmpty;\

    int inPort = (int) pos;\

    (volatile int *) dataReqReg = (volatile int *) 0xE0000000;\

    isEmpty = dataReqReg + 1;\

    *dataReqReg = 0x80000000 | inPort;\

     for (i = 0; i < n; i++) {\

         while ( *isEmpty )  {  };\

         ((volatile int *) value)[ i ] = * dataReqReg;\

     }\

     *dataReqReg = 0x7FFFFFFF & inPort;\

Read Synchronization Primitive
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FSL
(FIFO3)
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Platform Synthesis: Point-to-Point

◼ Number of processes in PPN is equal to number of processors in 

the platform

(A)

(C)
(B)

◼ Only one process mapped onto one processor

◼ No Communication Component, no communication overhead!
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Write and Read Primitives

#define write( pos, value, n ) \

    int i;\

    volatile int *isFull;\

    volatile int *outPort = (volatile int *) pos;\

    

    isFull = outPort + 1;\

    for (i = 0; i < n; i++) {\

        while ( *isFull )  {  };\

        *outPort = ((volatile int *) value)[ i ];\

    }\

Write FIFO Synchronization Primitive

#define read( pos, value, n ) \

    int i;\

    volatile int *isEmpty;\

    volatile int *inPort = (volatile int *) pos;\

    isEmpty = inPort + 1;\

    for (i = 0; i < n; i++) {\

        while ( *isEmpty )  {  };\

        ((volatile int *) value)[ i ] = *inPort;\

    }\

Read FIFO Synchronization Primitive

#define writeFSL( pos, value, n ) \

    int i;\

 

    for (i = 0; i < n; i++) {\

        microblaze_bwrite_datafsl(

                       ((volatile int *) value)[ i ], pos);\

    }\

Write FSL Synchronization Primitive Read FSL Synchronization Primitive

#define writeFSL( pos, value, n ) \

    int i;\

 

    for (i = 0; i < n; i++) {\

        microblaze_bread_datafsl(

                       ((volatile int *) value)[ i ], pos);\

    }
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◼ To meet higher application requirements, 

◼ integrate hardware IP cores into ESPAM generated systems

◼ Done by automated HW Module (wrapper) 

generation 
◼ including/wrapping third-party IP core 

◼ Features of a generated HW module

◼ modularity, i.e., HW Module consisting of well defined 

parameterized components

◼ clearly defined interfaces between components of a 

HW module

Dedicated Hardware IPs 
Integration with ESPAM
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PPN to Heterogeneous System

◼ Processes mapped to 

programmable processors and/or 

dedicated HW IPs

◼ Hardware Modules – wrappers 

around predefined IP cores 
◼ Read Block

◼ Execute Block, i.e., the IP core

◼ Write Block

◼ Control Block

◼ HW IPs must provide: 
◼ Function call behavior

◼ Unidirectional I/O data interfaces

◼ Enable/Valid control interface
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Structure of a HW Module

◼ Read Block

◼ Fetch data from communication channels

◼ For each input argument select from 
which port to fetch the data using the 
control information derived from the PPN

◼ Execute Block

◼ A functional sub-wrapper for the IP core

◼ Write Block

◼ Write back the results from the execution 
to the communication channels

◼ For each output argument select which 
port to receive the corresponding data

◼ Control Block

◼ Control and synchronize reading, writing 
and execution

EVALUATION

LOGIC READ

COUNTERS

READ

CONTROL
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WRITE
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U
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CONTROL

WRITE
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1 // process P2

2 void main( ) {

3    for( int  i=2; i<=N; i++ )
4       for( int  j=1; j<=M+i; j++ ) {

5          if( i-2 == 0 )

6             read( IP1, in_0, size  );

7          if( i-3 >= 0 )
8             read( IP2, in_0, size );

9          execute( in_0, out_0);

10        if( -i+N-1 >= 0 )

11           write( OP1, out_0, size );

12        if( i-N == 0 ) {

13           write( OP2, out_0, size );
14     } // for j

15 } // main
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HW Module Structure in Detail

◼ Composed of well defined components

◼ Clearly defined component interfaces
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ESPAM Summary

◼ Reduced design time:

◼ Implementations correct by construction

◼  no simulations are needed

◼ Complete implementation and programming 

◼ about 2 hours for systems with 5 processors  

◼ Design space exploration is feasible at 
implementation level

◼ 100% accuracy 



Making system-level design take off

http://daedalus.liacs.nl

http://daedalus.liacs.nl/
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