
Embedded Systems:

Specification and Modeling (part I)

Todor Stefanov

Leiden Embedded Research Center,

Leiden Institute of Advanced Computer Science

Leiden University, The Netherlands

Embedded Systems and Software by Todor Stefanov 2024 2

Outline

◼ Why considering modeling and specification?

◼ Requirements for Specification Techniques

◼ Models of Computation
◼ State-based models (not considered in this course!)

◼ FSM (classical automata)

◼ Timed automata

◼ StateCharts

◼ Petri Nets (not considered in this course!)
◼ Condition/Event Nets

◼ Predicate/Transition Nets

◼ Place/Transition Nets

◼ Actor-based Dataflow models
◼ SDF, CSDF, PPN, PSDF, PCSDF, PPPN, BDF, DDF, KPN

◼ Specification Languages
◼ VHDL, SystemC, SpecC, Others

Embedded Systems and Software by Todor Stefanov 2024 3

Why considering specifications?

◼ The first step in designing Embedded System is to

precisely tell what the system behavior should be

◼ This can be extremely difficult

◼ Increasing complexity of ES

◼ Desired behavior often not fully understood in the beginning

◼ However, if something is wrong with the specification

◼ difficult to get the design right

◼ potentially wasting a lot of time

◼ How can we (correctly and precisely) capture systems

behavior?

Specification: correct, clear and unambiguous

description of the required system behavior

Embedded Systems and Software by Todor Stefanov 2024 4

Use Model-based Specifications!

◼ We use models of the system under design at

different levels of abstraction (LoA)

◼ LoA alleviate the complexity problem of specification

◼ LoA will be discussed later

◼ Models allow to reason about the system under

design

◼ identifying flaws in the specification

◼ correcting flaws in the specification

◼ What is a model anyway?

Embedded Systems and Software by Todor Stefanov 2024 5

Model

Definition [Jantsch, 2004]: A model is a simplification of an

entity, which can be a physical thing or another model:

1. Contains exactly those characteristics and properties of

the entity that are relevant for a given task

2. Is minimal with respect to a task if it does not contain

any other characteristics than those relevant for the task

Quote [George Box, 1987]:

Essentially, all models are wrong, but some are useful!

-- Wrong: models are simplification of an entity!

-- Useful: models help to explain, predict, and understand some aspects of the entity!

NOTE: Engineers use models differently to scientists!

-- Scientists: use models to describe what the physical world is doing!

-- Engineers: use models to construct a physical system that behaves like the model!

Embedded Systems and Software by Todor Stefanov 2024 6

Requirements for Model-based
Specification Techniques (1)

◼ Modularity

◼ Systems specified as composition of objects

◼ Most humans not capable to understand systems

containing more than ~5 objects

◼ BUT most actual systems require more objects!

◼ Hierarchical composition of objects
◼ Example for SW: statements -> procedures -> programs

◼ Example for HW: transistors -> gates -> functional blocks

◼ It must be “easy” to derive system behavior from

behavior of subsystems

◼ Concurrency, synchronization and

communication

Embedded Systems and Software by Todor Stefanov 2024 7

Requirements for Model-based
Specification Techniques (2)

◼ Timing behavior

◼ Essential for embedded systems!

◼ Four types of timing specs required, according to Burns, 1990:

t

? execute

1. Techniques to measure elapsed time
Check, how much time has elapsed since

some computation has happened

2. Means for specifying delays

t

4. Methods for specifying deadlines

t

execute

3. Possibility to specify timeouts

 Stay in a certain state a maximum time

Embedded Systems and Software by Todor Stefanov 2024 9

Models of Computation for Specs

◼ Models of Computation (MoC) define:

◼ Components and execution model for computations for
each component

◼ Communication model for exchange
of information between components

◼ Thus, we must

◼ select appropriate MoC for specifying a system

◼ this is key to successful and efficient design of ES

There is NO model of computation

that meets all specification

requirements previously discussed!

A

C

D

B

Embedded Systems and Software by Todor Stefanov 2024 10

Is Van Neumann MoC appropriate?

◼ An instruction set, a memory, and a program
counter, is all we need to execute whatever
application we can dream of

◼ NOT appropriate for ES design!

◼ Timing cannot be described

◼ instructions cannot be delayed

◼ instruction cannot be forced to execute at a specific time

◼ Timing deadlines cannot be specified for instructions or
sequence of instructions

◼ Timeouts cannot be specified for sequence of
instructions

Embedded Systems and Software by Todor Stefanov 2024 11

Another Inappropriate MoC:
Thread-based concurrency model

◼ Threads may access global variables
◼ May lead to race conditions!

◼ To avoid races, we use mutual exclusion
◼ May lead to deadlocks!

“… threads as a concurrency model are a poor

match for embedded systems. … they work well

only … where best-effort scheduling policies are

sufficient.” Edward Lee: Absolutely Positively on

Time, IEEE Computer, July, 2005

Embedded Systems and Software by Todor Stefanov 2024 12

Other problems with thread-based
concurrency

◼ Threads are nondeterministic!

◼ Programmers try to prune away the non

determinism by imposing constraints on

execution order (e.g., mutexes, locks, etc…)

◼ Nontrivial software written with threads,

semaphores, and mutexes is incomprehensible

to many humans

◼ Thus,

Embedded Systems and Software by Todor Stefanov 2024 13

The bottom line is

◼ Finding appropriate model to capture ES

behavior is an important step!

◼ For control-dominated and reactive systems

◼ State-based models are appropriate

◼ Monitor control inputs and set control outputs

◼ For data-dominated systems

◼ Actor-based dataflow models are appropriate

◼ Transform input data streams to output data streams

When specifying and designing Embedded Systems we

should search for and use NON-thread-based, NON-von-

Neumann Models of Computation!

Embedded Systems and Software by Todor Stefanov 2024 14

Actor-based Models of Computation:
Terminology

◼ Actor-based MoC
◼ Formal description of the operational

semantics of a network of functional blocks

◼ Actor
◼ Functional block representing some

computation

◼ Relation
◼ Describes the communication

between actors

◼ Token
◼ Quantum of information

that is exchanged between actors

◼ Firing of actor
◼ Quantum of computation

◼ Moment of interaction with other actors

Relation

A

C

D

B

Network

Token

Port Port

fire {

 …

 token = get();

 …

 send(token);

 …

}

(Active/Passive)

Actor

Embedded Systems and Software by Todor Stefanov 2024 15

Active/Passive Actors

◼ Passive Actors:

◼ Scheduler needed to activate
the firing

◼ Schedule ABBCD

◼ A firing needs to terminate

◼ Fire-and-exit behavior

◼ Active Actors:

◼ Schedule themselves

◼ A firing typically does
not terminate

◼ Endless while loop

◼ Process behavior

A

C

D

B

Two kinds of Actors:

fire {

 token = get();

 …

 send(token);

 …

} Exit

fire {

 while(1) {

 token = get();

 …

 send(token);

 }

}

Embedded Systems and Software by Todor Stefanov 2024 16

Communication Between Actors

◼ Data Type of Tokens
◼ Integer, Double

◼ Complex

◼ Matrix, Vector

◼ Record

◼ Way exchange takes
place
◼ Buffered

◼ Timed

◼ Synchronized

Actor 2

fire {

 …

 get();

 …

}
port port

Token
fire {

 …

 send();

 …

}

Actor 1
Communication

(Semantics)

Embedded Systems and Software by Todor Stefanov 2024 18

Actor-based Dataflow Models (1)

◼ Network of concurrently

executing actors

◼ Dataflow Actors

◼ Can be Passive or Active

◼ Can be described with

imperative code

◼ Dataflow Communication

◼ Only through FIFO buffers

◼ Buffers usually treated as

unbounded for flexibility

◼ Sequence of tokens read guaranteed

to be the same as the sequence of tokens written

◼ Destructive read: reading a token from a buffer

removes the token

◼ Much more predictable than shared memory

fire {

 …

 get();

 …

 send();

}
port port

FIFOfire {

 …

 send();

 …

 send();

}

fire {

 …

 get();

 …

 get();

}

Actor 1 Actor 2

Actor 3

Embedded Systems and Software by Todor Stefanov 2024 22

Dataflow Modeling Space

Analyzability

KPN

DPN

DDF

BDF

SDF HSDF

PPN

CSDF MDSDF

PSDF
PCSDF

E
x

p
re

s
s

iv
e

n
e

s
s

PPPN

◼ Expressiveness:
◼ Indicate what type of systems can be

modeled and how compact the model is

◼ Analyzability:
◼ Indicate the degree of possibility for

compile-time analysis (scheduling, buffer
sizes, etc.)

Decidable Models:

• Synchronous Data Flow (SDF)

• Homogeneous SDF (HSDF)

• Multi-Dimensional SDF (MDSDF)

• Cyclo-Static Data Flow (CSDF)

• Polyhedral Process Network (PPN)

Partly-Decidable Models:

• Parameterized [SDF, CSDF, PPN]

Undecidable Models:

• [Boolean, Dynamic] Data Flow

• [Dataflow, Kahn] Process Network

Embedded Systems and Software by Todor Stefanov 2024 24

Synchronous Data Flow (SDF)

◼ Introduced by Lee and
Messerchmitt, UC Berkeley, 1987

◼ Network of concurrent executing
actors

◼ Passive actors

◼ Communication is buffered

◼ The model progresses as a
sequence of “iterations”

◼ A “firing rule” determines the firing
condition of an actor

◼ At each firing, a fixed number of
tokens is consumed and produced

◼ Characteristics of SDF

◼ Compile time analyzable

◼ Static schedule

◼ Optimization for
memory/throughput/latency

Iteration: ABBBCD

A

C

D

B

1

1

1 1

3

33

3

port

fire {

 …

 get();

 …

}port

Tokensfire {

 …

 send();

 …

}

Embedded Systems and Software by Todor Stefanov 2024 25

SDF Operational Semantics:
Firing Rule

◼ An actor of SDF is enabled if there is a certain

number of tokens on each of its input arcs

◼ An enabled actor is fired by removing a

number of tokens from each of its input arcs and

placing tokens on each of its output arcs

◼ Iteration: a sequence of actors’ firings that brings

the SDF network to its initial state

◼ Many possible sequences

as long as firing rules are obeyed

Iteration: ABBBCD

A

C

D

B

1

1

1 1

3

33

3

Embedded Systems and Software by Todor Stefanov 2024 26

SDF: Fixed Production and
Consumption Rate

fire B {

 …

 consume M

 …

}

fire A {

 …

 produce N

 …

}

channel

N M

◼ Balance equations (one for each channel):

◼ Schedulable statically

◼ Decidable:

◼ buffer memory requirements

◼ deadlock

MfNf BA =
number of tokens consumed

number of firings per “iteration”

number of tokens produced

Embedded Systems and Software by Todor Stefanov 2024 29

SDF: Scheduling

◼ Goal: Find a sequence of actor firings that

◼ Runs each actor at least once

◼ Avoids underflow

◼ no actor fired unless all tokens it consumes are available

◼ Returns the number of tokens in each buffer to their initial state

◼ Result: Schedule can be executed repeatedly without

accumulating tokens in buffers

◼ Schedule can be determined completely at compile-

time, i.e., before the system runs

◼ Two steps:

1. Establish relative firing rates of actors by using the balance

equations

2. Determine periodic sequence of actor firings by simulating the

model for a single iteration

Embedded Systems and Software by Todor Stefanov 2024 30

Step 1: Calculating Rates (1)

◼ Each channel imposes a constraint
◼ The number of tokens produced should be equal to the number

of the tokens consumed

◼ The balance equation guarantees this for each channel

◼ Example:

b

d

1

2
3

2

c

a

3

41

3

2

1

6

3a – 2b = 0 (for ch. ab)

4b – 3d = 0 (for ch. bd)

b – 3c = 0 (for ch. bc)

2c – a = 0 (for ch. ca)

d – 2a = 0 (for ch. da)

Solution:

a = 2c (a should fire twice more than c)

b = 3c

d = 4c

Embedded Systems and Software by Todor Stefanov 2024 31

Step 1: Calculating Rates (2)

◼ The modeled embedded system is Consistent!
◼ Has more than one solution (all-zeros solution + other solutions)

◼ Usually we want the smallest integer non-all-zeros solution

◼ Inconsistent systems:
◼ Have only the all-zeros solution

◼ Disconnected systems:
◼ Relative rates between some

actors undefined

◼ Example: Consistent Systems

Solution:

a = 2c (a should fire twice more than c)

b = 3c

d = 4c

This is the smallest integer

solution which is non-zero

a=2 b=3 c=1 d=4

3a – 2b = 0 (for ch. ab)

4b – 3d = 0 (for ch. bd)

b – 3c = 0 (for ch. bc)

2c – a = 0 (for ch. ca)

d – 2a = 0 (for ch. da)

Embedded Systems and Software by Todor Stefanov 2024 32

Inconsistent and Disconnected
Systems

◼ Inconsistent system

◼ Only solution is “do nothing”, i.e.,

◼ The only integer solution is a=0 b=0 c=0

◼ No way to execute it without an unbounded

accumulation of tokens on the channels

b
1

ca
1

32

1

1

a – c = 0

a – 2b = 0

3b – c = 0

Or

2b – c = 0

 3b – c = 0

◼ Disconnected system (under-constrained system)

◼ Two or more unconnected pieces

◼ Relative rates between pieces undefined

ba
1 1

dc
3 2

a – b = 0

3c – 2d = 0

Embedded Systems and Software by Todor Stefanov 2024 33

Consistent Rates Not Enough!

◼ A consistent system may NOT have schedule

◼ Rates do not avoid deadlock

◼ Example: deadlock in consistent system

◼ Solution here: add an initial token on one of the
channels

ba
1 1

1 1

ba
1 1

1 1

1

Initially No Tokens

a waits for b

b waits for a

Deadlock!!!

Initially 1 Token on arc ab

b can fire

Embedded Systems and Software by Todor Stefanov 2024 34

Step 2: Fundamental SDF
Scheduling Theorem

◼ Theorem guarantees that any valid model simulation will produce
a schedule

◼ Example:

If rates can be established, any scheduling algorithm that avoids

buffer underflow will produce a correct schedule if it exists

b

d

1

2
3

2

c

a

3

41

3

2

1

6

Rates: a=2 b=3 c=1 d=4

Possible schedules:

BBBCDDDDAA

BDBDBCADDA

BBDDBDDCAA

… many more

BC … is not valid

Embedded Systems and Software by Todor Stefanov 2024 35

SDF: Scheduling Choices

◼ The SDF Scheduling Theorem guarantees that a

schedule will be found if it exists

◼ A SDF system often has many possible schedules

◼ How can we use this flexibility?

◼ Reduce size of code

◼ Reduce sizes of buffers

Embedded Systems and Software by Todor Stefanov 2024 36

SDF: Code Generation

◼ Consider schedule

BBBCDDDDAA

◼ Rewrite schedule in

“looped” form:

(3 B) C (4 D) (2 A)

◼ Generated inline code

becomes

for (i = 0 ; i < 3; i++) B;

C;

for (i = 0 ; i < 4 ; i++) D;

for (i = 0 ; i < 2 ; i++) A;

◼ Consider schedule

 BDBDBCADDA

◼ Rewrite schedule in

“looped” form:

 (2 BD) BCA (2 D) A

◼ Generated inline code

becomes

 for (i = 0 ; i < 2; i++) {B;D;}

 B;C;A;

 for (i = 0 ; i < 2 ; i++) D;

 A;

Which code is smaller?

Embedded Systems and Software by Todor Stefanov 2024 37

SDF: Code Size optimization

◼ Goal: Find Single Appearance Schedule:

◼ (3 B) C (4 D) (2 A)

◼ a looped schedule in which each block appears

exactly once

◼ Leads to efficient block-structured code

◼ Only requires one copy of each block’s code

◼ Does not always exist!

◼ Often requires more buffer space than other schedules!

◼ Generated program with efficient code size

for (i = 0 ; i < 3; i++) B;

C;

for (i = 0 ; i < 4 ; i++) D;

for (i = 0 ; i < 2 ; i++) A;

Embedded Systems and Software by Todor Stefanov 2024 38

SDF: Buffer Size optimization

◼ Goal: Find Minimum Memory Schedules

◼ Often increases code size (block-generated
code)

◼ Static scheduling makes it possible to exactly
predict memory requirements

◼ Example:

BA
20 10

C
20 10

(1) ABCBCCC
(2) A(2B)(4 C)
(3) A(2(B (2C)))
(4) A(2(BC))(2 C)

Schedule Total buffer sizes

60 tokens
40 tokens

50 tokens

50 tokens

Embedded Systems and Software by Todor Stefanov 2024 39

SDF: Parallel Scheduling

A

C

D

B

SDF is suitable

for automated

design of multi-

processor

systems and

synthesis of

parallel circuits

Many scheduling

optimization

problems can be

formulated. Some

can be solved, too!

Sequential Parallel

Embedded Systems and Software by Todor Stefanov 2024 40

To be continued

	Slide 1: Embedded Systems: Specification and Modeling (part I)
	Slide 2: Outline
	Slide 3: Why considering specifications?
	Slide 4: Use Model-based Specifications!
	Slide 5: Model
	Slide 6: Requirements for Model-based Specification Techniques (1)
	Slide 7: Requirements for Model-based Specification Techniques (2)
	Slide 9: Models of Computation for Specs
	Slide 10: Is Van Neumann MoC appropriate?
	Slide 11: Another Inappropriate MoC: Thread-based concurrency model
	Slide 12: Other problems with thread-based concurrency
	Slide 13: The bottom line is
	Slide 14: Actor-based Models of Computation: Terminology
	Slide 15: Active/Passive Actors
	Slide 16: Communication Between Actors
	Slide 18: Actor-based Dataflow Models (1)
	Slide 22: Dataflow Modeling Space
	Slide 24: Synchronous Data Flow (SDF)
	Slide 25: SDF Operational Semantics: Firing Rule
	Slide 26: SDF: Fixed Production and Consumption Rate
	Slide 29: SDF: Scheduling
	Slide 30: Step 1: Calculating Rates (1)
	Slide 31: Step 1: Calculating Rates (2)
	Slide 32: Inconsistent and Disconnected Systems
	Slide 33: Consistent Rates Not Enough!
	Slide 34: Step 2: Fundamental SDF Scheduling Theorem
	Slide 35: SDF: Scheduling Choices
	Slide 36: SDF: Code Generation
	Slide 37: SDF: Code Size optimization
	Slide 38: SDF: Buffer Size optimization
	Slide 39: SDF: Parallel Scheduling
	Slide 40: To be continued

