
Special Sequential Circuits:

Registers

Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Overview

◼ Basic Register

◼ Register with Parallel Load
◼ Multiplexer-based Loading

◼ Shift Register

◼ Shift Register with Parallel Load

◼ Bidirectional Shift Register

◼ Application of Registers
◼ Serial-to-Parallel or Parallel-to-Serial Data Conversion

◼ Implementing Microoperations in Modern Processors

◼ Summary

2

Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Registers

◼ The most commonly used sequential devices

◼ They are a good example of sequential analysis and

design.

◼ They are also frequently used in building larger

sequential circuits.

◼ Registers hold larger quantities of data than

individual flip-flops.

◼ Registers are central to the design of modern

processors.

◼ There are many different kinds of registers.

◼ We will show some applications of these special

registers.

3

Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

What are registers good for?

◼ Flip-flops are limited, they can store only one bit
◼ Computers work with integers and floating-point numbers

◼ These numbers are 32-bits or 64-bit long

◼ A register is an extension of a flip-flop that can store
multiple bits.
◼ n-bit register is a set of n flip-flops

◼ capable of storing n bits of binary information

◼ With added combinational gates, the register can
perform data-processing tasks

◼ Registers are commonly used as temporary storage
in a processor
◼ Faster and more convenient than main RAM memory

◼ More registers can help speed up complex calculations

4

Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

A Basic Register

◼ We store multiple bits by putting a bunch of flip-flops
together!
◼ D flip-flops are used; store data without worrying about flip-

flop input equations

◼ All flip-flops share a common CLK and CLR signal

◼ CLK input triggers all flip-flops on the rising edge and the
data available at the four D inputs is stored in the register

5

Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Register with Parallel Load

◼ The input D3-D0 is copied to the output Q3-Q0 on
every clock cycle.

◼ How can we store the current value for more than
one cycle?

◼ Let us add a load input signal Load to the register.
◼ If Load = 0, the register keeps its current contents.

◼ If Load = 1, the register stores a new value, taken from
inputs D3-D0.

LD Q(t+1)

0 Q(t)

1 D3-D0

Load

Clock

6

Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Parallel Load

◼ The idea is to modify the flip-flop D inputs. We add 2-to-1
MUX to each input D.
◼ When Load = 0, the flip-flop inputs are Q3-Q0, so each flip-flop just

keeps its current value.

◼ When Load = 1, the flip-flop inputs are D3-D0, and this new value is
“loaded” into the register.

Load

Clock

7

Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

◼ A shift register “shifts” its output once every clock cycle.

◼ SI is an input that supplies a new bit to shift “into” the register.

◼ For example, if on some positive clock edge we have:

 SI = 1
 Q0-Q3 = 0110

 then the next state will be:

 Q0-Q3 = 1011

◼ The current Q3 (0 in this example) will be lost on the next cycle.

Shift Register

Q0(t+1) = SI

Q1(t+1) = Q0(t)

Q2(t+1) = Q1(t)

Q3(t+1) = Q2(t)

8

Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

◼ The circuit and example above make it look like the register
shifts “right”.

◼ But it really depends on your interpretation of the bits. If you
consider Q3 to be the most significant bit instead, then the
register is shifting in the opposite direction (“left”)!

Shift Direction

Present Q0-Q3 SI Next Q0-Q3

ABCD X XABC

Present Q3-Q0 SI Next Q3-Q0

DCBA X CBAX

(MSB)

(MSB)(LSB)

(LSB)

9

Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Shift Register with Parallel Load

◼ We can add a parallel load, just like we did for regular
registers.
◼ When LD = 0, the flip-flop inputs will be SIQ0Q1Q2, so the register

shifts on the next positive clock edge.

◼ When LD = 1, the flip-flop inputs are D0-D3, and a new value is loaded
into the shift register, on the next positive clock edge.

10

Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Shift Register with Parallel Load (cont.)

◼ Block symbol of the 4-bit shift register with load signal (LD)
◼ The Load and Shift operations are controlled by one signal LD

◼ In many cases it is useful to have separate signals that
control the Load and Shift operations

LD Operation

0 Shift Q0 → Q1, Q1→Q2…

1 Load parallel

Shift Load Operation

0 0 Nothing

0 1 Parallel Load

1 X Shift Q0 → Q1, Q1→Q2…

Q0

Q1
Q2
Q3

D0

D1
D2
D3

Clock
Shift
Load

SI

11

Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Bidirectional Shift Register

◼ So far we have seen registers capable of shifting in

only one direction, i.e., unidirectional shift registers.

◼ Registers that can shift in both directions are called

bidirectional shift registers.

Q0
Q1
Q2
Q3

D0

D1
D2
D3

Clock

S1
S0

LSI

RSI

Mode S1
Mode S0

Clock

Left Serial Input

Right Serial Input

S1S0 Operation

00 Nothing -- Qi(t+1) = Qi(t)

01 Shift down -- Qi → Qi+1

10 Shift up -- Qi → Qi-1

11 Parallel Load -- Qi = Di

12

Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Serial Data Transfer

◼ One application of shift registers is converting between
“serial data” and “parallel data.”

◼ Computers typically work with multiple-bit quantities.
◼ ASCII text characters are 8 bits long.

◼ Integers, single-precision floating-point numbers, and screen pixels
are up to 64 bits long.

◼ But sometimes it is necessary to send or receive data
serially, or one bit at a time. Why?

◼ Some examples include:
◼ Input devices such as keyboards and mice.

◼ Output devices like printers.

◼ Any serial port, USB or Firewire device transfers data serially.

◼ Serial ATA in hard drives.

13

Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Receiving Serial Data

◼ To receive serial data using a shift register:

◼ The serial device is connected to the register’s SI input.

◼ The shift register outputs Q3-Q0 are connected to the CPU.

◼ The serial device transmits one bit of data per clock cycle.

◼ These bits go into the SI input of the shift register.

◼ After four clock cycles, the shift register will hold a four-bit word.

◼ The computer then reads all four bits at once from the Q3-Q0

outputs.

serial device

computer

14

Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Sending Data Serially

◼ To send data serially with a shift register, you do the
opposite:
◼ The CPU is connected to the register’s D inputs.

◼ The shift output (Q3 in this case) is connected to the serial device.

◼ The computer first stores a four-bit word in the register, in
one cycle.

◼ The serial device can then read the shift output.
◼ One bit appears on Q3 on each clock cycle.

◼ After four cycles, the entire four-bit word will have been sent.

serial device

computer

15

Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Registers in Modern Processors

◼ Registers store data in the CPU

◼ Used to supply values to the ALU

◼ Used to store the results

◼ If we can use registers, why bother with RAM?
◼ Answer: Registers are expensive!

◼ Registers occupy the most expensive space

on a chip – the core.

◼ L1 and L2 are very fast RAM – but not as fast

as registers.

16

CPU GPR's Size L1 Cache L2 Cache

Pentium i7 16 64 bits 130 KB 1024KB

ARM Cortex-A53 16 64 bits 64 KB 2048 KB

Athlon 64 16 64 bits 64 KB 1024 KB

Pow erPC 970 (G5) 32 64 bits 64 KB 512 KB

Itanium 2 128 64 bits 16 KB 256 KB

MIPS R14000 32 64 bits 32 KB 16 MB

Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Registers and Microoperations

◼ In modern digital systems registers and combinational logic

circuits are used to implement Microoperations.

◼ A microoperation is an elementary operation performed on

data stored in registers or in memory.

◼ The microoperations most often encountered in digital

systems are of four types:

◼ Transfer microoperations, which only move binary data from one

register to another.

◼ Arithmetic microoperations, which perform arithmetic on data in

registers.

◼ Logic microoperations, which perform bit manipulation on data in

registers.

◼ Shift microoperations, which shift data in registers.

17

Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Basic Transfer Microoperation

◼ We will use the notation K0: R0  R1
◼ It reads:

“if K0 = 1 then the content of R1 is transferred into R0”

◼ R1 is called source register

◼ R0 is called destination register

◼ K0 is a control signal (condition) generated by the control logic.
K0 can be any Boolean function.

◼ Implementation

R1

LD

R0

LD

Control Logic

n

K0

Clock

K0

Clock

The transfer occurs here

18

Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Single Register Multiplexer-Based

Transfer Microoperations

R2

LD

Clock

n

Rn

LD
n

2m-to-1

n-line

MUX
:

R1

LD
n

n

Sm S0

0

1

2m -1

R0

LD

K0Sm S0

Control Logic

…

…

:.:.

◼ A single register can

receive data from

different sources at

different times:

◼ K0Sm …S0: R0  R1

◼ K0Sm …S0: R0  R2

◼ …

◼ K0Sm …S0: R0  Rn

◼ How do you read the

above notations?

19

Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Multiple Registers Multiplexer-Based

Transfer Microoperations

R1

LD

Clock

n

Rn

LD
n

2m-to-1

n-line

MUX
:

R0

LD
n

n

Sm S0

0

1

2m -1

Sm S0

Control Logic

…

…

:.:.

2-to-1

MUX

2-to-1

MUX

2-to-1

MUX

0

1

0

1

0

1

:.

S

S

S

◼ Any register can receive

data from different

sources at different

times.

◼ Ri  Rj

◼ Multiple registers can

receive data from one

sources at the same

time.

◼ R0  Rj, …, Rn  Rj

◼ How?

◼ By assigning proper

values to signals C0 to Cn,

K0 to Kn, and S0 to Sm

K0K1KnCnC1C0

20

Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Basic Single Operand

Arithmetic/Logic/Shift Microoperations

R1

LD

R0

LD

Control Logic

n

K0

Clock

n

F Note: In most cases F is a

combinational logic circuit that

implements one or several operations.

X selects the operation.

X

m

◼ We will use the notation K0: R0  F(R1)

◼ It reads:
“if K0 = 1 then register R0 stores the result of operation F applied on the
content of register R1”

◼ R1 is called source register, where the single operand is stored.

◼ R0 is called destination register, where the result is stored.

◼ K0 is a control signal (condition) generated by the control logic.
K0 can be any Boolean function.

◼ F is an arithmetic or logic of shift operation - see examples in the table below.

◼ Implementation Operation Description

R0  (R1)’ 1’s complement of R1

R0  (R1)’ + 1 2’s complement of R1

R0  R1 + 1 Increment R1

R0  R1 - 1 Decrement R1

R0  shl(R1) Shift-Left R1

R0  shr(R1) Shift-Right R1

21

Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

◼ K0: R0  F(R1,…,Rn)

◼ Single destination

◼ Multiple operands
◼ In most cases only two

◼ Example of basic two
operand microoperations:

R2

LD

Clock

n

Rn

LD
n

F
arithmetic

or

logic

operation
:

R1

LD
n

n
R0

LD

K0

Control Logic

:.

X

m

Basic Multiple Operand

Arithmetic/Logic Microoperations

Operation Description

R0  R1 + R2 Add R1 and R2

R0  R1 – R2 Subtract R1 from R2

R0  R1 & R2 Logic bitwise AND

R0  R1 | R2 Logic bitwise OR

R0  R1 * R2 Multiply R1 by R2

R0  R1 / R2 Divide R1 by R2

22

Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

R1

LD

Clock

n

Rn

LD
n

F
arithmetic

or

logic

operation
:

R0

LD
n

n

K0

Control Logic

:.

2-to-1

MUX

2-to-1

MUX

2-to-1

MUX

0

1

0

1

0

1

:.

S

S

S

K1Kn X
m

Multiple Operand

Arithmetic/Logic Microoperations

CnC1C0

◼ R0  F(R0,…,Rn)

◼ …

◼ Rn  F(R0,…,Rn)

◼ Multiple destinations

◼ Multiple operands

◼ In most cases only two

◼ Example of basic two

operand microoperations:

Operation Description

R0  R0 + R1 Add R0 and R1

R0  R0 – R1 Subtract R1 from R0

R2  R0 & R1 Logic bitwise AND

R2  R0 | R1 Logic bitwise OR

R1  R0 * R1 Multiply R0 by R1

R1  R0 / R1 Divide R0 by R1

23

Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Registers Summary

◼ A register is a special sequential circuit (state
machine) that stores multiple bits of data.

◼ Several variations are possible:
◼ Parallel loading to store data into the register.

◼ Shifting the register contents either left or right.

◼ One application of shift registers is converting
between serial and parallel data.

◼ Registers are a central part of modern processors.
◼ Used to implement Microoperations.

◼ You will see more during your design project.

◼ Most programs need more storage space than
registers provide.
◼ We will introduce RAM to address this problem.

24

Special Sequential Circuits:

Counters

Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Overview

◼ Counters
◼ Basic Idea

◼ Binary Upward and Downward Counters

◼ Asynchronous (Ripple) Counters
◼ Binary Upward Counter implemented with T flip-flops

◼ Binary Downward Counter implemented with T, JK, and D flip-flops

◼ Pros and Cons

◼ Synchronous Binary Counters
◼ Parallel Binary Counters

◼ Up-Down Binary Counter

◼ Other Counters (BCD Counter, Arbitrary Sequence Counters, …)

◼ Applications of Counters

◼ Summary

26

Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Introducing Counters: Basic Idea

Present State Next State
A B A B

0 0 0 1
0 1 1 0
1 0 1 1
1 1 0 0

00 01

1011

1

11

1

◼ Counters are a specific type of sequential circuit.

◼ Like registers, the state, or the flip-flop values themselves,
serves as the “output.”

◼ The output value increases by one on each clock cycle.

◼ After the largest value, the output “wraps around” back to 0.

◼ Using two bits, we would get something like this:

27

Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

What are Counters good for?

◼ Counters can act as simple clocks to keep track of “time.”

◼ You may need to record how many times something has
happened.
◼ How many bits have been sent or received?

◼ How many steps have been performed in some computation?

◼ Counters can be used as clock frequency dividers:
◼ Given a clock signal with frequency fclk

◼ Given an n-bit counter

◼ We can generate clock signals with frequencies fclk/2, fclk/4,…, fclk/2
n

◼ All processors contain a program counter, or PC.
◼ Programs consist of a list of instructions that are to be executed one

after another (for the most part).

◼ The PC keeps track of the instruction currently being executed.

◼ The PC increments once on each clock cycle, and the next program
instruction is then executed.

28

Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Counters

◼ A counter is a register that goes through a predetermined

sequence of distinct states upon the application of a

sequence of input pulses.

◼ The input pulses may be:

◼ Clock pulses.

◼ Pulses originating from other sources.

◼ The pulses may occur at regular or irregular intervals of time.

◼ In our discussion of counters we assume clock pulses.

◼ The sequence of states may follow:

◼ The binary number sequence -- binary counter

◼ Any other predetermined sequence of states

◼ An n-bit binary counter consists of n flip-flops and can count

from 0 through 2n-1

29

Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

A Basic Binary Upward Counter

Q0

Q1

Q2
Q3

Clock

Clear

Clock

Clear

Q0

Q1

Q2

Q3

0

0

0

0

1

0

0

0

0

1

0

0

1

1

0

0

0

0

1

0

1

0

1

0

0

1

1

0

1

1

1

0

0

0

0

1

1

0

0

1

0

1

0

1

1

1

0

1

0

0

1

1

1

0

1

1

0

1

1

1

1

1

1

1

0

0

0

0

Symbol Function Table

Clear Operation

0 Count Up

1 Qi = 0

Timing Diagram

30

Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

A Basic Binary Downward Counter

Clock

Preset

Q0

Q1

Q2

Q3

1

1

1

1

0

1

1

1

1

0

1

1

0

0

1

1

1

1

0

1

0

1

0

1

1

0

0

1

0

0

0

1

1

1

1

0

0

1

1

0

1

0

1

0

0

0

1

0

1

1

0

0

0

1

0

0

1

0

0

0

0

0

0

0

1

1

1

1

Function Table

Preset Operation

0 Count Down

1 Qi = 1

Timing Diagram

Q0

Q1

Q2
Q3

Clock

Preset

Symbol

31

Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Types of Counters

◼ Asynchronous (Ripple) Counters:
The flip-flop output transition serves as a source for
triggering other flip-flops. No common clock.

◼ Synchronous Counter:
All flip-flops receive the common clock pulse, and
the change of state is determined from the present
state.
◼ Serial and Parallel Binary Counters

◼ Binary Counter with Parallel Load

◼ Up-Down Binary Counter

◼ Other Counters
◼ BCD Counter

◼ Arbitrary sequence Counters

32

Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

A 4-bit Binary Upward Ripple Counter

Clock

Clear

Q0

Q1

Q2

Q3

◼ Observation:

◼ The least significant bit (Q0) is complemented with each

rising-edge of the clock pulse input.

◼ Every time that Q0 goes from 1 to 0, Q1 is complemented.

◼ Every time that Q1 goes from 1 to 0, Q2 is complemented.

◼ Every time that Q2 goes from 1 to 0, Q3 is complemented.

Q0

Q1

Q2
Q3

Clock

Clear

33

Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

◼ The output (Q’) of each flip-
flop is connected to the CLK
input of the next flip-flop in
the sequence. Why?

◼ The flip-flop holding the least
significant bit Q0 receives the
incoming clock pulses. Why?

◼ The T inputs of all flip-flops
are connected to a
permanent logic 1. Why?

◼ All flip-flops respond to the
0-to-1 transition of the input
CLK (rising-edge).

T

CLK

Q

Q

T

CLK

Q

Q
R

T

CLK

Q

Q

T

CLK

Q

Q
R

T

CLK

Q

Q

T

CLK

Q

Q
R

T

CLK

Q

Q

T

CLK

Q

Q
R

Clock

Clear

Q0

Q1

Q2

Q3

A 4-bit Binary Upward Ripple Counter:

Implementation using T Flip-Flops

1

34

Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

A 4-bit Binary Downward Ripple Counter

Clock

Preset

Q0

Q1

Q2

Q3

◼ Observation:

◼ The least significant bit (Q0) is complemented with each

rising-edge of the clock pulse input.

◼ Every time that Q0 goes from 0 to 1, Q1 is complemented.

◼ Every time that Q1 goes from 0 to 1, Q2 is complemented.

◼ Every time that Q2 goes from 0 to 1, Q3 is complemented.

Q0

Q1

Q2
Q3

Clock

Preset

35

Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

T

CLK

Q

Q

T

CLK

Q

Q
S

T

CLK

Q

Q

T

CLK

Q

Q
S

T

CLK

Q

Q

T

CLK

Q

Q
S

T

CLK

Q

Q

T

CLK

Q

Q
S

D

D

D

D

Clock

Preset

Q0

Q1

Q2

Q3

A 4-bit Binary Downward Ripple Counter:

Implementation with T, JK, and D Flip-Flops

S

J

K

CLK

Q

Q

J

K

CLK

Q

Q

Q

Q

S

J

K

CLK

Q

Q

J

K

CLK

Q

Q

Q

Q

S

J

K

CLK

Q

Q

J

K

CLK

Q

Q

Q

Q

S

J

K

CLK

Q

Q

J

K

CLK

Q

Q

Q

Q

Clock

Preset

Q0

Q1

Q2

Q3

1T

CLK

Q

Q

T

CLK

Q

Q
S

T

CLK

Q

Q

T

CLK

Q

Q
S

T

CLK

Q

Q

T

CLK

Q

Q
S

T

CLK

Q

Q

T

CLK

Q

Q
S

Clock

Preset

Q0

Q1

Q2

Q3

1

T Flip-Flops with JK ! T Flip-Flops with D !

36

Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Binary Ripple Counters: Pros and Cons

◼ Recall that Binary Ripple Counters are asynchronous

sequential circuits because the flip-flops are not connected to

a common clock signal.

◼ Advantages:

◼ Ripple Counters have simple hardware structure.

◼ Ripple Counters are suitable for low-power design.

◼ Disadvantages:

◼ Ripple Counters are asynchronous circuits and, with added logic, can

become circuits with delay dependent and unreliable behavior.

◼ Large Ripple Counters can be slow circuits due to the length of time

required for the ripple to finish.

◼ Because of the above disadvantages, synchronous binary

counters are favored nowadays in most of the designs.

37

Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Synchronous Binary Counters

◼ Synchronous Counter is a register
with increment /decrement circuit

◼ Synchronous Counters, in contrast to
ripple counters, have
◼ common clock signal applied to all flip-

flops

◼ clock pulse triggers all flip-flops
simultaneously rather than one at a time,
as in a ripple counter

◼ polarity of the clock is not essential here,
i.e., either rising or falling edge of the
clock signal can be used

◼ The procedure in Lecture 10 can be
used to design synchronous binary
counters.
◼ You know how to do it – see Tutorial 3

±1

FF1

R

R

R

FF2

FFn

:.

Q0

Clock

Clear

Q1

Qn

Register !?
38

Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

A 4-bit Binary Up-Down Counter

Q0

Q1

Q2
Q3

Clock

Clear

EN

CO

LD

D0

D1

D2
D3

Clear LD EN UP Operation

0 0 0 x No Change

0 0 1 0 Count DOWN

0 0 1 1 Count UP

0 1 x x Load

1 x x x Qi = 0

Function TableSymbol

UP

◼ This is a full-featured counter.
◼ You can immediately (asynchronously) clear the counter to 0000 by setting

Clear = 1.

◼ You can load the counter by setting D3-D0 to any four-bit value and LD = 1.

◼ The active-high EN input enables or disables the counter.
◼ When the counter is disabled (EN = 0), it continues to output the same value.

◼ When the counter is enabled (EN = 1), it can increment or decrement, by setting the
UP input to 1 or 0.

◼ The CO output is normally 0, but becomes 1 when the counter reaches its
maximum value, 1111.

39

Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

An 8-bit Counter using 4-bit Counters

◼ As you might expect by now, we can
use these general counters to build
other counters.

◼ Here is an 8-bit counter made from two
4-bit counters.
◼ The bottom device represents the least

significant four bits, while the top counter
represents the most significant four bits.

◼ When the bottom counter reaches 1111 (i.e.,
when CO = 1), it enables the top counter for
one cycle.

◼ Other implementation notes:
◼ The counters share clock and clear signals.

◼ They always count UP.

◼ The counters are never loaded.

40

Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Restricted 4-bit Counter

◼ A counter that “starts” at some value different than
0000 and count upwards
◼ Switch LD to 1, thereby loading the counter with 0110

◼ Switch LD to 0, thereby starting the counter

◼ When CO = 1, then LD signal forces the next state to be
loaded from D3-D0

◼ The result is this counter
 which wraps from 1111 to 0110
 (instead of 0000)

41

0

1

Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Another Restricted Counter

◼ A circuit that counts up to only 1100, instead of 1111

◼ Switch CLR to 1, thereby resetting the counter

◼ Switch CLR to 0, thereby starting the counter

◼ When the counter value reaches 1100, the NAND gate

forces the counter to load, so the next state becomes

0000

42

0

1

Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

BCD Counter

◼ The binary counter with parallel load can be converted into a synchronous

BCD counter by connecting an external AND gate to it.

◼ The counter starts with an all-zero output.

◼ As long as the output of the AND gate is 0, each positive clock pulse

transition increments the counter by one.

◼ When the output reaches the count of 1001, both Q0 and Q3 become 1,

making the output of the AND gate equal to 1. This condition makes Load

active, so on the next clock transition, the counter does not count, but is

loaded from its four inputs.

◼ The value loaded then is 0000.

43

Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Applications of Counters

◼ Simple clock to keep track of time:

Q0

Qn

Clock

Clear

EN

CO

T = ?

: N

Known: the clock frequency fclk

Find: the duration T of an Event

T = N / fclk

Begin Event

End Event

◼ Counting events (E):

Q0

Qn

Clock

Clear

EN

CO

1

Shows how many

events have occurred.

E1
E2 EN

E3

…

:

44

Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Applications of Counters (cont.)

Clock

Clear
Input clock signal

with frequency fclk

◼ Clock Frequency Divider:

0
Q0

Q1

Q2

Q3

Output clock signal with frequency fclk/2

Output clock signal with frequency fclk/4

Output clock signal with frequency fclk/8

Output clock signal with frequency fclk/16

To understand this recall the Timing Diagram of a counter!

Clock

Q0

Q1

Q2

Q3

45

Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Summary

◼ Counters serve many purposes in sequential logic design.

◼ Counting events.

◼ Simple clocks to keep track of time.

◼ Clock frequency dividers.

◼ Program Counters (you will see this later or see your design project).

◼ There are lots of variations on the basic counter.

◼ Some can increment or decrement.

◼ An enable signal can be added.

◼ The counter’s value may be explicitly set.

◼ There are also several ways to make counters.

◼ You can follow the sequential design principles from Lecture 10 to

build counters from scratch.

◼ You could also modify or combine existing counter devices.

46

	Slide 1: Special Sequential Circuits: Registers
	Slide 2: Overview
	Slide 3: Registers
	Slide 4: What are registers good for?
	Slide 5: A Basic Register
	Slide 6: Register with Parallel Load
	Slide 7: Parallel Load
	Slide 8: Shift Register
	Slide 9: Shift Direction
	Slide 10: Shift Register with Parallel Load
	Slide 11: Shift Register with Parallel Load (cont.)
	Slide 12: Bidirectional Shift Register
	Slide 13: Serial Data Transfer
	Slide 14: Receiving Serial Data
	Slide 15: Sending Data Serially
	Slide 16: Registers in Modern Processors
	Slide 17: Registers and Microoperations
	Slide 18: Basic Transfer Microoperation
	Slide 19: Single Register Multiplexer-Based Transfer Microoperations
	Slide 20: Multiple Registers Multiplexer-Based Transfer Microoperations
	Slide 21: Basic Single Operand Arithmetic/Logic/Shift Microoperations
	Slide 22: Basic Multiple Operand Arithmetic/Logic Microoperations
	Slide 23: Multiple Operand Arithmetic/Logic Microoperations
	Slide 24: Registers Summary
	Slide 25: Special Sequential Circuits: Counters
	Slide 26: Overview
	Slide 27: Introducing Counters: Basic Idea
	Slide 28: What are Counters good for?
	Slide 29: Counters
	Slide 30: A Basic Binary Upward Counter
	Slide 31: A Basic Binary Downward Counter
	Slide 32: Types of Counters
	Slide 33: A 4-bit Binary Upward Ripple Counter
	Slide 34: A 4-bit Binary Upward Ripple Counter: Implementation using T Flip-Flops
	Slide 35: A 4-bit Binary Downward Ripple Counter
	Slide 36: A 4-bit Binary Downward Ripple Counter: Implementation with T, JK, and D Flip-Flops
	Slide 37: Binary Ripple Counters: Pros and Cons
	Slide 38: Synchronous Binary Counters
	Slide 39: A 4-bit Binary Up-Down Counter
	Slide 40: An 8-bit Counter using 4-bit Counters
	Slide 41: Restricted 4-bit Counter
	Slide 42: Another Restricted Counter
	Slide 43: BCD Counter
	Slide 44: Applications of Counters
	Slide 45: Applications of Counters (cont.)
	Slide 46: Summary

