

Combinational Logic Design Combinational Functions and Circuits

Overview

- Combinational Circuits
- Design Procedure
 - Generic Example
 - Example with don't cares: BCD-to-SevenSegment converter
- Binary Decoders
 - Functionality
 - Circuit Implementation with Decoders
 - Expansion
- Multiplexers (MUXs)
 - Functionality
 - Circuit Implementation with MUXs
 - Expansions

Fall 2023

Combinational Circuits

A combinational circuit consists of logic gates

- The circuit outputs, at <u>any time</u>, are determined by combining the values of the inputs
- For *n* inputs, there are 2ⁿ possible binary input combinations
- For each combination, there is one possible binary value on each output
- Hence, a combinational circuit can be described by:
 - Truth Table
 - lists the output values for each combination of the inputs
 - m Boolean functions, one for each output

Combinational vs. Sequential Circuits

- Combinational circuits are memory-less!
 - Thus, the output values depend ONLY on the current input values

- Sequential circuits consist of combinational logic as well as memory (storage) elements!
 - Memory elements used to store certain circuit states
 - Outputs depend on BOTH current input values and previous input values kept in the storage elements

Combinational Circuit Design

- Design of a combinational circuit is the development of a circuit from a description of its function
- It starts with a problem specification
- It produces
 - a logic diagram

OR

set of Boolean equations that represent the circuit

Design Procedure

Consists of 5 major steps:

- Determine the required number of inputs and outputs and assign variables to them
- Derive the truth table that defines the required relationship between inputs and outputs
- 3. Obtain and <u>simplify</u> the Boolean functions
 - -- Use K-maps, algebraic manipulation, CAD tools, etc.
 - -- Consider any design constraints (area, delay, power, available libraries, etc.)
- Draw the logic diagram
- Verify the correctness of the design

Design Example

- Design a combinational circuit with 4 inputs that generates a 1 when
 - the # of 1s on the inputs equals the # of 0s
 OR
 - the # of 1s on the inputs equals to 1
- Constraints: Use only 2-input NAND gates!

Let us do it on the black board

Another Example: BCD-to-Seven-Segment Converter

- Converts BCD code to Seven-Segment code
 - Used to display numeric info on 7 segment display
 - Input is a 4-bit BCD code (w, x, y, z)
 - Output is a 7-bit code (a,b,c,d,e,f,g)

Input: 0000_{BCD}

Output: 11111110(a=b=c=d=e=f=1, g=0)

BCD-to-Seven-Segment (cont.) Truth Table

Digit	wxyz	abcdefg	Digit	wxyz	abcdefg
0	0000	1111110	8	1000	1111111
1	0001	0110000	9	1001	111X011
2	0010	1101101		1010	XXXXXXX
3	0011	1111001		1011	XXXXXX
4	0100	0110011		1100	XXXXXXX
5	0101	1011011		1101	/xxxxxxx
6	0110	X011111		1110	XXXXXXX
7	0111	11100X0		1111	/xxxxxxx

Continue the design at home ...

Design Procedure for Complex Circuits

- In general, digital systems are complex and sophisticated circuits
 - A circuit may consist of millions of gates!
- Impossible to design each and every circuit from scratch using the procedure you have just seen
- There is no formal procedure to design complex digital circuits!

How to design complex digital circuits?

Design Procedure for Complex Circuits

- Fortunately, complex digital circuits can be implemented as composition of smaller and simpler circuits
- These smaller and simpler circuits are fundamental and we call them basic functional blocks
- Basic functional blocks can be designed using the procedure you have just seen!
- Reuse basic functional blocks to design new circuits
- Use Design Hierarchy
- Use Computer-Aided Design (CAD) tools
 - Schematic Capture tools
 - Hardware Description Languages (HDL)
 - Logic Simulators
 - Logic Synthesizers

More details will be given at the Hands-on tutorials!

Basic Functional Blocks

- Combinational Functional Blocks
 - Logic Gates
 - Code Converters
 - Binary Decoders and Encoders
 - Multiplexers and Demultiplexers
 - Programmable Logic Arrays
 - Binary Adders and Subtractors
 - Binary Multipliers and Dividers
 - Shifters, Incrementors and Decrementors
- Sequential Functional Blocks
 - Flip-Flops and Latches
 - Registers and Counters
 - Sequencers
 - Micro-programmed Controllers
- Memories

Binary Decoder

- A combinational circuit that converts an n-bit binary number to a unique 2ⁿ-bit one-hot code!
 - Circuit is called n-to-2ⁿ decoder

 For each input combination only one unique output is 1 (one-hot code)!

Enable signal (E)
 if E = 0 then
 all outputs are 0
 else

$$y_j = f(x_0, x_1, ..., x_{n-1})$$

(j = 0..2ⁿ-1)

Inputs

1-to-2 Decoder

1-to-2 Decoder without Enable signal

Truth Table and Equations

Α	D_0	D_1
0	1	0
1	0	1

$$D_0 = A'$$
$$D_1 = A$$

1-to-2 Decoder with Enable signal

Е	Α	D_0	D_1
0	0	0	0
0	1	0	0
1	0	1	0
1	1	0	1

2-to-4 Decoder

Logic Symbol

Truth Table and Equations

A ₁	A ₀	D_0	D ₁	D_2	D_3
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

$$D_0 = A_1'A_0'$$
 $D_1 = A_1'A_0$
 $D_2 = A_1A_0'$
 $D_3 = A_1A_0$
All minterms of 2 variables

2-to-4 Decoder with Enable

3-to-8 Decoder

Logic Symbol

Truth Table

A_2	A ₁	A ₀	D_0	D_1	D_2	D_3	D_4	D ₅	D_6	D_7
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1

Notice: D0 to D7 represent all minterms of 3 variables.

3-to-8 Decoder (Logic Circuit)

D0 to D7 are all minterms of 3 variables!

n-to-2ⁿ Decoder (generalization)

- n inputs, A₀, A₁,..., A_{n-1}, are decoded into 2ⁿ outputs, D₀ through D_{2ⁿ⁻¹}.
- Each output D_j represents one of the minterms of the n input variables
- $\mathbf{D}_j = \mathbf{1}$ when the binary number $(\mathbf{A}_{n-1}...\mathbf{A}_1\mathbf{A}_0) = j$
 - Shorthand: $D_j = m_j$
- The outputs are <u>mutually exclusive</u>
 - exactly one output has the value 1 at any time
 - the others are 0
- Due to the above properties, an arbitrary Boolean function of *n* variables can be implemented with *n*-to-2ⁿ Decoder and OR gates!

Implementing Boolean Functions using Decoders

- Select outputs of a decoder that implement minterms included in the Boolean function
- Make a logic OR of the selected outputs
- Example:
 - Implement Boolean function $F(W,X,Y,Z) = \Sigma m(1,5,6,13,15)$
 - F is a function of 4 variables → we use 4-to-16 Decoder
- Any combinational circuit can be constructed using decoders and OR gates! Why?

Another Example: Implementing a Binary Full Adder using a Decoder

- Binary Full Adder has 3 inputs and 2 outputs:
 - Inputs: two bits to be added (b₁ and b₀) and a carry-in (C_{in})
 - Outputs: sum ($S = b_0 + b_1 + C_{in}$) and carry-out (C_{out})
- Logic Functions:

C_in	b_1	b_0	S	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$S(C_{in},b_1,b_0) = \Sigma m(1,2,4,7)$$

$$C_{out}(C_{in},b_1,b_0) = \Sigma m(3,5,6,7)$$

Decoder Expansions

- Larger decoders can be constructed using a number of smaller ones
- Use composition of smaller decoders to construct larger decoders
- Example:
 - Given: 2-to-4 decoders
 - Required: 3-to-8 decoder
 - Solution: Each decoder realizes half of the minterms Enable selects which decoder is active:
 - A2 = 0: enable top decoder
 - A2 = 1: enable bottom decoder

4-to-16 Decoder with 2-to-4 Decoders: Tree Composition of Decoders

Multiplexer (MUXs)

- Selects one of many input data lines and directs it to a single output line
- Selection controlled by
 - set of input lines
 - whose # depends on the # of the data input lines
- A 2ⁿ-to-1 multiplexer has
 - 2ⁿ data input lines
 - 1 output line
 - n selection lines

4

2ⁿ-to-1 Multiplexer (General Structure)

2-to-1 Multiplexer

4-to-1 Multiplexer without Enable

4-to-1 Multiplexer with Enable

4

2ⁿ-to-1 Multiplexer

Implementing Boolean Functions using Multiplexers

- Any Boolean function of n variables can be implemented using a 2ⁿ-to-1 Multiplexer. Why?
 - Multiplexer is basically a decoder with outputs ORed together!
 - SELECT signals generate the minterms of the function
 - The data inputs identify which minterms are to be combined with an OR
- **Example:** Consider function $F(A,B,C) = \sum m(1,3,5,6)$
 - It has 3 variables, therefore we can implement it with 8-to-1 MUX

Another Example

- Consider function F(A,B,C,D) specified by the truth table on the right-hand side
- F has 4 variables → we use 16-to-1 MUX

Α	В	С	D	F
0	0	0	0	0
0	0	0	1	1
0	0	1	0	0
0	0	1	1	1
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

4

Efficient Method for Implementing Boolean Functions using Multiplexers

- We have seen that implementing a function of n variables with 2^n -to-1 MUX is straightforward.
- However, there exist more efficient method where any function of n variables can be implemented with 2ⁿ⁻¹-to-1 MUX. Consider an arbitrary function F(X₁,X₂,...,X_n):
 - We need a 2^{n-1} line MUX with n-1 select lines.
 - Enumerate function as a truth table with consistent ordering of variables, i.e., $X_1, X_2, ..., X_n$.
 - Attach the most significant n-1 variables to the n-1 select lines, i.e., X₁,X₂,...,X_{n-1}
 - Examine pairs of adjacent rows. The least significant variable in each pair is $X_n = 0$ and $X_n = 1$.
 - Determine whether the function output **F** for the $(X_1, X_2, ..., X_{n-1}, 0)$ and $(X_1, X_2, ..., X_{n-1}, 1)$ combination is (0,0), (0,1), (1,0), or (1,1).
 - Attach 0, X_n , X_n , or 1 to the data input corresponding to $(X_1, X_2, ..., X_{n-1})$ respectively.

Example

- Again, consider function $F(A,B,C) = \sum m(1,3,5,6)$
- It has 3 variables
- We can implement it using 4-to-1 MUX instead of 8-to-1 MUX.

Α	В	С	F	
0	0	0	0	F = C
0	0	1	1	r = C
0	1	0	0	Г С
0	1	1	1	F=C
1	0	0	0	Г С
1	0	1	1	F = C
1	1	0	1	F = C'
1	1	1	0	r = C

Another Example

Again, consider function F(A,B,C,D) specified by the truth table below. F has 4 variables → we use 8-to-1 MUX instead of 16-to-1 MUX.

Α	В	С	D	F	
0	0	0	0	0	F = D
0	0	0	1	1	1 - 0
0	0	1	0	0	F = D
0	0	1	1	1	1 - 0
0	1	0	0	1	F = D
0	1	0	1	0	1 - 0
0	1	1	0	0	F = 0
0	1	1	1	0	1 - 0
1	0	0	0	0	F = 0
1	0	0	1	0	0
1	0	1	0	0	F = D
1	0	1	1	1	1 - 0
1	1	0	0	1	F = 1
1	1	0	1	1	'
1	1	1	0	1	F = 1
1	1	1	1	1	'

MUX as a Universal Gate

- We can construct OR, AND, and NOT gates using 2-to-1 MUX
- Thus, 2-to-1 MUX is a universal gate!
- Recall the equation of 2-to-1 MUX: Z = S•I₁ + S'•I₀

$$z = x_1 \cdot 1 + x_1' \cdot x_0$$

$$= x_1 + x_1' \cdot x_0$$

$$= (x_1 + x_1') \cdot (x_1 + x_0)$$

$$= 1 \cdot (x_1 + x_0) = x_1 + x_0$$

$$z = x^{\circ} 0 + x'^{\circ} 1$$
 $z = x_0^{\circ} x_1 + x_0'^{\circ} 0$
= x' = $x_0^{\circ} x_1$

Multiplexer Expansions

- Larger multiplexers can be constructed using a number of smaller ones
- Use composition of smaller multiplexers
- Example:
 - Given: 4-to-1 multiplexers
 - Required: 8-to-1 multiplexer
 - Solution: Each multiplexer selects half of the data inputs. Enable signal selects which multiplexer is active:
 - S₂ = 0: enable top multiplexer
 - S₂ = 1: enable bottom multiplexer

Multiplexer Expansions (cont.)

Until now, we have examined 1-bit data inputs selected by a MUX
A —— [3 to 4]

- What if we want to select m-bit data/words?
 - Example: MUX that selects between 2 sets of 4-bit inputs

Е	S	Y(03)
1	0	A(03)
1	1	B(03)
0	Х	0000

How to construct this 2-to-1 4-line MUX?

Example: 2-to-1 4-line Multiplexer

- Uses four 2-to-1 MUXs with common select (S) and enable (E)
- Select line chooses between A_i's and B_i's. The selected four-wire digital signal is sent to the Y_i's
- Enable line turns MUX on and off (E=1 is on)

