!'_ Combinational Logic Design

Combinational Functions and Circuits

Overview

= Combinational Circuits

= Design Procedure
= Generic Example
= Example with don'’t cares: BCD-to-SevenSegment converter

= Binary Decoders
= Functionality
= Circuit Implementation with Decoders
= Expansion

= Multiplexers (MUXs)

= Functionality
= Circuit Implementation with MUXs
= Expansions

Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Combinational Circuits

= A combinational circuit consists of logic gates

n-inputs ~; | m-outputs

il

= The circuit outputs, at any time, are determined by combining
the values of the inputs

= For n inputs, there are 2" possible binary input combinations

= For each combination, there is one possible binary value on
each output

= Hence, a combinational circuit can be described by:

= Truth Table
= lists the output values for each combination of the inputs

= M Boolean functions, one for each output

Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Combinational vs. Sequential Circuits

= Combinational circuits are memory-less!
= Thus, the output values depend ONLY on the current input values

: n m
n-inputs I m-outputs

= Sequential circuits consist of combinational logic as well as
memory (storage) elements!
= Memory elements used to store certain circuit states

= Outputs depend on BOTH current input values and previous input
values kept in the storage elements

ya
4

Present
Next '
state sState

Vi
4

Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

n-inputs M-OutpUtS

:L Combinational Circuit Design

= Design of a combinational circuit is
the development of a circuit from a
description of its function

= |t starts with a problem specification

= It produces
= a logic diagram
OR
= Set of Boolean equations that represent the circuit

Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

i Design Procedure

Consists of 5 major steps:

1. Determine the required number of inputs and
outputs and assign variables to them

2. Derive the truth table that defines the required
relationship between inputs and outputs

3. Obtain and simplify the Boolean functions
-- Use K-maps, algebraic manipulation, CAD tools, etc.

-- Consider any design constraints (area, delay, power,
available libraries, etc.)

2. Draw the logic diagram
5. Verify the correctness of the design

Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

i Design Example

= Design a combinational circuit with 4 inputs
that generates a 1 when

= the # of 1s on the inputs equals the # of Os
OR
= the # of 1s on the inputs equals to 1

= Constraints: Use only 2-input NAND gates!

Let us do it on the black board

Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

BCD-to-Seven-Segment Converter

= Converts BCD code to Seven-Segment code
= Used to display numeric info on 7 segment display
= Input is a 4-bit BCD code (w, X, Y, z)
= Output is a 7-bit code (a,b,c,d,e,f,g)
f'

= Example: e’ ¢

= Input: 00005+, d
= Output: 1111110
(a:b:C: =—e=f=1]1, g:O)

Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

i Another Example:

il

N< X S
Q—+~0OoOT QD

BCD-to-Seven-Segment (cont.)

Continue the design at home ...

Fall 2023

Truth Table

Digit WXYZ abcdefg Digit WXYZ abcdefg
0 0000 1111110 8 1000 1111111
1 0001 0110000 9 1001 111011
2 0010 1101101 1010 xx>/</xxxx
3 0011 1111001 1011 x%xxxxx
4 0100 0110011 1100 XXxxxxx
5 0101 1011011 1101 / x>§%xxxx
6 0110 X011111 1110 }«&xxxxx
7 0111 11100X0~— 1111/ / XXKXKXX

7?7

Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University d

iDesign Procedure for Complex Circuits

= In general, digital systems are complex and
sophisticated circults

= A circuit may consist of millions of gates!

= Impossible to design each and every circuit
from scratch using the procedure you have
just seen

= There Is no formal procedure to design
complex digital circuits!

How to design complex digital circuits?

Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 10

Design Procedure for Complex Circuits

= Fortunately, complex digital circuits can be implemented as
composition of smaller and simpler circuits

= These smaller and simpler circuits are fundamental and we
call them basic functional blocks

= Basic functional blocks can be designed using the procedure
you have just seen!

= Reuse basic functional blocks to design new circuits
= Use Design Hierarchy

= Use Computer-Aided Design (CAD) tools

= Schematic Capture tools

= Hardware Description Languages (HDL)
= Logic Simulators

= Logic Synthesizers

More details will be given at the Hands-on tutorials!

Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 11

Basic Functional Blocks

= Combinational Functional Blocks
= Logic Gates
= Code Converters
= Binary Decoders and Encoders
= Multiplexers and Demultiplexers
= Programmable Logic Arrays
= Binary Adders and Subtractors
= Binary Multipliers and Dividers
= Shifters, Incrementors and Decrementors

= Sequential Functional Blocks
= Flip-Flops and Latches
= Registers and Counters
= Sequencers
= Micro-programmed Controllers

= Memories

Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 12

Binary Decoder

= A combinational circuit that converts an n-bit binary

number to a unigue 2"-bit one-hot code!
= Circuit is called n-to-2" decoder Inputs

= For each input combination only .~ &=
one unique output is 1
(one-hot code)!

-l

p— =

[|

= Enable signal (E)

If E =0 then n-Input Binary Decoder ¥
all outputs are 0

— [

elf’je: f(X0s X151 Xn-1) t f { f F

(j = 0. _2n_1) Outputs

Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

13

1-to-2 Decoder

= 1-t0-2 Decoder without Enable signal

Logic Symbol
Dl-to-dZ
ecodader
O——D
0 0
A—2 1—n,

Truth Table and Equations

Al |D,| D,
ol|l1]o0
1 1

= 1-to-2 Decoder with Enable signal

m >

Fall 2023

1-to-2
Decoder

0
20 1
enable

E|A| | D, | D,
olo[]o]o
ol1][]o]o
1{o][1]o0
1{1]]of1

Logic Circuit

I (|
E : J' a4 D,
Do=EA decoder enable
D, =EA |ogic logic

Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 14

2-t0-4 Decoder

Logic Symbol Truth Table and Equations
D,=A Ay
2-t0-4 A1l A Do| D1 | D2 | Ds Do _ Al, AO
Decoder ol o 11lololo 1~ /™M1 Mo
A—2° 2 go D, =AAy
A—] 21 5 —D; 011 011]10]0 D, :_Ale
3}—>D; [1]0 ololz11lo0 All minterms of
1l1llololol1 2 variables
Logic Circulit e
A A AL A E

E4by

8 D,

D

| o,

.

Fall 2023

2-to-4

20

Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

3-t0-8 Decoder

Logic Symbol
3-to-8
Decoder

opP——D,

1—D
0 1
A2 2——n,
A—21 0] e— 83
A—] 22 4 g
2 5 D
6—Ds
7D,

3-to-8
Decoder

op——D,

1——D
— 120 1
A2 2 D,
A—12! I 83
A,—— 22 4 4
2 5——D:
6 D¢
E ——enable 7 D,

Fall 2023

Truth Table

A2 Al AO DO Dl D2 D3 D4 D5 D6 D7
0O]01]O 11]0]1]0]1]0}10]0]10]O0
O]l]0]1 0112101001 0]101]O0
O]l]110 0O1]01110]0]10]10]O0
Ol1]1 0101011101 0]1O0]O0
110]0 O1]0]JO0}JO]l1]0]O0]O0
11011 0O1]01O0JO]lO]112]10]O0
11110 0O1J]0JO0JO]JO]JO0O]1]O0
11111 0O1]0]1]0]JO0]J]O0O]JO0]10]1

Notice: DO to D7 represent all minterms

of 3 variables.

Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

16

3-to-8 Decoder (Logic Circuit)

Day=A,A,A, DO to D7 are

> D
S0
Il mi
O o = g WPt
=

Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

17

i n-to-2" Decoder (generalization)

= N inputs, Ay, Aq,..., A1, are decoded into 2"
outputs, D, through D2,

= Each output D, represents one of the minterms of
the n input variables

= D; =1 when the binary number (A ;...A;Ap) =]
= Shorthand: D, = m,

= The outputs are mutually exclusive
= exactly one output has the value 1 at any time
= the others are 0

= Due to the above properties, an arbitrary Boolean
function of n variables can be implemented with
n-to-2" Decoder and OR gates!

Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

18

Implementing Boolean Functions

using Decoders

Fall 2023

Select outputs of a decoder
that implement minterms
Included in the Boolean
function

Make a logic OR of the
selected outputs

Example: 7 —
= Implement Boolean function Y

F(W,X,Y,Z) =2m(1,5,6,13,15) x

= F is a function of 4 variables > W —
we use 4-t0-16 Decoder

Any combinational circuit
can be constructed using

decoders and OR gates!

4-t0-16
Decoder

0
1
2
3
4
5

0
2 6
21 4
22 8
9

3
2 10
11
12
13
14
15

1] HI@H |

Why?

Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 19

Full Adder using a Decoder

i Another Example: Implementing a Binary

= Binary Full Adder has 3 inputs and 2 outputs:
= |Inputs: two bits to be added (b; and b,) and a carry-in (C;)
= Outputs: sum (S = by+b,;+C;) and carry-out (C_,)

= Logic Functions:

S(C,.,by,by) ==m(1,2,4,7)

Cin [P2 | bo S | Cou Cout(Cimbl’bO) = Zm(3’51617)

o lo]ol|[o] o

o lofa||2] o Decodor

o |1]0 11 0)

o [1]2]]o] 1 by—2° o] S

1 |{o]o|]1] 0| p—T ;

1 011 0 1 Ci, p2 ZQ 3Cout
1 |1|o]|o] 2 1 |

1 [1]1 1] 1

Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 20

Decoder Expansions

= Larger decoders can be constructed using a number

of smaller ones

= Use composition of smaller decoders to construct

larger decoders

= Example:
= Given: 2-to-4 decoders N

= Required: 3-t0-8 decoder

= Solution: Each decoder
realizes half of the minterms
Enable selects which decoder
IS active:
« A2 = 0: enable top decoder
= A2 = 1: enable bottom decoder

2-to—4
Decoder

20
21

Enable

L m = o

2—-to—4
Decoder

20

Enable

W mn = o

Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

21

4-t0-16 Decoder with 2-to-4 Decoders:
Tree Composition of Decoders

. - Xpo Xy
x=f; 0 ‘ 1 0
| 1
Level 1 # —En DEC
i 2
¥ N i)
% % |
1 {i En I 0 Eni 1 i En I Lk En
Level 2 DEC 3 DEC 2 DEC 1 DEC 0
i 2 | i 32 | il 3 2 1 0 i 2 | il
0 u‘ ﬂ-‘ [:I‘ {I‘ (0 {:I‘ [:I‘ []‘ I‘ l:]‘ [:I‘ u‘ 0 n‘ l:]‘
L5 2 8 =1 4 o
Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

22

Multiplexer (MUXS)

= Selects one of many input data
lines and directs it to a single

_ Enable
output line
= Selection controlled by ’_FL
= set of input lines 2" Data_ — | Daa
= whose # depends on Inputs | = Output
the # of the data input lines _an

= A 2"-to-1 multiplexer has
= 2" data input lines
= 1 output line Select
= N selection lines Inputs

Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 23

2"-to-1 Multiplexer (General Structure)

DataFlow
Inputs on < : Output
Control
2n
/
7
Selection
Lines
Select Y
Inputs f] Enable
Input

Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 24

2-t0-1 Multiplexer

Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University E

Logic Symbol | 240 TruthTables |s|Y||[S|lL]L]|]|Y
1, 0 v (compact and full) L,[l[o|lo]o 0
|| — 1] 1 010]1 0
Sl K-map and :
Equation 0f1(0 1
2-t0-1 ol o 011]1 1
MUX s_00 01 "TT 10 1100 0
l,———0 With v 0 1T
Enable === 11011 1
l, —1 S|1 o Y
11110 0
S —— I,
| Y =Sl + 8l 1|l1]11]]1
Logic Circuits E
| 1-to-2 ' ! 2x2AND-OR | 1-t0-2 ! | 2Xx2AND-OR ! .Enable'
1Decoder , : Selection Circuit | Decoder: |Select|on Circuit; lecwt,
|

(R |

4-to-1 Multiplexer without Enable

Logic Symbol Compact Truth Tables Equation
A-t0-1
MSX S:1S, Y
lo 0 ofof [l Y =5,S)ly+ S;’Syl; +
R B —— v | O]1]]h S1So’l +S1S0l3
1> 2 1{of |
£ 3 1l1]]1,
SO T 1 e 1
S;— | 2-t0-4 Decoder l . 4x2AND-OR 1
| |1 Selection Circuit
| : |—k :
So II I 0 | I
: }F l
. I Col
Loqgic Circuit I ® j—'—lﬁ :
|
I : |1~ :
e YL !

Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 26

4-to-1 Multiplexer with Enable

Logic Symbol Compact Truth Tables Equation
MOX E[s,[s,[[y
:o—‘; 1]ofo]]]|Y=E(S, S l,+ S, Syl,+
1 —Y 1 0 1 |1 Slso’|2 + Slsol3)
2 2 1lalof |1
l,——13 2
S, i I I I
E, 2-to-4 Decoder | 1 4X2AND-OR ::Ehab|_e'
S,——e welectlon Circuit | | Circuit |
|
. : |
So :I > le ! |
|
Logic Circuit : : A : |
I I |2_:» | :
e e gt

Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University E 27

i 2"-to-1 Multiplexer

28

Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Fall 2023

using Multiplexers

i Implementing Boolean Functions

= Any Boolean function of n variables can be
Implemented using a 2"-to-1 Multiplexer. Why?

= Multiplexer is basically a decoder with outputs ORed
together!

= SELECT signals generate the minterms of the function

= The data inputs identify which minterms are to be
combined with an OR

= Example: Consider function F(A,B,C) = >m(1,3,5,6)
= It has 3 variables, therefore we can implement it with 8-to-1 MUX

A BC 01 1 01010
| || I
S,S,; S, 7 6 54 3 210
8-to-1 Muliplexer
Y
|
F

Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Rr|lkr|lo|lo|lRr|k|lo|lOo|lR|R|lO|lO|R|FR|o|o]O

Another Example A|B
0|0
= Consider function F(A,B,C,D) specified by the truth 0]0
table on the right-hand side 0|0
= F has 4 variables - we use 16-to-1 MUX ol o
1% 16-to-1 0|1
0 2 MUX 0|1
1 3
1 4 0|1
0 2 01
0 7
0 8 110
8 S130 Y—F =19
e {0
= AE
1 15 i
D S, 11
C Sy 1)1
A 33 1|1

Rr|lo|lr|lOo|Rr|O|Rr|O|R|O|R|O|R|O|R|0]|U
RlRr|lRr|Rr|r|O|lO|O|lOC|O|O|R |, |O|F|O]|T

Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Efficient Method for Implementing
Boolean Functions using Multiplexers

= We have seen that implementing a function of n variables
with 2"-to-1 MUX is straightforward.

= However, there exist more efficient method where any
function of n variables can be implemented with 2"-1-to-1
MUX. Consider an arbitrary function F(X,X,,...,X,):

Fall 2023

We need a 2"1 line MUX with n-1 select lines.

Enumerate function as a truth table with consistent ordering of
variables, i.e., X{,X5,..., X, .

Attach the most significant n-1 variables to the n-1 select lines, i.e.,
X1, Xoyeees X 4

Examine pairs of adjacent rows. The least significant variable in each
pairis X, =0 and X, = 1.

Determine whether the function output F for the (X;,X,,...,X,4,0) and
(X1,X5,...,X,.1,1) combination is (0,0), (0,1), (1,0), or (1,1).

Attach 0, X,, X/, or 1 to the data input corresponding to (X;,X,,...,X.;)
respectively.

Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 31

Example

= Again, consider function F(A,B,C) = >m(1,3,5,6)
= It has 3 variables

= We can implement it using 4-to-1 MUX instead of
8-to-1 MUX.

A|B|C|F

0/0]0}0 C 4-to-1
F=C

olol1]1 ; MUX

ol1/0]o0 1
F=C Y F

o|1(1]1 5

1/o0(o0]o0 o — 3

1|lof1f2| B —S,

1]1/0]1 A >1
F=C’

1]1)1]0

Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Another Example

= Again, consider function F(A,B,C,D) specified by the
truth table below. F has 4 variables = we use 8-to-1
MUX instead of 16-to-1 MUX.

8 x 1 MUX

A B C DJ|F
0 0 0 0[]0 r_g © So
0 0 0 1] 1 B Sy
0 0 1 o0 £_p A S,
0 0 1 1] 1
0 1 0 O] 1 —

F=D D‘ L 4 D
0o 1 0 1|0 | 1 .
0 1 1 0[0 p_g
o 1 1 1|0 t 2
1 0 0 0|0 0 3

F=0
1 0 0 1 0 T_.q
1 0 1 1 1 1 6
1 1 0 01

F=1
1 1 0 1|1 T—?
1 1 1 0 1 F=1
1 1 1 1 1

Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

MUX as a Universal Gate

= We can construct OR, AND, and NOT gates using 2-to-1 MUX
= Thus, 2-to-1 MUX is a universal gate!
= Recall the equation of 2-to-1 MUX: Z = Sel, + S’¢|,

OR NOT AND
1 —1) 0 —1 Xy 1
WX MUX .- MUX -
X 0 o J'—ns 0—0 ¢
X1 X o

—_— J
Z = Xg*1+ X, "*Xg z=x*0+ X1 7 =x,%X,+ X,* 0

= X1 + X *X,
= (XX)o(X1+X)

= 1e(X; + Xg) = X3 + X
Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 34

— J —_—

Multiplexer Expansions

= Larger multiplexers can be constructed using a number of
smaller ones

= Use composition of smaller multiplexers

= Example: =0 .1
= Given: 4-to-1 multiplexers ILl—1 MUX
= Required: 8-to-1 multiplexer l,—12 v
= Solution: Each multiplexer 3

selects half of the data inputs. S, T S,
Enable signal selects which S—1 S; E
multiplexer is active: S, >_' D«- Y
= S, = 0: enable top multiplexer L0 401
= S, = 1: enable bottom multiplexer .—1 MUX
ls—12
Y
l,—|3
So
S, E
—

Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

i Multiplexer Expansions (cont.)

= Until now, we have examined 1-bit data inputs

selected by a MUX A 2-t0-1 y
B MUX
S
3

= What if we want to select m-bit data/words?
= Example: MUX that selects between 2 sets of 4-bit inputs

A(o..3);14> 2t0-1 | 4 E|s]||Y(.3)
4 | 4line P> Y(0.3) 1o [Aw©.3
B(0..3) # MUX 11 5(0.3)
> 0| x 0000

El

= How to construct this 2-to-1 4-line MUX?

Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 36

i Example: 2-to-1 4-line Multiplexer

= Uses four 2-to-1 MUXs A
with common select (S)) o ; “"EUX
and enable (E) e . .

= Select line chooses 21 i’ ot
between A/’s and B/s. L s “I”EUX
The selected four-wire I)
digital signal is sent to S
the ;' S

= Enable line turns MUX t '
on and off (E=1 is on) ;\—Cl’ ot

3 MUX
S E

Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

	Slide 1: Combinational Logic Design Combinational Functions and Circuits
	Slide 2: Overview
	Slide 3: Combinational Circuits
	Slide 4: Combinational vs. Sequential Circuits
	Slide 5: Combinational Circuit Design
	Slide 6: Design Procedure
	Slide 7: Design Example
	Slide 8: Another Example: BCD-to-Seven-Segment Converter
	Slide 9: BCD-to-Seven-Segment (cont.) Truth Table
	Slide 10: Design Procedure for Complex Circuits
	Slide 11: Design Procedure for Complex Circuits
	Slide 12: Basic Functional Blocks
	Slide 13: Binary Decoder
	Slide 14: 1-to-2 Decoder
	Slide 15: 2-to-4 Decoder
	Slide 16: 3-to-8 Decoder
	Slide 17: 3-to-8 Decoder (Logic Circuit)
	Slide 18: n-to-2n Decoder (generalization)
	Slide 19: Implementing Boolean Functions using Decoders
	Slide 20: Another Example: Implementing a Binary Full Adder using a Decoder
	Slide 21: Decoder Expansions
	Slide 22: 4-to-16 Decoder with 2-to-4 Decoders: Tree Composition of Decoders
	Slide 23: Multiplexer (MUXs)
	Slide 24: 2n-to-1 Multiplexer (General Structure)
	Slide 25: 2-to-1 Multiplexer
	Slide 26: 4-to-1 Multiplexer without Enable
	Slide 27: 4-to-1 Multiplexer with Enable
	Slide 28: 2n-to-1 Multiplexer
	Slide 29: Implementing Boolean Functions using Multiplexers
	Slide 30: Another Example
	Slide 31: Efficient Method for Implementing Boolean Functions using Multiplexers
	Slide 32: Example
	Slide 33: Another Example
	Slide 34: MUX as a Universal Gate
	Slide 35: Multiplexer Expansions
	Slide 36: Multiplexer Expansions (cont.)
	Slide 37: Example: 2-to-1 4-line Multiplexer

