

Combinational Logic Circuits Part IV -Theoretical Foundations

Overview

- Basic Boolean Functions
 - Basic Boolean functions of 1 and 2 binary variables
- Logic Basis and Conversions
 - Basis NAND, Basis NOR
- Logic Gates (NOT, AND, OR, NAND, NOR, XOR, XNOR)
- Combinational Logic Circuits from Boolean Functions
 - Circuits with AND-OR-NOT gates, with NAND gates, with NOR gates

Fall 2023

Basic Boolean Functions

- Given N binary variables there exist 2^{2N} different Boolean functions of these N variables
- Some functions of 1 and 2 variables we will call Basic Boolean Functions
- There exist 4 Boolean functions of 1 variable
- The truth tables and names of these functions are given below:
 - F1(X) = 0 -- function *constant 0*
 - F2(X) = X' -- function inversion (NOT)
 - F3(X) = X -- function identity
 - F4(X) = 1 -- function constant 1

Χ	F1	F2	F3	F4
0	0	1	0	1
1	0	0	1	1

Boolean Functions of 2 Variables (1)

- There exist 16 different functions of 2 variables
 - G1(X,Y) = 0 -- constant 0
 - G2(X,Y) = (X+Y)'-- NOT-OR (NOR)
 - G3(X,Y) = X'Y
 - G4(X,Y) = X'
 - G5(X,Y) = XY'
 - G6(X,Y) = Y'
 - G7(X,Y) = X'Y+XY'-- Exclusive-OR (XOR)
 - G8(X,Y) = (X•Y)'-- NOT-AND (NAND)

X	Υ	G1	G2	G3	G4
0	0	0	1	0	1
0	1	0	0	1	1
1	0	0	0	0	0
1	1	0	0	0	0

X	Υ	G5	G6	G7	G8
0	0	0	1	0	1
0	1	0	0	1	1
1	0	1	1	1	1
1	1	0	0	0	0

4

Boolean Functions of 2 Variables (2)

- There exist 16 different functions of 2 variables
 - $G9(X,Y) = X \cdot Y -- AND$
 - G10(X,Y) = X'Y'+XY-- Exclusive-NOR (XNOR)
 - G11(X,Y) = Y
 - G12(X,Y) = X' + Y
 - G13(X,Y) = X
 - G14(X,Y) = X + Y'
 - G15(X,Y) = X + Y -- OR
 - G16(X,Y) = 1 -- constant 1

X	Υ	G9	G10	G11	G12
0	0	0	1	0	1
0	1	0	0	1	1
1	0	0	0	0	0
1	1	1	1	1	1

X	Υ	G13	G14	G15	G16
0	0	0	1	0	1
0	1	0	0	1	1
1	0	1	1	1	1
1	1	1	1	1	1

Logic Basis

- <u>Definition:</u> Logic Basis is a minimal set of basic Boolean functions with which an arbitrary Boolean function can be represented
- Function set = {AND, OR, NOT}
 - This set consists of functions G9, G15, and F2
 - G9(X,Y) = X•Y -- this function equals to logic operation AND
 - G15(X,Y) = X+Y -- this function equals to logic operation OR
 - F2(X) = X' -- this function equals to logic operation NOT
 - We have seen in previous lectures that using the basic logic operations (AND,OR,NOT) we can represent any Boolean function
 - Is this set a logic basis?

Logic Basis NAND

- Basic Boolean function NAND (G8) is a logic basis!
- Proof: with function NAND, we can represent basic logic operations AND, OR, and NOT, which implies that we can represent any Boolean function
 - Function NAND is G8(X,Y) = (X•Y)'
 - Function NOT is F2(X) = X' = (X•X)' = G8(X,X)
 - Function AND is G9(X,Y) = X•Y = ((X•Y)')' = = ((X•Y)' • (X•Y)')' = = G8(G8(X,Y), G8(X,Y))
 - Function OR is G15(X,Y) = X+Y = ((X+Y)')' = (X'•Y')' = = ((X•X)' • (Y•Y)')' = = G8(G8(X,X), G8(Y,Y))

Logic Basis NOR

- Basic Boolean function NOR (G2) is a logic basis!
- Proof: with function NOR, we can represent the basic logic operations AND, OR, and NOT which implies that we can represent any Boolean function
 - Function NOR is G2(X,Y) = (X+Y)'
 - Function NOT is F2(X) = X' = (X+X)' = G2(X,X)
 - Function AND is G9(X,Y) = X•Y = ((X•Y)')' = (X'+Y')' = = ((X+X)' + (Y+Y)')' = = G2(G2(X,X), G2(Y,Y))
 - Function OR is G15(X,Y) = X+Y = ((X+Y)')' = = ((X+Y)' + (X+Y)')' = = G2(G2(X,Y), G2(X,Y))

Converting Boolean Functions from set AND-OR-NOT to basis NAND

- Any Boolean function in set AND-OR-NOT can be converted to basis NAND using the DeMorgan's theorem
- Examples:

$$H1(W,X,Y,Z) = W'X'+W'Y'+WXY+ W'Z =$$

$$= ((W'X'+W'Y'+WXY+ W'Z)')' =$$

$$= ((W'X')' \cdot (W'Y')' \cdot (WXY)' \cdot (W'Z)')'$$

$$H2(X,Y,Z) = (X+Y+Z) \cdot (Y'+Z') =$$

$$= ((X+Y+Z)')' \cdot ((Y'+Z')')' =$$

$$= (X'Y'Z')' \cdot (YZ)' =$$

$$= (((X'Y'Z')' \cdot (YZ)')')'$$

Converting Boolean Functions from set AND-OR-NOT to basis NOR

- Any Boolean function in set AND-OR-NOT can be converted to basis NOR using the DeMorgan's theorem
- Examples:

$$H1(W,X,Y,Z) = W'X'+W'Y'+WXY+W'Z =$$

$$= ((W'X')')' + ((W'Y')')' + ((WXY)')' + ((W'Z)')' =$$

$$= (W+X)' + (W+Y)' + (W'+X'+Y')' + (W+Z')' =$$

$$= (((W+X)' + (W+Y)' + (W'+X'+Y')' + (W+Z')')')'$$

$$H2(X,Y,Z) = (X+Y+Z) \cdot (Y'+Z') =$$

= $(((X+Y+Z) \cdot (Y'+Z'))')' =$
= $((X+Y+Z)' + (Y'+Z')')'$

Logic Gates

- Digital Systems are made out of digital circuits
- Digital circuits are hardware components that manipulate binary information
- Certain well defined basic (small) digital circuits are called Logic Gates
- Logic Gates are electronic components that operate
 - on one or more input signals
 - to produce an output signal
- Logic Gates implement basic Boolean functions of one or more variables!
- Let us look at some Logic Gates

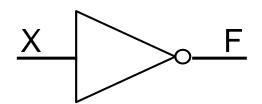
Inverter (NOT Gate)

The NOT gate implements the basic Boolean function inversion (F2)

Graphical Symbol

Algebraic Equation

Truth Table



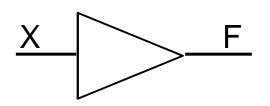
$$F = X'$$

X	F
0	1
1	0

- Operation of the NOT gate:
 - Output F is 1 if input X = 0;
 - Output F is 0 if input X = 1;

 The Buffer gate implements the basic Boolean function identity (F3)

Graphical Symbol



$$F = X$$

X	F
0	0
1	1

- Operation of the Buffer gate:
 - Output F is 1 if input X = 1;
 - Output F is 0 if input X = 0;
- Why is this gate useful?!
- This gate is used to amplify the input electric signal X to permit more gates to be attached to the output

AND Gate

 The AND gate implements the basic Boolean function AND (G9)

Graphical Symbol

X—	
Υ	

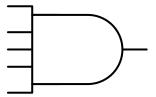
$$F = X \cdot Y$$

110	<u>ин і</u>	ı	abic
X	Υ		F
0	0		0
0	1		0
1	0		0
1	1		1

- Operation of the AND gate:
 - Output F is 1 <u>if and only if</u> input X=1 and input Y=1;
- There are AND gates with more than two inputs

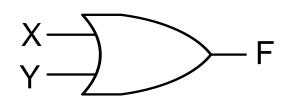
$$F = X_1 \cdot X_2 \cdot \dots \cdot X_n$$

Output F is 1 if and only if all inputs X_i are 1



 The OR gate implements the basic Boolean function OR (G15)

Graphical Symbol



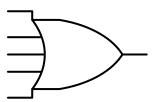
$$F = X + Y$$

110	TTULLI TADIE					
Χ	Υ		F			
0	0		0			
0	1		1			
1	0		1			
1	1		1			

- Operation of the OR gate:
 - Output F is 0 <u>if and only if</u> input X=0 and input Y=0;
- There are OR gates with more than two inputs

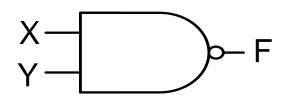
•
$$F = X_1 + X_2 + ... + X_n$$

Output F is 0 <u>if and only if</u> all inputs X_i are 0



 The NAND gate implements the basic Boolean function NOT-AND (G8)

Graphical Symbol



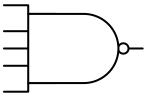
$$F = (X \cdot Y)'$$

110	Hatti Tabic						
X	Υ		F				
0	0		1				
0	1		1				
1	0		1				
1	1		0				

- Operation of the NAND gate:
 - Output F is 0 <u>if and only if</u> input X=1 and input Y=1;
- There are NAND gates with more than two inputs

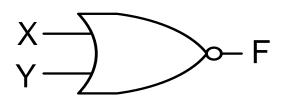
$$F = (X_1 \cdot X_2 \cdot \dots \cdot X_n)'$$

Output F is 0 if and only if all inputs X_i are 1



 The NOR gate implements the basic Boolean function NOT-OR (G2)

Graphical Symbol



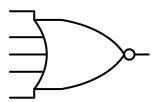
$$F = (X + Y)'$$

110	Hatti Tabic					
Χ	Υ		F			
0	0		1			
0	1		0			
1	0		0			
1	1		0			

- Operation of the NOR gate:
 - Output F is 1 <u>if and only if</u> input X=0 and input Y=0;
- There are NOR gates with more than two inputs

•
$$F = (X_1 + X_2 + ... + X_n)^n$$

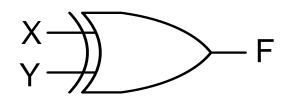
Output F is 1 <u>if and only if</u> all inputs X_i are 0



XOR Gate

 The XOR gate implements the basic Boolean function Exclusive-OR (G7)

Graphical Symbol



$$F = XY' + X'Y = X \oplus Y$$

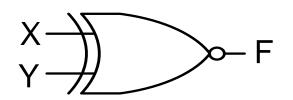
TTALL TABLE					
X	Υ	F			
0	0		0		
0	1		1		
1	0		1		
1	1		0		

- Operation of the XOR gate:
 - Output F is 1 if and only if input X is not equal to input Y
- There are XOR gates with more than two inputs
 - $F = (X_1 \oplus X_2 \dots \oplus X_n)$ (it is called **odd** function)
 - Output F is 1 <u>if and only if</u> odd number of inputs X_j are 1

XNOR Gate

 The XNOR gate implements the basic Boolean function Exclusive-NOR (G10)

Graphical Symbol



$$-F \qquad F = XY + X'Y' = (X \oplus Y)'$$

Hulli Table					
Χ	Υ	F			
0	0		1		
0	1		0		
1	0		0		
1	1		1		

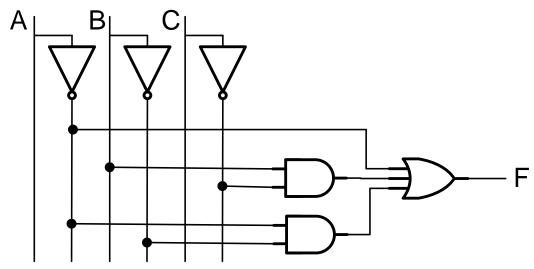
- Operation of the XNOR gate:
 - Output F is 1 if and only if input X is equal to input Y
- There are XNOR gates with more than two inputs.
 - $F = (X_1 \oplus X_2 \dots \oplus X_n)$ ' (it is called **even** function)
 - Output F is 1 if and only if even number of inputs X are 1

Combinational Logic Circuits from Boolean Functions

- Combinational Logic Circuits implement Boolean functions
- Any Boolean function can be represented using:
 - AND-OR-NOT basic functions
 - NAND basic function (Basis NAND)
 - NOR basic function (Basis NOR)
- Logic Gates implement the basic Boolean functions
- Thus, any Boolean function can be implemented using: AND, OR, NOT, NAND, NOR gates!
 - Outputs of Logic Gates are connected to inputs of other gates to form a Combinational Logic Circuit

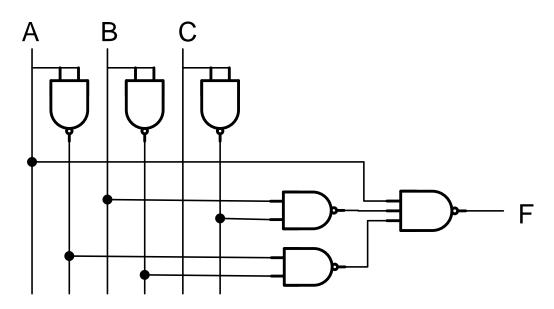
Combinational Logic Circuits from Boolean Functions using AND-OR-NOT

- Any Boolean function can be implemented using AND, OR and NOT gates
- Consider Boolean function F = A' + B•C' + A'•B'
- A combinational logic circuit can be constructed to implement
 F, by appropriately connecting input signals and logic gates:
 - Circuit input signals → from function variables (A, B, C)
 - Circuit output signal → function output (F)
 - Logic gates → from logic operations



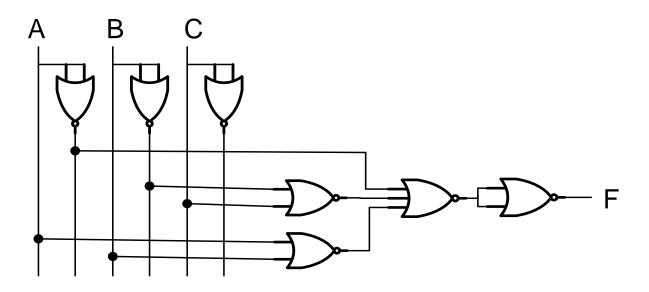
Combinational Logic Circuits from Boolean Functions in basis NAND

- Any Boolean function can be implemented using only NAND gates
- Consider Boolean function F = A' + B•C' + A'•B'
- Convert F in basis NAND
 F = ((A' + B•C' + A'•B')')' = (A (B•C')' (A'•B')')'



Combinational Logic Circuits from Boolean Functions in basis NOR

- Any Boolean function can be implemented using only NOR gates
- Consider Boolean function F = A' + B•C' + A'•B'
- Convert F in basis NOR $F = A' + ((B \cdot C')')' + ((A' \cdot B')')' = ((A' + (B' + C)' + (A + B)')')'$



Combinational Logic Circuits from Boolean Functions (cont.)

- To design a cost-effective and efficient circuit, we must simplifying the corresponding Boolean function to be implemented
- Observe the truth table of

- Truth tables for F and G are identical
 - F and G represent the same function
- Use G to implement the logic circuit!
 - less components (gates) are needed

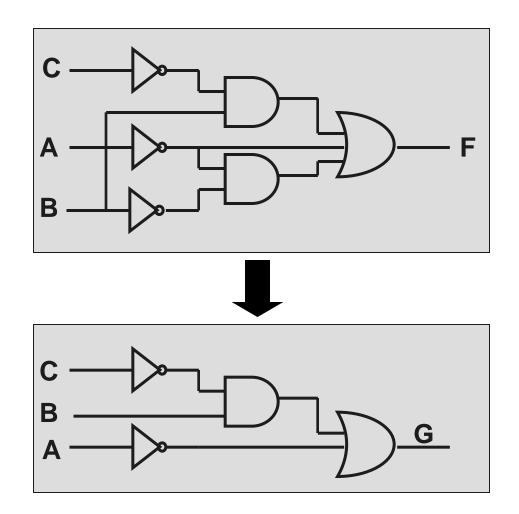
			_	
Α	В	С	F	G
0	0	0	1	1
0	0	1	1	1
0	1	0	1	1
0	1	1	1	1
1	0	0	0	0
1	0	1	0	0
1	1	0	1	1
1	1	1	0	0

Combinational Logic Circuits from Boolean Functions (cont.)

F = A' + B•C' + A'•B'

Simplify F

$$G = A' + B•C'$$



Digital Logic Circuits Physical Implementation Basics

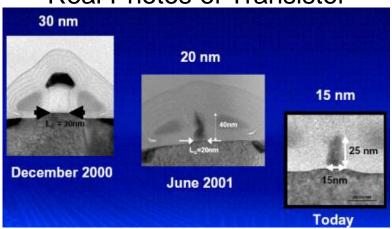
- Integrated Circuits
 - Form Sand to Integrated Circuits (Chips)
- CMOS Circuits Technology
 - MOS Transistors as Switches
 - Basic Gates as CMOS circuits
- Propagation Delay of Gates and Logic Circuits
- Basic Assumption for Logic Gates

Integrated Circuits (ICs)

- Digital Systems are made out of digital circuits
- Certain well defined basic (small) digital circuits are called Logic Gates
- Gates have inputs and outputs and perform specific mathematical logic operations
- Outputs of gates are connected to inputs of other gates to form a digital logic circuit
- Digital logic circuits are physically implemented using transistors and interconnections in complex semiconductor devices called integrated circuits

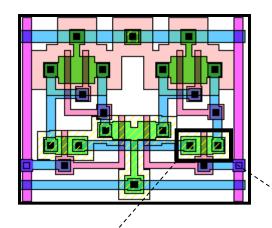
From Sand to Integrated Circuits

Real Photos of Transistor

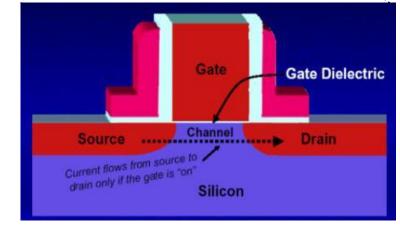


Integrated Circuit:

- Network of Transistors

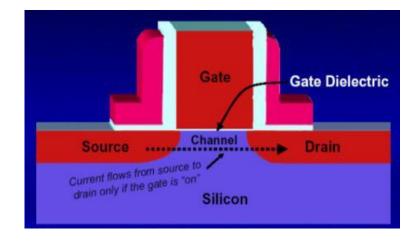


Transistor Structure



CMOS Circuits Technology

- How are logic gates physically implemented using CMOS technology?
- Basic element: MOS transistor
- Transistor Structure
 - 3 terminals in MOS transistors
 - G: Gate
 - S: Source
 - D: Drain

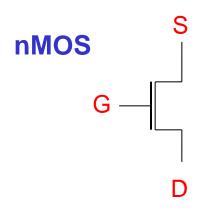


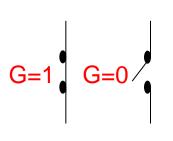
- 2 types of transistors:
 - n-channel (nMOS) and p-channel (pMOS)
 - Type depends on the semiconductor materials used to implement the transistor (beyond our scope...).

To understand the behavior of a MOS transistor we view pMOS and nMOS transistors as switches

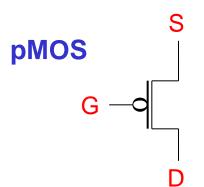
Transistor Symbol

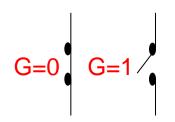
Switch Model of MOS Transistors





if G = 1 then switch is ON
If G = 0 then switch is OFF

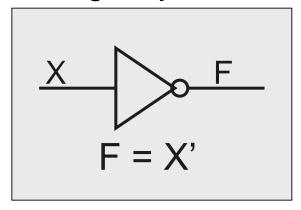




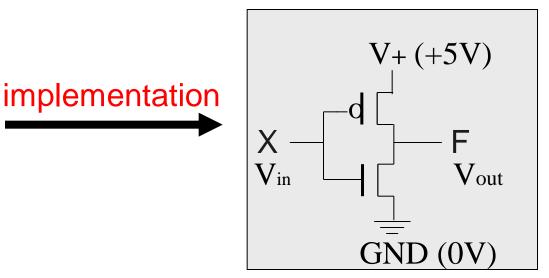
G=0 if G=0 then switch ON If G=1 then switch is OFF

NOT (Inverter) Gate as CMOS circuit

Logic Symbol



Transistor-level CMOS circuit

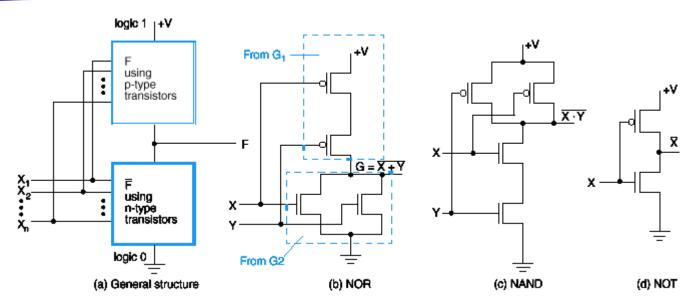


CMOS Circuit Operation:

- X=0 → pMOS switch is ON. nMOS switch OFF., i.e., conducts and draws from V+ → F=1
- X=1 → pMOS switch is OFF. nMOS switch is ON, i.e., conducts and draws from GRD → F=0

4

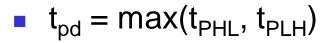
Basic Gates as CMOS Circuits

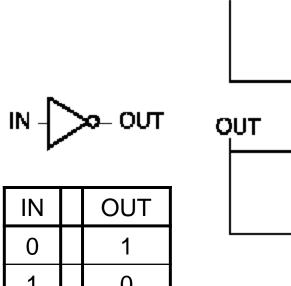


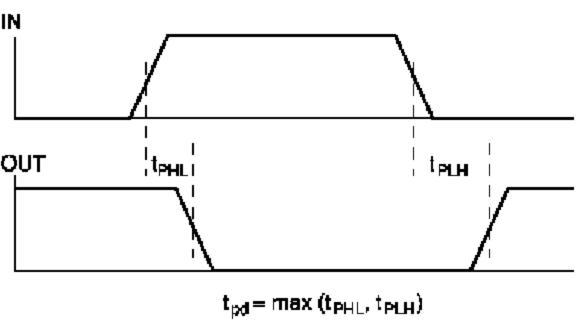
- CMOS technology implements physically digital logic circuits using NAND, NOR, and NOT gates, i.e., logic basis NAND and/or NOR is used. Why?
- Because NAND, NOR, and NOT gates are very easy to build as CMOS circuits (see above).

Propagation Delay of Gates

- One of the most important design parameters
- The propagation delay (t_{pd}) determines the gate's speed
- t_{PHL}: high-to-low propagation time
- t_{PLH}: low-to-high propagation time





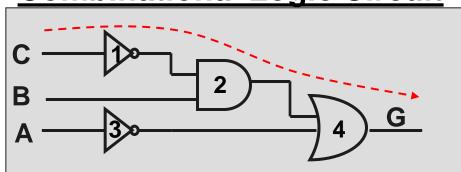


Propagation Delay for an Inverter

Propagation Delay of Logic Circuits

- The propagation delay (T_{pd}) determines the circuit's speed
- T_{pd} can be calculated as follow:
 - Find the longest path from an input of the circuit to an output of the circuit
 - Make a sum of the propagation delays (t_{pd}) of the gates on the longest path
- Example:
 - Longest Path
 - From input C to output G
 - Propagation Delay (T_{pd})
 - $T_{pd} = t_{pd}^1 + t_{pd}^2 + t_{pd}^4$

Combinational Logic Circuit



Basic Assumption for Logic Gates

- We have seen that real logic gates have propagation delay
- However, when we design and functionally analyze logic circuits at gate level we assume that gates are ideal,

• i.e., do not suffer from the physical propagation delays that are

inherent in transistors

