

Combinational Logic Circuits Part II -Theoretical Foundations

Overview

- Boolean Algebra
 - Basic Logic Operations
 - Basic Identities
 - Basic Principles, Properties, and Theorems
- Boolean Function and Representations
- Truth Table
- Canonical and Standard Forms
 - Minterms and Maxterms
 - Canonical Sum-Of-Products and Product-Of-Sums forms
 - Standard Sum-Of-Products and Product-Of-Sums forms
 - Conversions
- Karnaugh Map (K-Map)
 - 2, 3, 4, and 5 variable K-maps
- Complement of a Boolean function

Boolean Function Representations

- Truth Table (unique representation)
 - Size of a truth table grows exponentially with the number of variables involved
 - This motivates the use of other representations
- Boolean Equation
 - Canonical Sum-Of-Products (CSOP) form (unique)
 - Canonical Product-Of-Sums (CPOS) form (unique)
 - Standard Forms (NOT unique representations)
- Map (unique representation)
- We can convert one representation of a Boolean function into another in a systematic way

Canonical and Standard Forms

- Canonical and Standard forms of a Boolean function are boolean equation representations
- To introduce them we need the following definitions:
 - Literal: A variable or its complement
 - Product term: literals connected by "•"
 - Sum term: literals connected by "+"
 - Minterm: a product term in which all variables appear exactly once, either complemented or uncomplemented
 - Maxterm: a sum term in which all variables appear exactly once, either complemented or uncomplemented

Minterm: Characteristic Property

- A <u>minterm</u> of N variables defines a boolean function that represents exactly one combination (b_j) of the binary variables in the truth table
- The function has value 1 for this combination and value 0 for all others
- There are 2^N distinct minterms for N variables
- A <u>minterm</u> is denoted by m_i
 - j is the decimal equivalent of the minterm's corresponding binary combination (b_i)
- A variable in m_j is complemented if its value in (b_j) is 0, otherwise it is uncomplemented

Minterms for Three Variables

For 3 variables X, Y, Z there are 2³ minterms (products of 3 literals):

$$m_0 = X' \cdot Y' \cdot Z'$$
 $m_1 = X' \cdot Y' \cdot Z$ $m_2 = X' \cdot Y \cdot Z'$ $m_3 = X' \cdot Y \cdot Z$ $m_4 = X \cdot Y' \cdot Z'$ $m_5 = X \cdot Y' \cdot Z$ $m_6 = X \cdot Y \cdot Z'$ $m_7 = X \cdot Y \cdot Z$

- Example: consider minterm m₅:
 - m_5 defines a boolean function that represents exactly one combination ($b_5=101$)
 - the function has value 1 for this combination and value 0 for all others
 - variable Y in m₅ is complemented because its value in b₅ is 0

	Х	Υ	Z	m_0	m_1	m_2	m_3	m_4	m ₅	m_6	m ₇
b_0	0	0	0	1	0	0	0	0	0	0	0
b ₁	0	0	1	0	1	0	0	0	0	0	0
b_2	0	1	0	0	0	1	0	0	0	0	0
b_3	0	1	1	0	0	0	1	0	0	0	0
b ₄	1	0	0	0	0	0	0	1	0	0	0
b ₅	1	0	1	0	0	0	0	0	1	0	0
b ₆	1	1	0	0	0	0	0	0	0	1	0
b ₇	1	1	1	0	0	0	0	0	0	0	1

Maxterm: Characteristic Property

- A <u>maxterm</u> of N variables defines a boolean function that represents exactly one combination (b_j) of the binary variables in the truth table
- The function has value 0 for this combination and value 1 for all others
- There are 2^N distinct <u>maxterms</u> for N variables
- A <u>maxterm</u> is denoted by M_i
 - j is the decimal equivalent of the maxterm's corresponding binary combination (b_i)
- A variable in M_j is complemented if its value in (b_j) is 1, otherwise it is uncomplemented

Maxterms for Three Variables

For 3 variables X, Y, Z there are 2³ maxterms (sums of 3 literals):

$$M_0 = X+Y+Z$$
 $M_1 = X+Y+Z'$ $M_2 = X+Y'+Z$ $M_3 = X+Y'+Z'$ $M_4 = X'+Y+Z$ $M_5 = X'+Y+Z'$ $M_6 = X'+Y'+Z$ $M_7 = X'+Y'+Z'$

- Example: consider maxterm M₅:
 - M₅ defines a boolean function that represents exactly one combination (b₅=101)
 - the function has value 0 for this combination and value 1 for all others
 - variables X and Z in M₅ are complemented because their values in b₅ are 1

	Χ	Υ	Z	M_0	M_1	M_2	M_3	M_4	M ₅	M_6	M_7
b_0	0	0	0	0	1	1	1	1	1	1	1
b ₁	0	0	1	1	0	1	1	1	1	1	1
b_2	0	1	0	1	1	0	1	1	1	1	1
b_3	0	1	1	1	1	1	0	1	1	1	1
b ₄	1	0	0	1	1	1	1	0	1	1	1
b ₅	1	0	1	1	1	1	1	1	0	1	1
b ₆	1	1	0	1	1	1	1	1	1	0	1
b ₇	1	1	1	1	1	1	1	1	1	1	0

Canonical Forms (Unique)

- Any Boolean function F() can be expressed as:
 - a unique sum of minterms
 - a unique product of maxterms
- In other words, every function F() has two canonical forms:
 - Canonical Sum-Of-Products (CSOP) (sum of minterms)
 - Canonical Product-Of-Sums (CPOS) (product of maxterms)
- The words product and sum do not imply arithmetic operations in Boolean algebra!
 - they specify the logical operations AND and OR, respectively

Canonical Sum-Of-Products

- It is a sum of minterms
- The minterms included are those m_j such that F() = 1 in row j of the truth table for F()
- Example:
 - Truth table for F(X,Y,Z) at right
 - The canonical sum-of-products form for F is:

$$F(X,Y,Z) = m_1 + m_2 + m_4 + m_6 =$$

= X'Y'Z + X'YZ' +
XY'Z' + XYZ'

				_
X	Υ	Z	F	
0	0	0	0	
0	0	1	~	$m_1 = X'Y'Z$
0	1	0	_	$m_2 = X'YZ'$
0	1	1	0	
1	0	0	1	$m_4 = XY'Z'$
1	0	1	0	
1	1	0	1	$m_6 = XYZ'$
1	1	1	0	

Fall 2023

Canonical Product-Of-Sums

- It is a product of maxterms
- The maxterms included are those M_j such that F() = 0 in row j of the truth table for F()
- Example:
 - Truth table for F(X,Y,Z) at right
 - The canonical product-of-sums form for F is:

$$F(X,Y,Z) = M_0 \cdot M_3 \cdot M_5 \cdot M_7 =$$

$$= (X+Y+Z) \cdot (X+Y'+Z') \cdot$$

$$(X'+Y+Z') \cdot (X'+Y'+Z')$$

				_
X	Y	Z	H	
0	0	0	0	$M_0 = X + Y + Z$
0	0	1	1	
0	1	0	1	
0	1	1	0	$M_3 = X + Y' + Z'$
1	0	0	1	
1	0	1	0	$M_5 = X' + Y + Z'$
1	1	0	1	
1	1	1	0	$M_7 = X' + Y' + Z$

Shorthand: ∑ and ∏

•
$$F(X,Y,Z) = m_1 + m_2 + m_4 + m_6 =$$

= $X'Y'Z + X'YZ' + XY'Z' + XYZ' =$
= $\sum m(1,2,4,6),$

- ∑ indicates that this is a sum-of-products form
- m(1,2,4,6) indicates to included minterms m₁, m₂, m₄, and m₆

•
$$F(X,Y,Z) = M_0 \cdot M_3 \cdot M_5 \cdot M_7 =$$

= $(X+Y+Z) \cdot (X+Y'+Z') \cdot (X'+Y+Z') \cdot (X'+Y'+Z') =$
= $\prod M(0,3,5,7),$

- ☐ indicates that this is a product-of-sums form
- M(0,3,5,7) indicates to included maxterms M₀, M₃, M₅, and M₇
- $= \sum m(1,2,4,6) = \prod M(0,3,5,7) = F(X,Y,Z)$

Conversion Between Canonical Forms

- Get the shorthand notation
- Replace ∑ with ☐ (or vice versa)
- Replace those j's that appeared in the original form with those that do not

Example:

$$F(X,Y,Z) = X'Y'Z + X'YZ' + XY'Z' + XYZ'$$

$$= m_1 + m_2 + m_4 + m_6$$

$$= \sum m(1,2,4,6)$$

$$= \prod M(0,3,5,7)$$

$$= (X+Y+Z) \cdot (X+Y'+Z') \cdot (X'+Y+Z') \cdot (X'+Y+Z')$$

Standard Forms (NOT Unique)

- There are two types of standard forms:
 - Sum-of-Products (SOP) form (NOT unique)
 - Product-of-Sums (POS) form (NOT unique)
- In standard forms, not all variables need to appear in the individual product or sum terms!
- Example1:
 F(X,Y,Z) = X'Y'Z + X'YZ' + XZ'
 F(X,Y,Z) = X'Y'Z + YZ' + XZ'
 are two standard sum-of-products forms

Non-canonical terms

Example2:
F(X,Y,Z) = (X+Y+Z) • (X+Y'+Z') • (X'+ Z')
F(X,Y,Z) = (X+Y+Z) • (Y'+Z') • (X'+ Z')
are two standard product-of-sums form

X	Y	Z	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0
	_		

Conversion from Standard to Canonical SOP form

- Expand non-canonical product terms by inserting equivalent of 1 for each missing variable V:
 (V + V') = 1
- 2. Remove duplicate minterms
- Example:

Can you do it:
F(X,Y,Z) = X'Y'Z + X'YZ' + XZ'

X	Υ	Z	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

Conversion from Standard to Canonical POS form

- Expand non-canonical sum terms by adding 0 for each missing variable V:
 - $V \cdot V' = 0$
- 2. Remove duplicate maxterms
- Example:

$$F(X,Y,Z) = (X+Y+Z) \cdot (Y'+Z') \cdot (X'+Z') =$$

$$= (X+Y+Z) \cdot (XX'+Y'+Z') \cdot (X'+Y'+Z')$$

$$= (X+Y+Z) \cdot (X+Y'+Z') \cdot (X'+Y'+Z') \cdot$$

$$(X'+Y+Z') \cdot (X'+Y'+Z')$$

$$= (X+Y+Z) \cdot (X+Y'+Z') \cdot (X'+Y'+Z') \cdot$$

$$(X'+Y+Z') \cdot (X'+Y'+Z') \cdot$$

Can you do it for:

$$F(X,Y,Z) = (X+Y+Z) \cdot (X+Y'+Z') \cdot (X'+Z')$$

Χ	Υ	Z	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0
	•		•

Karnaugh Maps (Unique)

- A Karnaugh map (K-map) is a unique graphical representation of a Boolean functions
- K-map of a Boolean function of N variables consists of 2^N cells
- One map cell corresponds to a row in the truth table
- Also, one map cell corresponds to a minterm
- Multiple-cell rectangles in the map correspond to standard terms
- The K-map representation is useful for Boolean functions of up to 5 variables. Why?

Two-Variable K-map

	X	Υ	F(X,Y)
0	0	0	F(0,0)
1	0	1	F(0,1)
2	1	0	F(1,0)
3	1	1	F(1,1)

X	0	1
0	0 F(0,0)	1 F(0,1)
1	2 F(1,0)	3 F(1,1)

- Cell 0 corresponds to row 0 in the truth table and represents minterm X'Y'; Cell 1 corresponds to row 1 and represents X'Y; etc.
- If Boolean function F(X,Y) has value 1 in a row of the truth table, i.e., a minterm is present in the function, then a 1 is placed in the corresponding cell.

Two-Variable K-map -- Examples

Truth Table K - map **Canonical and Standard SOP** $F1 = m_3 = XY$ (canonical) $F2 = m_2 + m_3$ 0 (canonical) = XY' + XY(standard) = X $F3 = m_1 + m_2$ 0 = X'Y + XY' (canonical) $F4 = m_0 + m_1 + m_3$ = X'Y' + X'Y + XY (canonical)

= X' + Y

(standard)

Two-Variable K-map (cont.)

- Any two adjacent cells in the map differ by ONLY one variable
 - appears complemented in one cell and uncomplemented in the other
 - Example:
 m₀ (=X'Y') is adjacent to m₁ (=X'Y) and m₂
 (=XY') but NOT m₃ (=XY)

- Examples:
 - 2-cell rectangle m₂ m₃ corresponds to term X:
 m₂ + m₃ = XY'+XY = X•(Y'+Y) = X
 - 4-cell rect. m₀ m₁ corresponds to constant 1:

$$m_0 + m_1 + m_2 + m_3 = X'Y' + X'Y + XY' + XY = X' \cdot (Y' + Y) + X \cdot (Y' + Y) = X + X' = 1$$

Three-Variable K-map

Χ	Υ	Ζ	F(X,Y,Z)
0	0	0	F(0,0,0)
0	0	1	F(0,0,1)
0	1	0	F(0,1,0)
0	1	1	F(0,1,1)
1	0	0	F(1,0,0)
1	0	1	F(1,0,1)
1	1	0	F(1,1,0)
1	1	1	F(1,1,1)
	0 0 0	0 0 0 0 0 1 0 1 1 0 1 0	0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1

- Cell 0 corresponds to row 0 in the truth table and represents minterm X'Y'Z'; Cell 1 corresponds to row 1 and represents X'Y'Z; etc.
- If F(X,Y,Z) has value 1 in a row of the truth table, i.e., a minterm is present in the function, then a 1 is placed in the corresponding cell.

Three-Variable K-map -- Examples

Truth Table

K - map

Canonical and Standard SOP

Χ	Υ	Ζ	F2
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

$$F2 = m_0 + m_2 + m_3 + m_6 + m_7 =$$

$$= X'Y'Z' + X'YZ' + X'YZ +$$

$$XYZ' + XYZ$$
 (canonical)

$$= X'Z' + Y$$
 (standard)

Three-Variable K-map (cont.)

- NOTE: variable ordering is important assume function F(X,Y,Z) then X specifies the rows in the map and YZ the columns
- Each cell is adjacent to three other cells (left, right, up or down).
 - Left-edge cells are adjacent to right-edge cells!
- One cell represents a minterm of 3 literals
- A rectangle of 2 adjacent cells represents a product term of 2 literals
- A rectangle of 4 cells represents a product term of 1 literal
- A rectangle of 8 cells encompasses the entire map and produces a function that is equal to logic 1

Four-Variable K-map

	W	X	Y	Ζ	F(W,X,Y,Z)
0	0	0	0	0	F(0,0,0,0)
1	0	0	0	1	F(0,0,0,1)
2	0	0	1	0	F(0,0,1,0)
3	0	0	1	1	F(0,0,1,1)
4	0	1	0	0	F(0,1,0,0)
5	0	1	0	1	F(0,1,0,1)
6	0	1	1	0	F(0,1,1,0)
7	0	1	1	1	F(0,1,1,1)
8	1	0	0	0	F(1,0,0,0)
9	1	0	0	1	F(1,0,0,1)
10	1	0	1	0	F(1,0,1,0)
11	1	0	1	1	F(1,0,1,1)
12	1	1	0	0	F(1,1,0,0)
13	1	1	0	1	F(1,1,0,1)
14	1	1	1	0	F(1,1,1,0)
15	1	1	1	1	F(1,1,1,1)

√ V7				Υ	
W	χ	00	01	11	10
	-	0	1	3	2
	00	$m_0 = W'X'Y'Z'$	$m_1 = W'X'Y'Z$	m ₃ =W'X'YZ	m ₂ =W'X'YZ'
		4	5	7	6
	01	m ₄ =W'XY'Z'	m ₅ =W'XY'Z	m ₇ =W'XYZ	m ₆ =W'XYZ'
W		12	13	15	14
	11	m ₁₂ =WXY'Z'	m ₁₃ =WXY'Z	m ₁₅ =WXYZ	m ₁₄ =WXYZ'
		8	9	11	10
	10	m ₈ =WX'Y'Z'	m ₉ =WX'Y'Z	m ₁₁ =WX'YZ	m ₁₀ =WX'YZ'

- Cell 0 corresponds to row 0 in the truth table and represents minterm W'X'Y'Z'; Cell 1 corresponds to row 1 and represents W'X'Y'Z; etc.
- If F(W,X,Y,Z) has value 1 in a row of the truth table, i.e., a minterm is present in the function, then a 1 is placed in the corresponding cell.

Four-Variable K-map -- Examples

(standard form)

Four-Variable K-map (cont.)

- NOTE: variable ordering is important assume function F(W,X,Y,Z) then WX specifies the rows in the map and YZ the columns
- Each cell is adjacent to <u>four</u> cells (left, right, up, down)
 - Top cells are adjacent to bottom cells; Left-edge cells are adjacent to right-edge cells
- One cell represents a minterm of 4 literals
- A rectangle of 2 adjacent cells represents a product term of 3 literals
- A rectangle of 4 cells represents a product term of 2 literals
- A rectangle of 8 cells represents a product term of 1 literal
- A rectangle of 16 cells produces a function that is equal to logic 1

Five-Variable K-map

Can you draw six-variable K-map?

Complement of a Boolean Function

- The complement representation of function F is denoted as F'
- F' can be obtained by interchanging 1's to 0's and 0's to 1's in the column showing F of the truth table
- F' can be derived by applying DeMorgan's theorem on F
- F' can be derived by
 - taking the dual of F, i.e., interchanging "•" with "+", and "1" with "0" in F and
 - complementing each literal
- The complement of a function IS NOT THE SAME as the dual of the function

Complementation: Example

Consider function F(X,Y,Z) = X'YZ' + XY'Z'

Χ	Υ	Ζ	F	F'
0	0	0	0	1
0	0	1	0	1
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	0	1

Table method • DeMorgan method:

$$F' = (X'YZ' + XY'Z')' -- apply DeMorgan$$

$$= (X'YZ')' \cdot (XY'Z')' -- DeMorgan again$$

$$= (X+Y'+Z) \cdot (X'+Y+Z)$$

Dual method:

$$F = X'YZ' + XY'Z'$$

-- interchange "•" with "+" to find the dual of F

$$G = (X'+Y+Z') \cdot (X+Y'+Z')$$
 G is the dual of F

-- complement each literal to find F'

$$F' = (X+Y'+Z) \cdot (X'+Y+Z)$$