Fundamentele Informatica 1 (I\&E)

najaar 2015

http://www.liacs.leidenuniv.nl/~vlietrvan1/fi1ie/
Rudy van Vliet
kamer 124 Snellius, tel. 071-527 5777
rvvliet(at)liacs(dot)nl
college 9, 24 november 2015
5. Pushdown Automata
5.1. Definitions and Examples
5.2. Deterministic Pushdown Automata

Example 5.3. A PDA Accepting the Language AnBn

$$
A n B n=\left\{a^{i} b^{i} \mid i \geq 0\right\}
$$

A slide from lecture 8:
Definition 5.1. A Pushdown Automaton
A pushdown automaton (PDA)
is a 7 -tuple $M=\left(Q, \Sigma, \Gamma, q_{0}, Z_{0}, A, \delta\right)$, where
Q is a finite set of states.
Σ and Γ are finite sets, the input and stack alphabet.
q_{0}, the initial state, is an element of Q.
Z_{0}, the initial stack symbol, is an element of Γ.
A, the set of accepting states, is a subset of Q.
δ, the transition function, is a function from $Q \times(\Sigma \cup\{\wedge\}) \times \Gamma$ to the set of finite subsets of $Q \times \Gamma^{*}$.

In principle, Z_{0} may be removed from the stack, but often it isn't.

Exercise.

Give transition diagrams for PDAs accepting each of the following languages.
a. Balanced $=\{$ balanced strings of brackets [and]\}
b. $A E q B=\left\{x \in\{a, b\}^{*} \mid n_{a}(x)=n_{b}(x)\right\}$

5.2. Deterministic Pushdown Automata

reg. languages	FA	reg. grammar	reg. expression
determ. cf. languages	DPDA		
cf. languages	PDA	cf. grammar	
re. languages	TM	unrestr. grammar	

Example 5.3. A PDA Accepting the Language AnBn

$$
A n B n=\left\{a^{i} b^{i} \mid i \geq 0\right\}
$$

Example 5.7. A Pushdown Automaton Accepting Pal

$$
\text { PaI }=\left\{y \in\{a, b\}^{*} \mid y=y^{r}\right\}=\left\{x x^{r}, x a x^{r}, x b x^{r} \mid x \in\{a, b\}^{*}\right\}
$$

Definition 5.10. A Deterministic Pushdown Automaton

A pushdown automaton $M=\left(Q, \Sigma, \Gamma, q_{0}, Z_{0}, A, \delta\right)$ is deterministic if it satisfies both of the following conditions.

1. For every $q \in Q$, every $\sigma \in \Sigma \cup\{\Lambda\}$, and every $X \in \Gamma$, the set $\delta(q, \sigma, X)$ has at most one element.
2. For every $q \in Q$, every $\sigma \in \Sigma$, and every $X \in \Gamma$, the two sets $\delta(q, \sigma, X)$ and $\delta(q, \wedge, X)$ cannot both be nonempty.

A language L is a deterministic context-free language (DCFL) if there is a deterministic PDA (DPDA) accepting L.
2. (in other words): For every $q \in Q$ and every $X \in \Gamma$, if $\delta(q, \wedge, X)$ is not empty, then $\delta(q, \sigma, X)$ is empty for every $\sigma \in \Sigma$.

Example 5.11. A DPDA Accepting Balanced

Balanced $=\{$ balanced strings of brackets [and]\}

Example 5.13. Two DPDAs accepting $A E q B$

$$
A E q B=\left\{x \in\{a, b\}^{*} \mid n_{a}(x)=n_{b}(x)\right\}
$$

Example 5.7. A Pushdown Automaton Accepting Pal

$$
\text { PaI }=\left\{y \in\{a, b\}^{*} \mid y=y^{r}\right\}=\left\{x x^{r}, x a x^{r}, x b x^{r} \mid x \in\{a, b\}^{*}\right\}
$$

Theorem 5.16.

The language Pal cannot be accepted
by a deterministic pushdown automaton.

The proof of this result does not have to be known for the exam.

Exercise 5.16.

Show that if L is accepted by a PDA, then L is accepted by a PDA that never crashes (i.e., ...).

Exercise 5.16.

Show that if L is accepted by a PDA, then L is accepted by a PDA that never crashes (i.e., for which the stack never empties and no configuration is reached from which there is no move defined).

A slide from lecture 8:

Stack in PDA contains symbols from certain alphabet.

Usual stack operations: pop, top, push

Extra possiblity: replace top element X by string α

$$
\begin{array}{ll}
\alpha=\wedge & \text { pop } \\
\alpha=X & \text { top } \\
\alpha=Y X & \text { push } \\
\alpha=\beta X & \text { push* } \\
\alpha=\ldots &
\end{array}
$$

Top element X is required to do a move!

A slide from lecture 8:

Definition 5.2. Acceptance by a PDA
If $M=\left(Q, \Sigma, \Gamma, q_{0}, Z_{0}, A, \delta\right)$ and $x \in \Sigma^{*}$, the string x is accepted by M if

$$
\left(q_{0}, x, Z_{0}\right) \vdash_{M}^{*}(q, \wedge, \alpha)
$$

for some $\alpha \in \Gamma^{*}$ and some $q \in A$.
A language $L \subseteq \Sigma^{*}$ is said to be accepted by M, if L is precisely the set of strings accepted by M; in this case, we write $L=L(M)$.

Sometimes a string accepted by M, or a language accepted by M, is said to be accepted by final state.

Exercise 5.17.

Show that if L is accepted by a PDA, then L is accepted by a PDA in which every move

* either pops something from the stack (i.e., removes a stack symbol without putting anything else on the stack);
* or pushes a single symbol onto the stack on top of the symbol that was previously on top;
* or leaves the stack unchanged.

Hence, each action on the stack due to a move in the PDA has one of the following forms:

* either X / \wedge (with $X \in \Gamma$),
* or $X / Y X$ (with $X, Y \in \Gamma$),
* or X / X (with $X \in \Gamma$).

A slide from lecture 6:

Theorem 4.9.

If L_{1} and L_{2} are context-free languages over an alphabet Σ, then

$$
L_{1} \cup L_{2}, \quad L_{1} L_{2} \quad \text { and } L_{1}^{*}
$$

are also CFLs.

Proof. . .

Exercise 5.19.

Suppose M_{1} and M_{2} are PDAs accepting L_{1} and L_{2}, respectively. For both the languages $L_{1} L_{2}$ and L_{1}^{*}, describe a procedure for constructing a PDA accepting the language.

In each case, nondeterminism will be necessary. Be sure to say precisely how the stack of the new machine works; no relationship is assumed between the stack alphabets of M_{1} and M_{2}.

Answer begins with:
Let $M_{1}=\left(Q_{1}, \Sigma, \Gamma_{1}, q_{01}, Z_{01}, A_{1}, \delta_{1}\right)$
and let $M_{2}=\left(Q_{2}, \Sigma, \Gamma_{2}, q_{02}, Z_{02}, A_{2}, \delta_{2}\right)$.

