Fundamentele Informatica 1 (I&E)

najaar 2015

http://www.liacs.leidenuniv.nl/~vlietrvan1/fi1ie/

Rudy van Vliet

kamer 124 Snellius, tel. 071-527 5777 rvvliet(at)liacs(dot)nl

college 9, 24 november 2015

5. Pushdown Automata

5.1. Definitions and Examples

5.2. Deterministic Pushdown Automata

Example 5.3. A PDA Accepting the Language AnBn

$$AnBn = \{a^i b^i \mid i \ge 0\}$$

A slide from lecture 8:

Definition 5.1. A Pushdown Automaton

A pushdown automaton (PDA) is a 7-tuple $M = (Q, \Sigma, \Gamma, q_0, Z_0, A, \delta)$, where

Q is a finite set of states.

 Σ and Γ are finite sets, the *input* and *stack* alphabet.

 q_0 , the initial state, is an element of Q.

 Z_0 , the initial stack symbol, is an element of Γ .

A, the set of accepting states, is a subset of Q.

 δ , the transition function, is a function from $Q \times (\Sigma \cup \{\Lambda\}) \times \Gamma$ to the set of finite subsets of $Q \times \Gamma^*$.

In principle, Z_0 may be removed from the stack, but often it isn't.

Exercise.

Give transition diagrams for PDAs accepting each of the following languages.

- **a.** *Balanced* = {balanced strings of brackets [and]}
- **b.** $AEqB = \{x \in \{a, b\}^* \mid n_a(x) = n_b(x)\}$

5.2. Deterministic Pushdown Automata

reg. languages	FA	reg. grammar	reg. expression
determ. cf. languages	DPDA		
cf. languages	PDA	cf. grammar	
re. languages	ТМ	unrestr. grammar	

Example 5.3. A PDA Accepting the Language AnBn

$$AnBn = \{a^i b^i \mid i \ge 0\}$$

Example 5.7. A Pushdown Automaton Accepting Pal

7

Definition 5.10. A Deterministic Pushdown Automaton

A pushdown automaton $M = (Q, \Sigma, \Gamma, q_0, Z_0, A, \delta)$ is *deterministic* if it satisfies both of the following conditions.

- 1. For every $q \in Q$, every $\sigma \in \Sigma \cup \{\Lambda\}$, and every $X \in \Gamma$, the set $\delta(q, \sigma, X)$ has at most one element.
- 2. For every $q \in Q$, every $\sigma \in \Sigma$, and every $X \in \Gamma$, the two sets $\delta(q, \sigma, X)$ and $\delta(q, \Lambda, X)$ cannot both be nonempty.

A language L is a deterministic context-free language (DCFL) if there is a deterministic PDA (DPDA) accepting L.

2. (in other words): For every $q \in Q$ and every $X \in \Gamma$, if $\delta(q, \Lambda, X)$ is not empty, then $\delta(q, \sigma, X)$ is empty for every $\sigma \in \Sigma$. Example 5.11. A DPDA Accepting Balanced

Balanced = {balanced strings of brackets [and]}

Example 5.13. Two DPDAs accepting *AEqB*

$$AEqB = \{x \in \{a, b\}^* \mid n_a(x) = n_b(x)\}$$

Example 5.7. A Pushdown Automaton Accepting Pal

Theorem 5.16.

The language *Pal* cannot be accepted by a deterministic pushdown automaton.

The proof of this result does not have to be known for the exam.

Exercise 5.16.

Show that if L is accepted by a PDA, then L is accepted by a PDA that never crashes (i.e., ...).

Exercise 5.16.

Show that if L is accepted by a PDA, then L is accepted by a PDA that never crashes (i.e., for which the stack never empties and no configuration is reached from which there is no move defined).

A slide from lecture 8:

Stack in PDA contains symbols from certain alphabet.

Usual stack operations: pop, top, push

Extra possiblity: replace top element X by string α

$$\begin{array}{ll} \alpha \equiv \Lambda & \text{pop} \\ \alpha \equiv X & \text{top} \\ \alpha \equiv YX & \text{push} \\ \alpha \equiv \beta X & \text{push}^* \\ \alpha \equiv \dots \end{array}$$

Top element X is required to do a move!

A slide from lecture 8:

Definition 5.2. Acceptance by a PDA

If $M = (Q, \Sigma, \Gamma, q_0, Z_0, A, \delta)$ and $x \in \Sigma^*$, the string x is accepted by M if

 $(q_0, x, Z_0) \vdash^*_M (q, \Lambda, \alpha)$

for some $\alpha \in \Gamma^*$ and some $q \in A$.

A language $L \subseteq \Sigma^*$ is said to be accepted by M, if L is precisely the set of strings accepted by M; in this case, we write L = L(M).

Sometimes a string accepted by M, or a language accepted by M, is said to be accepted by final state.

Exercise 5.17.

Show that if L is accepted by a PDA, then L is accepted by a PDA in which every move

* either pops something from the stack (i.e., removes a stack symbol without putting anything else on the stack);

* or pushes a single symbol onto the stack on top of the symbol that was previously on top;

* or leaves the stack unchanged.

Hence, each action on the stack due to a move in the PDA has one of the following forms:

```
* either X/\Lambda (with X \in \Gamma),
```

- * or X/YX (with $X, Y \in \Gamma$),
- * or X/X (with $X \in \Gamma$).

A slide from lecture 6:

Theorem 4.9.

If L_1 and L_2 are context-free languages over an alphabet $\Sigma,$ then $L_1\cup L_2,\quad L_1L_2\quad\text{and}\ L_1^*$ are also CFLs.

Proof...

Exercise 5.19.

Suppose M_1 and M_2 are PDAs accepting L_1 and L_2 , respectively. For both the languages L_1L_2 and L_1^* , describe a procedure for constructing a PDA accepting the language.

In each case, nondeterminism will be necessary. Be sure to say precisely how the stack of the new machine works; no relationship is assumed between the stack alphabets of M_1 and M_2 .

Answer begins with: Let $M_1 = (Q_1, \Sigma, \Gamma_1, q_{01}, Z_{01}, A_1, \delta_1)$ and let $M_2 = (Q_2, \Sigma, \Gamma_2, q_{02}, Z_{02}, A_2, \delta_2).$