Fundamentele Informatica 1 (I\&E)

najaar 2015
http://www.liacs.leidenuniv.nl/~vlietrvan1/fi1ie/
Rudy van Vliet
kamer 124 Snellius, tel. 071-527 5777
rvvliet(at)liacs(dot)nl
college 8, 20 november 2015
4. Context-Free Languages
4.5. Simplified Forms and Normal Forms
5. Pushdown Automata
5.1. Definitions and Examples
4.5. Simplified Forms and Normal Forms

A slide from lecture 7:

Definition 4.29. Chomsky Normal Form

A context-free grammar is said to be in Chomsky normal form if every production is of one of these two types:

$$
\begin{aligned}
& A \rightarrow B C \text { (where } B \text { and } C \text { are variables) } \\
& A \rightarrow \sigma(\text { were } \sigma \text { is a terminal symbol) }
\end{aligned}
$$

A slide from lecture 7:

Arbitrary CFG may have

- productions $A \rightarrow \wedge$
- productions $A \rightarrow B$ (unit productions)
- productions $A \rightarrow b c, A \rightarrow B c, A \rightarrow b C$
- productions $A \rightarrow \alpha$ with $|\alpha| \geq 3$

A slide from lecture 7:

Converting a CFG to Chomsky Normal Form Step 1

- Identify nullable variables
- Add productions in which nullable variables are removed from right hand side
- Delete \wedge-productions
- Delete productions $A \rightarrow A$

We cannot generate \wedge anymore

Example.

$$
\begin{aligned}
& S \rightarrow a S b|a B b \quad B \rightarrow b B| \wedge \\
& S \rightarrow S a S|B \quad B \rightarrow b B| \wedge
\end{aligned}
$$

A slide from lecture 7:
Converting a CFG to Chomsky Normal Form Step 2

- Identify A-derivable variables
- For every A-derivable variable B and nonunit production $B \rightarrow \alpha$, add production $A \rightarrow \alpha$
- Delete unit productions

Example.
$S \rightarrow a S b|B \quad B \rightarrow b B| b|A \quad A \rightarrow a B S| a$

Arbitrary CFG may have

- productions $A \rightarrow \wedge$
- productions $A \rightarrow B$ (unit productions)
- productions $A \rightarrow b c, A \rightarrow B c, A \rightarrow b C$
- productions $A \rightarrow \alpha$ with $|\alpha| \geq 3$

Converting a CFG to Chomsky Normal Form Step 3

- Add productions $X_{a} \rightarrow a$
- In every production $A \rightarrow \alpha$ with $|\alpha| \geq 2$, replace terminals a by corresponding non-terminals X_{a}

Example.
$S \rightarrow T B \quad T \rightarrow a T T b|a b \quad B \rightarrow b B| b$

Arbitrary CFG may have

- productions $A \rightarrow \wedge$
- productions $A \rightarrow B$ (unit productions)
- productions $A \rightarrow b c, A \rightarrow B c, A \rightarrow b C$
- productions $A \rightarrow \alpha$ with $|\alpha| \geq 3$

Converting a CFG to Chomsky Normal Form Step 4

- Split productions whose right hand sides are too long

Example.

$$
\begin{array}{lll}
S \rightarrow T B & T \rightarrow X_{a} T T X_{b}\left|X_{a} X_{b} \quad B \rightarrow X_{b} B\right| b \\
X_{a} \rightarrow a & X_{b} \rightarrow b &
\end{array}
$$

Theorem 4.30.

For every context-free grammar G, there is another CFG G_{1} in Chomsky normal form such that $L\left(G_{1}\right)=L(G)-\{\Lambda\}$.

What if $\wedge \notin L(G)$?

Example 4.31. Converting a CFG to Chomsky Normal Form

Let G be CFG with productions

$$
\begin{aligned}
& S \rightarrow T U \mid V \\
& T \rightarrow a T b \mid \wedge \\
& U \rightarrow c U \mid \wedge \\
& V \rightarrow a V c \mid W \\
& W \rightarrow b W \mid \wedge
\end{aligned}
$$

A slide from lecture 7 :

Definition 4.13. Regular Grammars.

A context-free grammar $G=(V, \Sigma, S, P)$ is regular if every production is of the form

$$
A \rightarrow \sigma B \quad \text { or } \quad A \rightarrow \wedge \text {, }
$$

where $A, B \in V$ and $\sigma \in \Sigma$.

A slide from lecture 7:

Definition 4.29. Chomsky Normal Form

A context-free grammar is said to be in Chomsky normal form if every production is of one of these two types:

$$
\begin{aligned}
& A \rightarrow B C \text { (where } B \text { and } C \text { are variables) } \\
& A \rightarrow \sigma(\text { were } \sigma \text { is a terminal symbol) }
\end{aligned}
$$

5. Pushdown Automata

reg. languages	FA	reg. grammar	reg. expression
determ. cf. languages	DPDA		
cf. languages	PDA	cf. grammar	
re. languages	TM	unrestr. grammar	

just like FA, PDA accepts strings / language
just like FA, PDA has states
just like FA, PDA reads input one letter at a time
unlike FA, PDA has auxiliary memory: a stack
unlike FA, by default PDA is nondeterministic
unlike FA, by default \wedge-transitions are allowed in PDA

Why a stack?

$$
A n B n=\left\{a^{i} b^{i} \mid i \geq 0\right\}
$$

SimplePal $=\left\{x c x^{r} \mid x \in\{a, b\}^{*}\right\}$

Stack in PDA contains symbols from certain alphabet.

Usual stack operations: pop, top, push

Extra possiblity: replace top element X by string α

$$
\begin{array}{ll}
\alpha=\wedge & \text { pop } \\
\alpha=X & \text { top } \\
\alpha=Y X & \text { push } \\
\alpha=\beta X & \text { push* } \\
\alpha=\ldots &
\end{array}
$$

Top element X is required to do a move!

Example 5.3. PDAs Accepting the Languages

 $A n B n$ and SimplePal$$
A n B n=\left\{a^{i} b^{i} \mid i \geq 0\right\}
$$

SimplePal $=\left\{x c x^{r} \mid x \in\{a, b\}^{*}\right\}$

A slide from lecture 7:

In general: construction of a CFG from a finite automaton.

Example: an FA accepting $\{a, b\}^{*}\{b a\}$

Definition 5.1. A Pushdown Automaton

A pushdown automaton (PDA)
is a 7 -tuple $M=\left(Q, \Sigma, \Gamma, q_{0}, Z_{0}, A, \delta\right)$, where
Q is a finite set of states.
Σ and Γ are finite sets, the input and stack alphabet.
q_{0}, the initial state, is an element of Q.
Z_{0}, the initial stack symbol, is an element of Γ.
A, the set of accepting states, is a subset of Q.
δ, the transition function, is a function from ...to ...

Definition 5.1. A Pushdown Automaton

A pushdown automaton (PDA)
is a 7 -tuple $M=\left(Q, \Sigma, \Gamma, q_{0}, Z_{0}, A, \delta\right)$, where
Q is a finite set of states.
Σ and Γ are finite sets, the input and stack alphabet.
q_{0}, the initial state, is an element of Q.
Z_{0}, the initial stack symbol, is an element of Γ.
A, the set of accepting states, is a subset of Q.
δ, the transition function, is a function from $Q \times(\Sigma \cup\{\wedge\}) \times \Gamma$ to the set of finite subsets of $Q \times \Gamma^{*}$.

In principle, Z_{0} may be removed from the stack, but often it isn't.

Example 5.3. A PDA Accepting the Language AnBn

Transition table:

Move Number	State p	Input σ	Stack Symbol X	$\begin{aligned} & \text { Move(s) } \\ & \delta(p, \sigma, X) \end{aligned}$
1	q_{0}	a	Z_{0}	$\left(q_{1}, a Z_{0}\right)$
2	q_{1}	a	a	$\left(q_{1}, a a\right)$
3	q_{1}	b	a	$\left(q_{2}, \wedge\right)$
4	q_{2}	b	a	$\left(q_{2}, \wedge\right)$
5	q_{2}	\wedge	Z_{0}	$\left(q_{3}, Z_{0}\right)$
(all other combinations)				none

Notation

configuration for certain input: (q, x, α)

$$
(p, x, \alpha) \vdash_{M}(q, y, \beta)
$$

$$
\begin{array}{rll}
& (p, x, \alpha) \vdash_{M}^{n}(q, y, \beta) & (p, x, \alpha) \vdash_{M}^{*}(q, y, \beta) \\
(p, x, \alpha) \vdash(q, y, \beta) & (p, x, \alpha) \vdash^{n}(q, y, \beta) & (p, x, \alpha) \vdash^{*}(q, y, \beta)
\end{array}
$$

Definition 5.2. Acceptance by a PDA

If $M=\left(Q, \Sigma, \Gamma, q_{0}, Z_{0}, A, \delta\right)$ and $x \in \Sigma^{*}$, the string x is accepted by M if

$$
\left(q_{0}, x, Z_{0}\right) \vdash_{M}^{*}(q, \wedge, \alpha)
$$

for some $\alpha \in \Gamma^{*}$ and some $q \in A$.

A language $L \subseteq \Sigma^{*}$ is said to be accepted by M, if L is precisely the set of strings accepted by M; in this case, we write $L=L(M)$.

Sometimes a string accepted by M, or a language accepted by M, is said to be accepted by final state.

Example 5.3. A PDA Accepting the Language AnBn

Transition table:

Move Number	State p	Input σ	Stack Symbol X	$\begin{aligned} & \text { Move(s) } \\ & \delta(p, \sigma, X) \end{aligned}$
1	q_{0}	a	Z_{0}	$\left(q_{1}, a Z_{0}\right)$
2	q_{1}	a	a	$\left(q_{1}, a a\right)$
3	q_{1}	b	a	$\left(q_{2}, \wedge\right)$
4	q_{2}	b	a	$\left(q_{2}, \wedge\right)$
5	q_{2}	\wedge	Z_{0}	$\left(q_{3}, Z_{0}\right)$
(all other combinations)				none

Computation for $a a b b .$.

Example 5.7. A Pushdown Automaton Accepting Pal

$$
\text { Pal }=\left\{y \in\{a, b\}^{*} \mid y=y^{r}\right\}=\left\{x x^{r}, x a x^{r}, x b x^{r} \mid x \in\{a, b\}^{*}\right\}
$$

Dinsdag 24 november

Zowel hoorcollege als werkcollege in 405

