Fundamentele Informatica 1 (I&E)

najaar 2015

http://www.liacs.leidenuniv.nl/~vlietrvan1/fi1ie/

Rudy van Vliet kamer 124 Snellius, tel. 071-527 5777 rvvliet(at)liacs(dot)nl

college 7, 17 november 2015

4. Context-Free Languages
4.3. Regular Languages and Regular Grammars
4.4. Derivation Trees
4.5. Simplified Forms and Normal Forms

Example 4.1. The language AnBn

$$AnBn = \{a^i b^i \mid i \ge 0\}$$

 $S \to aSb \mid \mathsf{A}$

4.3. Regular Languages and Regular Grammars

reg. languages	FA	reg. grammar	reg. expression
determ. cf. languages	DPDA		
cf. languages	PDA	cf. grammar	
re. languages	ТМ	unrestr. grammar	

A slide from lecture 6:

Theorem 4.9.

If L_1 and L_2 are context-free languages over an alphabet $\Sigma,$ then $L_1\cup L_2,\quad L_1L_2\quad\text{and}\ L_1^*$ are also CFLs.

Proof...

A slide from lecture 4:

Definition 3.1. Regular Languages over an Alphabet Σ .

If Σ is an alphabet, the set \mathcal{R} of regular languages over Σ is defined as follows.

- 1. The language \emptyset is an element of \mathcal{R} , and for every $\sigma \in \Sigma$, the language $\{\sigma\}$ is in \mathcal{R} .
- 2. For any two languages L_1 and L_2 in \mathcal{R} , the three languages

 $L_1 \cup L_2$, L_1L_2 , and L_1^* are elements of \mathcal{R} .

(and nothing more)

Exercise.

- Give a context-free grammar G_1 , such that $L(G_1) = \emptyset$.
- Let $\sigma \in \Sigma$.

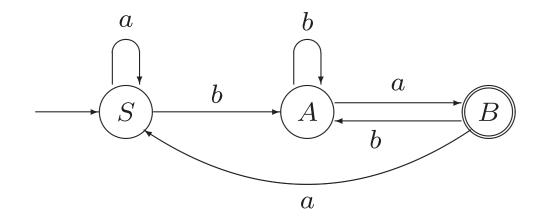
Give a context-free grammar G_2 , such that $L(G_2) = \{\sigma\}$.

Example 4.11. A CFG Corresponding to a Regular Expression.

 $bba(ab)^* + (ab + ba^*b)^*ba$

In general: construction of a CFG from a finite automaton.

Example: an FA accepting $\{a, b\}^* \{ba\}$



Definition 4.13. Regular Grammars.

A context-free grammar $G = (V, \Sigma, S, P)$ is *regular* if every production is of the form

$$A \to \sigma B$$
 or $A \to \Lambda$,

where $A, B \in V$ and $\sigma \in \Sigma$.

Theorem 4.14.

For every language $L \subseteq \Sigma^*$,

L is regular,

if and only if L = L(G) for some regular grammar G.

Hence, the term 'regular grammar' is appropriate.

Proof...

Example.

An FA corresponding to regular grammar with productions $S \to aA \mid bC \quad A \to aS \mid bC \quad C \to aA \mid bS \mid \Lambda$

Example.

An NFA corresponding to regular grammar with productions $S \rightarrow aA \mid bC \quad A \rightarrow aS \mid bC \quad C \rightarrow aA \mid aS \mid \Lambda$

Exercise.

Let $G = (V, \Sigma, S, P)$ be an arbitrary regular grammar.

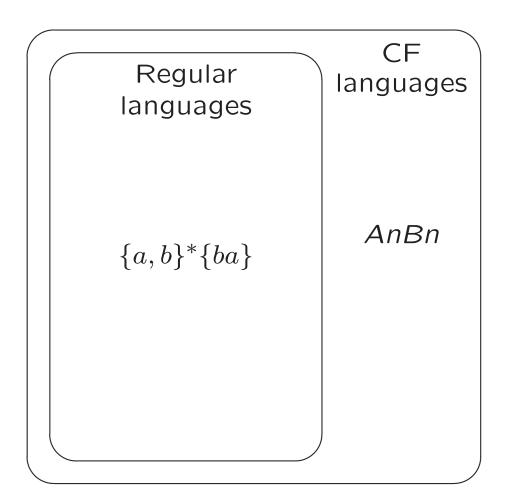
Specify an NFA $M = (Q, \Sigma, q_0, A, \delta)$, such that L(M) = L(G).

Can we find regular grammar for:

Example 4.1. The language *AnBn*

 $AnBn = \{a^i b^i \mid i \ge 0\}$

 $S \to aSb \mid \Lambda$



4.4. Derivation Trees

Exercise.

a. Give a derivation of aaabbbbb in the following grammar G with start variable S:

$$S \to TB$$
 $T \to aTb \mid ab$ $B \to bB \mid \Lambda$

b. Give a derivation of a + a + a in the following grammar G with start variable S:

$$S \to a \mid S + S \mid S * S \mid (S)$$

Useful to consider *how* a string is generated.

Visualize this by means of a tree.

From derivation to derivation tree:

Root node \approx start variable S

Each step in derivation corresponds to application of production $A \rightarrow \alpha$ to some occurrence of A.

In tree: give corresponding node labelled by A children labelled by symbols of α (in right order).

If $\alpha = \Lambda \ldots$

Yield of tree...

For each derivation in a CFG, there is exactly one derivation tree

Example 4.2. The language *Expr*

 $S \to a \mid S + S \mid S * S \mid (S)$

 $\underline{S} \Rightarrow \underline{S} + S \Rightarrow a + \underline{S} \Rightarrow a + (\underline{S}) \Rightarrow a + (\underline{S} * S) \Rightarrow a + (a * \underline{S}) \Rightarrow a + (a * a)$

Conversely, ...

Definition 4.16. Leftmost and Rightmost Derivations

A derivation in a context-free grammar is a *leftmost* derivation (LMD)

if, at each step, a production is applied to the leftmost variableoccurrence in the current string.

A rightmost derivation (RMD) is defined similarly.

Exercise.

Let G be the following grammar with start variable S:

$$S \to TB \quad T \to aTb \mid ab \quad B \to bB \mid \Lambda$$

Construct the derivation tree of aaabbbbb in G corresponding to the following derivation:

$$\underline{S} \Rightarrow T\underline{B} \Rightarrow \underline{T}bB \Rightarrow a\underline{T}bbB \Rightarrow aaTbbb\underline{B}$$
$$\Rightarrow aaTbbbb\underline{B} \Rightarrow aa\underline{T}bbbb \Rightarrow aaabbbbb$$

Top-down vs. bottom-up construction derivation tree...

4.5. Simplified Forms and Normal Forms

Given string x and CFG G, is x generated by G?

Try all possible derivations: 1 step, 2 steps, ...

Let γ be current string, let $|\gamma|$ be length of γ (as usual), let t_{γ} be number of terminals in γ Example 4.2. The language Expr

 $S \to a \mid S + S \mid S * S \mid (S)$

 $\underline{S} \Rightarrow \underline{S} + S \Rightarrow a + \underline{S} \Rightarrow a + (\underline{S}) \Rightarrow a + (\underline{S} * S) \Rightarrow a + (a * \underline{S}) \Rightarrow a + (a * a)$

Example 4.2. The language Expr

$$S \to a \mid S + S \mid S * S \mid (S)$$

$$\begin{array}{c|c|c|c|c|c|c|c|c|c|c|c|c|} \hline \gamma & \underline{S} & \underline{S} + S & a + \underline{S} & a + (\underline{S}) & a + (\underline{S} * S) & a + (a * \underline{S}) & a + (a * a) \\ \hline |\gamma| & 1 & 3 & 3 & 5 & 7 & 7 & 7 \\ t_{\gamma} & 0 & 1 & 2 & 4 & 5 & 6 & 7 \\ |\gamma| + t_{\gamma} & 1 & 4 & 5 & 9 & 12 & 13 & 14 \end{array}$$

If G has no Λ -productions,...

If G has no unit-productions $A \rightarrow B$, either,...

Definition 4.29. Chomsky Normal Form

A context-free grammar is said to be in *Chomsky normal form* if every production is of one of these two types:

- $A \rightarrow BC$ (where B and C are variables)
- $A \rightarrow \sigma$ (were σ is a terminal symbol)

Arbitrary CFG may have

- productions $A \to \Lambda$
- productions $A \rightarrow B$ (unit productions)
- productions $A \rightarrow bc$, $A \rightarrow Bc$, $A \rightarrow bC$
- productions $A \to \alpha$ with $|\alpha| \ge 3$

Converting a CFG to Chomsky Normal Form Step 1

Removing Λ -productions

Example.

 $S \to aSb \mid aBb \quad B \to bB \mid \Lambda$

Converting a CFG to Chomsky Normal Form Step 1

- Identify *nullable* variables
- Add productions in which nullable variables are removed from right hand side
- Delete A-productions
- Delete productions $A \to A$

We cannot generate Λ anymore

Example.

- $S \to aSb \mid aBb \quad B \to bB \mid \Lambda$
- $S \to SaS \mid B \quad B \to bB \mid \Lambda$

Arbitrary CFG may have

- productions $A \to \Lambda$
- productions $A \rightarrow B$ (unit productions)
- productions $A \rightarrow bc$, $A \rightarrow Bc$, $A \rightarrow bC$
- productions $A \to \alpha$ with $|\alpha| \ge 3$

Converting a CFG to Chomsky Normal Form Step 2

- Identify *A-derivable* variables
- For every A-derivable variable B and nonunit production $B \to \alpha$, add production $A \to \alpha$
- Delete unit productions

Example.

 $S \rightarrow aSb \mid B \quad B \rightarrow bB \mid b \mid A \quad A \rightarrow aBS \mid a$