Fundamentele Informatica 1 (I&E)

najaar 2015

http://www.liacs.leidenuniv.nl/~vlietrvan1/fi1ie/

Rudy van Vliet kamer 124 Snellius, tel. 071-527 5777 rvvliet(at)liacs(dot)nl

college 6, 13 november 2015

4. Context-Free Languages

4.1. Using Grammar Rules to Define a Language

4.2. Context-Free Grammars: Definitions and More Examples

4. Context-Free Languages

reg. languages	FA	reg. grammar	reg. expression
determ. cf. languages	DPDA		
cf. languages	PDA	cf. grammar	
re. languages	ТМ	unrestr. grammar	

4.1. Using Grammar Rules to Define a Language

Example 4.1. The language AnBn

 $AnBn = \{a^i b^i \mid i \ge 0\}$

or

- **1.** $\Lambda \in AnBn$.
- **2.** For every $S \in AnBn$, also $aSb \in AnBn$.

Example 4.2. The language Expr

1. $a \in Expr$.

- **2.** For every x and y in *Expr*, also x + y and x * y are in *Expr*.
- **3.** For every $x \in Expr$, also $(x) \in Expr$.

a + (a * a)

a + a * a

ambiguity

Example 4.3. Palindromes and Nonpalindromes

Pal

NonPal

x = abbbbaaba

Example 4.3. Palindromes and Nonpalindromes

NonPal

x = abbbbaaba

- **1.** For every $A \in \{a, b\}^*$, aAb and bAa are elements of *NonPal*.
- **2.** For every *S* in *NonPal*, aSa and bSb are in *NonPal* (and aSb and bSa ...).

Example 4.4. English and Programming Language Syntax

English:

< declarative sentence > \rightarrow < subject phrase > < verb phrase > < object >

"haste makes waste" "the ends justify the means" "we must extend our notion" **Example 4.4.** English and Programming Language Syntax Programming language:

< statement $> \rightarrow \dots | <$ if-statement > | < for-statement > | < compound-statement >

< compound-statement $> \rightarrow \{ <$ statement-sequence $> \}$

 $< \texttt{statement-sequence} > \rightarrow \ \Lambda \ | \\ < \texttt{statement} > \ < \texttt{statement-sequence} >$

'Complete' programming language...

4.2. Context-Free Grammars: Definitions and More Examples

Definition 4.6. Context-Free Grammars

A context-free grammar (CFG) is a 4-tuple $G = (V, \Sigma, S, P)$, where

```
V and \Sigma are disjoint finite sets,

S \in V,

and P is a finite set of formulas of the form A \to \alpha,

where A \in V and \alpha \in (V \cup \Sigma)^*.
```

```
Elements of \Sigma are called terminal symbols, or terminals,
and elements of V are variables, or nonterminals,
S is the start variable
and elements of P are grammar rules or productions.
```

Notation:

 $A \to \alpha$ $\alpha \Rightarrow \beta, \qquad \alpha \Rightarrow^{n} \beta, \qquad \alpha \Rightarrow^{*} \beta$ $\alpha \Rightarrow_{G} \beta, \qquad \alpha \Rightarrow^{n}_{G} \beta, \qquad \alpha \Rightarrow^{*}_{G} \beta$

Term 'context-free':

If $\alpha \Rightarrow \beta$, then $\alpha = \dots$ and $\beta = \dots$

Definition 4.7. The Language Generated by a CFG

If $G = (V, \Sigma, S, P)$ is a CFG, the language generated by G is

$$L(G) = \{ x \in \Sigma^* \mid S \Rightarrow^*_G x \}.$$

A language L is a context-free language (CFL) if there is a CFG G with L = L(G).

Example 4.8. The Language *AEqB*

$$AEqB = \{x \in \{a, b\}^* \mid n_a(x) = n_b(x)\}$$

A slide from lecture 4:

Example 3.4. Strings in $\{a, b\}^*$ in Which Both the Number of *a*'s and the Number of *b*'s are Even

 $(aa+bb+(ab+ba)(aa+bb)^*(ab+ba))^*$

Theorem 4.9.

If L_1 and L_2 are context-free languages over an alphabet Σ , then $L_1\cup L_2, \quad L_1L_2$ and L_1^* are also CFLs.

Proof...

Example 4.10.

The Language $\{a^i b^j c^k \mid j \neq i + k\}$