Fundamentele Informatica 1 (I&E)

najaar 2015

http://www.liacs.leidenuniv.nl/~vlietrvan1/fi1ie/

Rudy van Vliet kamer 124 Snellius, tel. 071-527 5777 rvvliet(at)liacs(dot)nl

college 5, 10 november 2015

3.2 Nondeterministic Finite Automata

3.3 The Nondeterminism in an NFA Can Be Eliminated

3.4 Kleene's Theorem, Part 1

3.2 Nondeterministic Finite Automata

reg. languages	FA	reg. grammar	reg. expression
determ. cf. languages	DPDA		
cf. languages	PDA	cf. grammar	
re. languages	ТМ	unrestr. grammar	

FA \leftarrow NFA without $\Lambda \leftarrow$ NFA \leftarrow reg. expression

Example 3.9. Accepting the Language $\{aab\}^* \{a, aba\}^*$

Slide from lecture 2:

Definition 2.11. A Finite Automaton

A finite automaton (FA) is a 5-tuple $(Q, \Sigma, q_0, A, \delta)$, where Q is a finite set of states Σ is a finite input alphabet $q_0 \in Q$ is the initial state $A \subseteq Q$ is the set of accepting states $\delta: Q \times \Sigma \rightarrow Q$ is the transition function

For any state q of Q and any symbol $\sigma \in \Sigma$, we interpret $\delta(q, \sigma)$ as the state to which the FA moves, if it is in state q and receives the input σ . Definition 3.12. A Nondeterministic Finite Automaton

A nondeterministic finite automaton (NFA) is a 5-tuple $(Q, \Sigma, q_0, A, \delta)$, where

Q is a finite set of states Σ is a finite input alphabet $q_0 \in Q$ is the initial state $A \subseteq Q$ is the set of accepting states δ : ... is the transition function

Example 3.9. Accepting the Language $\{aab\}^* \{a, aba\}^*$

 $\delta(2,b) = \dots$ $\delta(3,a) = \dots$ $\delta(5,b) = \dots$ $\delta(0,\Lambda) = \dots$

6

Definition 3.12. A Nondeterministic Finite Automaton

A *nondeterministic* finite automaton (NFA) is a 5-tuple $(Q, \Sigma, q_0, A, \delta)$, where

Q is a finite set of states Σ is a finite input alphabet $q_0 \in Q$ is the initial state $A \subseteq Q$ is the set of accepting states $\delta : Q \times (\Sigma \cup \{\Lambda\}) \rightarrow 2^Q$ is the transition function

For every element q of Q and every element σ of $\Sigma \cup \{\Lambda\}$, we interpret $\delta(q, \sigma)$ as the set of states to which the NFA can move, if it is in state q and receives the input σ , or, if $\sigma = \Lambda$, the set of states other than q to which the NFA can move from state q without receiving any input symbol.

The Λ-*Closure of a Set of States* (instead of formal **Definition 3.13**):

Suppose $M = (Q, \Sigma, q_0, A, \delta)$ is an NFA, and $S \subseteq Q$ is a set of states.

The Λ -closure of S is the set $\Lambda(S)$ that consists of all states that can be reached from states in S via 0 or more Λ -transitions.

N.B.: by definition, $\Lambda(S)$ includes all states from S.

Example 3.9. Accepting the Language $\{aab\}^* \{a, aba\}^*$

 $\Lambda(\{0\}) = \dots$ $\Lambda(\{0,3\}) = \dots$ $\Lambda(\{0,3,4\}) = \dots$

9

The extended transition function δ^* (instead of formal **Definition 3.14**):

Let $M = (Q, \Sigma, q_0, A, \delta)$ be an NFA.

 $\delta^*(q, x)$ is the set of states that the NFA can get to by starting at q and using the symbols in the string x.

A string $x \in \Sigma^*$ is accepted by M if $\delta^*(q_0, x) \cap A \neq \emptyset$. The language L(M) accepted by M is the set of all strings accepted by M. **Example 3.9.** Accepting the Language $\{aab\}^* \{a, aba\}^*$

 $\delta^*(0, \Lambda) = \dots$ $\delta^*(0, a) = \dots$ $\delta^*(0, aa) = \dots$ $\delta^*(0, aab) = \dots$ **Example 3.15.** Applying the Definitions of $\Lambda(S)$ and δ^*

$$\delta^*(q_0, \Lambda) = \dots$$

$$\delta^*(q_0, a) = \dots$$

$$\delta^*(q_0, ab) = \dots$$

$$\delta^*(q_0, aba) = \dots$$

3.3 The Nondeterminism in an NFA Can Be Eliminated

Theorem.

For every language $L \subseteq \Sigma^*$ accepted by an FA $M = (Q, \Sigma, q_0, A, \delta)$, there is an NFA $M_1 = (Q_1, \Sigma, q_1, A_1, \delta_1)$ that also accepts L.

In other words: NFAs are at least as 'strong' as FAs.

Proof...

A slide from lecture 3:

Example 2.1.

A finite automaton for accepting $L_1 = \{x \in \{a, b\}^* \mid x \text{ ends with } aa\}$

Theorem 3.17.

For every language $L \subseteq \Sigma^*$ accepted by an NFA $M = (Q, \Sigma, q_0, A, \delta)$, there is an NFA M_1 with no Λ -transitions that also accepts L.

In other words: A-transitions in an NFA can be avoided

The formal proof of this result does not have to be known for the exam. However, the construction of M_1 has to be known.

Example 3.19. Eliminating A-transitions from an NFA

_	q	$\Lambda(\{q\})$	$\delta^*(q,a)$	$\delta^*(q,b)$
	1			
	2			
	3			
	4			
	5			

Example 3.9. Accepting the Language $\{aab\}^* \{a, aba\}^*$

Theorem 3.18.

For every language $L \subseteq \Sigma^*$ accepted by an NFA $M = (Q, \Sigma, q_0, A, \delta)$, there is an FA $M_1 = (Q_1, \Sigma, q_1, A_1, \delta_1)$ that also accepts L.

In other words: FAs are at least as 'strong' as NFAs.

The formal proof of this result does not have to be known for the exam. However, the construction of M_1 has to be known.

Corollary. FAs are equally 'strong' as NFAs. **Example 3.19.** Eliminating A-transitions from an NFA

\overline{q}	$\Lambda(\{q\})$	$\delta^*(q,a)$	$\delta^*(q,b)$
1			
2			
3			
4			
5			

Using the Subset Construction to Eliminate Nondeterminism

Example 3.21.

Using the Subset Construction to Eliminate Nondeterminism

Example 3.23. Converting an NFA with Λ -Transitions to an FA

Study this example yourself

3.4 Kleene's Theorem, Part 1

Theorem 3.25. Kleene's Theorem, Part 1.

For every alphabet Σ , every regular language over Σ can be accepted by a finite automaton.

The formal proof of this result does not have to be known for the exam. However, the construction of an NFA from a regular expression has to be known.

FA
$$\leftarrow$$
 NFA without $\Lambda \leftarrow$ NFA \leftarrow reg. expression

A slide from lecture 4:

Definition 3.1. Regular Languages over an Alphabet Σ .

If Σ is an alphabet, the set \mathcal{R} of regular languages over Σ is defined as follows.

- 1. The language \emptyset is an element of \mathcal{R} , and for every $\sigma \in \Sigma$, the language $\{\sigma\}$ is in \mathcal{R} .
- 2. For any two languages L_1 and L_2 in \mathcal{R} , the three languages

 $L_1 \cup L_2$, L_1L_2 , and L_1^* are elements of \mathcal{R} .

(and nothing more)

 $((aa+b)^*(aba)^*bab)^*$

Example 3.28. An NFA Corresponding to $((aa + b)^*(aba)^*bab)^*$ Step 1

25

Example 3.28. An NFA Corresponding to $((aa + b)^*(aba)^*bab)^*$ Step 2

Example 3.28. An NFA Corresponding to $((aa + b)^*(aba)^*bab)^*$ Step 3

Example 3.28. An NFA Corresponding to $((aa + b)^*(aba)^*bab)^*$

28

Example 3.28. An NFA Corresponding to $((aa + b)^*(aba)^*bab)^*$

Example 3.28. An NFA Corresponding to $((aa + b)^*(aba)^*bab)^*$

Main result from Section 3.5.

Theorem 3.30. Kleene's Theorem, Part 2. For every finite automaton $M = (Q, \Sigma, q_0, A, \delta)$, the language L(M) is regular.

The proof of this result and the rest of Section 3.5 do not have to be known for the exam.

