# Fundamentele Informatica 1 (I&E)

najaar 2015

http://www.liacs.leidenuniv.nl/~vlietrvan1/fi1ie/

#### Rudy van Vliet

kamer 124 Snellius, tel. 071-527 5777 rvvliet(at)liacs(dot)nl

college 4, 6 november 2015

- 3.1 Regular Languages and Regular Expressions
  - 3.2 Nondeterministic Finite Automata

#### A slide from lecture 3:

#### Example 2.1.

A finite automaton for accepting  $L_1 = \{x \in \{a,b\}^* \mid x \text{ ends with } aa\}$ 



| reg. languages        | FA   | reg. grammar     | reg. expression |
|-----------------------|------|------------------|-----------------|
| determ. cf. languages | DPDA |                  |                 |
| cf. languages         | PDA  | cf. grammar      |                 |
| re. languages         | TM   | unrestr. grammar |                 |

# 3.1. Regular Languages and Regular Expressions

#### (Part of) two slides from lecture 1:

Combination of union, concatenation, Kleene star:

$$L_1 \cup L_2 L_3^* = \dots$$

$$(L_1 \cup L_2) L_3^*$$

$$L_1 \cup (L_2 L_3)^*$$

$$(L_1 \cup L_2 L_3)^*$$

Description of languages:

by formula:  $L_1 = \{ab, bab\}^* \cup \{b\}\{ba\}^*\{ab\}^*$ 

#### From exercise class 2:

**Exercise 2.12.** For each of the following languages, draw an FA accepting it.

- **a.**  $\{a,b\}^*\{a\}$
- **b.**  $\{bb, ba\}^*$
- **c.**  $\{a,b\}^*\{b,aa\}\{a,b\}^*$
- **d.**  $\{bbb, baa\}^*\{a\}$
- **e.**  $\{a\} \cup \{b\}\{a\}^* \cup \{a\}\{b\}^*\{a\}$

#### A slide from lecture 3:

#### Example 2.1.

A finite automaton for accepting  $L_1 = \{x \in \{a,b\}^* \mid x \text{ ends with } aa\}$ 



**Definition 3.1.** Regular Languages over an Alphabet  $\Sigma$ .

If  $\Sigma$  is an alphabet, the set  ${\mathcal R}$  of regular languages over  $\Sigma$  is defined as follows.

- 1. The language  $\emptyset$  is an element of  $\mathcal{R}$ , and for every  $\sigma \in \Sigma$ , the language  $\{\sigma\}$  is in  $\mathcal{R}$ .
- 2. For any two languages  $L_1$  and  $L_2$  in  $\mathcal{R}$ , the three languages  $L_1 \cup L_2$ ,  $L_1L_2$ , and  $L_1^*$  are elements of  $\mathcal{R}$ .

(and nothing more)

```
\{a,b\}^*\{aa\} \in \mathcal{R}, because \{a,b\}^*\{aa\} = (\{a\} \cup \{b\})^*(\{a\}\{a\}).
```

 $\{\Lambda\} \in \mathcal{R}$ , because ...

#### Regular Language

# $\emptyset \\ \{\Lambda\} \\ \{aab\} \\ \{a,b\}^* \\ \{aab\}^* \{a,ab\} \\$ $\emptyset \\ aab \\ (aab)^* (a+b)^* \\ (aab)^* (a+ab)$

 $({aa,bb} \cup {ab,ba}{{aa,bb}}^*{{ab,ba}})^* \dots$ 

$$(a^*b^*)^* = (a+b)^*$$

$$(a+b)^*ab(a+b)^* + b^*a^* = (a+b)^*$$

**Regular Expression** 

#### Example.

The Language of Strings Consisting of an Odd Number of a's

 $\{a, aaa, aaaaa, aaaaaaaa, \ldots\}$ 

**Example 3.2.** The Language of Strings in  $\{a,b\}^*$  with an Odd Number of a's

**Example 3.3.** The Language of Strings in  $\{a,b\}^*$  Ending with b and Not Containing aa

#### Exercise.

Find a regular expression corresponding to the language of all strings over  $\{a,b\}$  of even length.

**Example 3.4.** Strings in  $\{a,b\}^*$  in Which Both the Number of a's and the Number of b's are Even

**Example 3.4.** Strings in  $\{a,b\}^*$  in Which Both the Number of a's and the Number of b's are Even

$$(aa + bb + (ab + ba)(aa + bb)^*(ab + ba))^*$$

#### Exercise.

Explain why

$$((a+ba)^*a+bba)^* \neq ((a+ba)^*(a+bba))^*$$

### N.B.

+ is not concatenation

**Example 3.5.** Regular Expressions and Programming Languages

identifiers
numeric 'literals' (constants)

## Regular Expressions in Unix

Lex

Vi

grep

# 3.2 Nondeterministic Finite Automata

| reg. languages        | FA   | reg. grammar     | reg. expression |
|-----------------------|------|------------------|-----------------|
| determ. cf. languages | DPDA |                  |                 |
| cf. languages         | PDA  | cf. grammar      |                 |
| re. languages         | TM   | unrestr. grammar |                 |



**Example 3.6.** Accepting the Language  $\{aa, aab\}^*\{b\}$ 

Computation tree...

**Example 3.9.** Accepting the Language  $\{aab\}^*\{a,aba\}^*$ 

Computation tree...