Fundamentele Informatica 1 (I&E)

najaar 2015

http://www.liacs.leidenuniv.nl/~vlietrvan1/fi1ie/

Rudy van Vliet

kamer 124 Snellius, tel. 071-527 5777 rvvliet(at)liacs(dot)nl

college 3, 3 november 2015

2.4 The Pumping Lemma

Example 2.1.

A finite automaton for accepting $L_1 = \{x \in \{a, b\}^* \mid x \text{ ends with } aa\}$

2.4 The Pumping Lemma

Theorem 2.29.

The Pumping Lemma for Regular Languages.

Suppose L is a language over the alphabet Σ . If L is accepted by a finite automaton $M = (Q, \Sigma, q_0, A, \delta)$, and if n is the number of states of M,

then for every $x \in L$ satisfying $|x| \ge n$, there are three strings u, v, and w such that x = uvw and the following three conditions are true:

- 1. $|uv| \le n$.
- 2. |v| > 0 (i.e., $v \neq \Lambda$).
- 3. For every $i \ge 0$, the string $uv^i w$ also belongs to L.

Application of pumping lemma:

mainly to prove that a language L cannot be accepted by a finite automaton.

How?

Suppose that there exists FA M with n states that accepts L.

Apply pumping lemma, and end up with contradiction.

Pumping lemma:

for every $x \in L$ satisfying $|x| \ge n$, there are three strings u, v, and w such that x = uvwand the following three conditions are true:

- 1. $|uv| \le n$.
- 2. |v| > 0 (i.e., $v \neq \Lambda$).
- 3. For every $i \ge 0$, the string $uv^i w$ also belongs to L.

We prove:

NOT (

for every $x \in L$ satisfying $|x| \ge n$, there are three strings u, v, and w such that x = uvwand the following three conditions are true:

1.
$$|uv| \le n$$
.
2. $|v| > 0$ (i.e., $v \ne \Lambda$).
3. For every $i \ge 0$, the string $uv^i w$ also belongs to L .

)

We prove:

There exists $x \in L$ satisfying $|x| \ge n$, such that

NOT (

there are three strings u, v, and w such that x = uvwand the following three conditions are true:

1. $|uv| \le n$. 2. |v| > 0 (i.e., $v \ne \Lambda$). 3. For every $i \ge 0$, the string $uv^i w$ also belongs to L.

)

We prove:

There exists $x \in L$ satisfying $|x| \ge n$, such that for every three strings u, v, and w such that x = uvw

NOT

(

the following three conditions are true:

1.
$$|uv| \le n$$
.
2. $|v| > 0$ (i.e., $v \ne \Lambda$).
3. For every $i \ge 0$, the string $uv^i w$ also belongs to L .

)

We prove:

There exists $x \in L$ satisfying $|x| \ge n$, such that for every three strings u, v, and w such that x = uvw

NOT all of the following three conditions are true:

- 1. $|uv| \le n$.
- 2. |v| > 0 (i.e., $v \neq \Lambda$).
- 3. For every $i \ge 0$, the string $uv^i w$ also belongs to L.

We prove:

There exists $x \in L$ satisfying $|x| \ge n$, such that for every three strings u, v, and w such that x = uvw

if 1. $|uv| \le n$. 2. |v| > 0 (i.e., $v \ne \Lambda$).

then NOT (

3. For every $i \ge 0$, the string $uv^i w$ also belongs to L.

We prove:

```
There exists x \in L satisfying |x| \ge n, such that
for every three strings u, v, and w such that x = uvw
```

if 1. $|uv| \le n$. 2. |v| > 0 (i.e., $v \ne \Lambda$).

then

3. There exists $i \ge 0$, such that the string $uv^i w$ does not belong to L.

Application of pumping lemma:

mainly to prove that a language L cannot be accepted by a finite automaton.

How? Find a string $x \in L$ with $|x| \ge n$ that cannot be pumped up!

What is n?

What should x be?

What can u, v and w be?

Example 2.30. The language AnBn.

Let $L = \{a^i b^i \mid i \ge 0\}.$

Example 2.30. The language *AEqB*.

Let $L = \{x \in \{a, b\}^* \mid n_a(x) = n_b(x)\}.$

Example 2.31.

Let
$$L = \{x \in \{a, b\}^* \mid n_a(x) > n_b(x)\}.$$

Example 2.32.

Example 2.33.

Let L be the set of legal C programs.

Example 2.34. Decision problems involving languages accepted by finite automata.

1. Given an FA $M = (Q, \Sigma, q_0, A, \delta)$, is L(M) nonempty ?

- 1a. Determine reachable states.
- 1b. (Black box.) Use pumping lemma.

Exercise.

Let M be a finite automaton with n states and alphabet Σ . Prove the following claim:

L(M) is nonempty \iff L(M) contains a string $x \in \Sigma^*$ with |x| < n **Example 2.34.** Decision problems involving languages accepted by finite automata.

2. Given an FA $M = (Q, \Sigma, q_0, A, \delta)$, is L(M) infinite ?

Use pumping lemma.

Exercise.

Let M be a finite automaton with n states and alphabet Σ . Prove the following claim:

L(M) is infinite \iff L(M) contains a string $x \in \Sigma^*$ with $|x| \ge n$ \iff L(M) contains a string $x \in \Sigma^*$ with $n \le |x| < 2n$