# Fundamentele Informatica 1 (I&E)

najaar 2015

http://www.liacs.leidenuniv.nl/~vlietrvan1/fi1ie/

### Rudy van Vliet

kamer 124 Snellius, tel. 071-527 5777 rvvliet(at)liacs(dot)nl

college 13, dinsdag 8 december 2015

- 7.3. Turing Machines That Compute Partial Functions
  - 8.3. More General Grammars

#### A slide from lecture 1:

Computer receives input, performs 'computation', gives output

- Given instance of Nim. Who wins?
- Given sequence of numbers. Sort
- Given edge-weighted graph.
   Give shortest route from A to B

#### A slide from lecture 12:

### Just like FA and PDA, Turing machine

- may be used to accept a language
- has a finite number of states

#### Just like FA, but unlike PDA

by default TM is deterministic

## Unlike FA and PDA, Turing machine

- may also be used to compute a function \*
- is not restricted to reading input left-to-right \*
- does not have to read all input \*
- does not have a set of accepting states, but has two *halt* states: one for acceptance and one for rejection (in case of computing a function, . . . )
- might not decide to halt

<sup>\* =</sup> just like human computer

# 7.3. Turing Machines That Compute Partial Functions

Example 7.10. The Reverse of a String

Simple version of:

**Definition 7.9.** A Turing Machine Computing a Function

Let  $T=(Q,\Sigma,\Gamma,q_0,\delta)$  be a Turing machine, and f a partial function on  $\Sigma^*$  with values in  $\Gamma^*$ . We say that T computes f if for every x in the domain of f,

$$q_0 \Delta x \vdash_T^* h_a \Delta f(x)$$

and no other input string is accepted by T.

# **Definition 7.9.** A Turing Machine Computing a Function

Let  $T = (Q, \Sigma, \Gamma, q_0, \delta)$  be a Turing machine, k a natural number, and f a partial function on  $(\Sigma^*)^k$  with values in  $\Gamma^*$ . We say that T computes f if for every  $(x_1, x_2, \ldots, x_k)$  in the domain of f,

$$q_0 \Delta x_1 \Delta x_2 \Delta \dots \Delta x_k \vdash_T^* h_a \Delta f(x_1, x_2, \dots, x_k)$$

and no other input that is a k-tuple of strings is accepted by T.

A partial function  $f:(\Sigma^*)^k \to \Gamma^*$  is Turing-computable, or simply computable, if there is a TM that computes f.

Functions on natural numbers...

Example 7.12. The Quotient and Remainder Mod 2

### Exercise.

Draw a TM that computes the function

$$f(x,y) = x + y$$

where x, y are integers  $\geq 0$ .

Assume that the TM uses unary notation, both for its input and for its output.

## Exercise.

Draw a TM that computes the function  $f(x,y) = x \mod y$ 

Hint: implement the following algorithm:

while 
$$(x \ge y)$$
  
 $x = x - y;$ 

# **Een Intermezzo**

http://www.youtube.com/watch?v=E3keLeMwfHY

| reg. languages        | FA   | reg. grammar     | reg. expression |
|-----------------------|------|------------------|-----------------|
| determ. cf. languages | DPDA |                  |                 |
| cf. languages         | PDA  | cf. grammar      |                 |
| re. languages         | TM   | unrestr. grammar |                 |

# **Definition 8.1.** Accepting a Language (...)

A Turing machine T with input alphabet  $\Sigma$  accepts a language  $L\subseteq \Sigma^*$ , if L(T)=L.

(...)

A language L is recursively enumerable, if there is a TM that accepts L,

(...)

# 8.3. More General Grammars

# A slide from lecture 11: Pumping Lemma for CFLs



# A slide from lecture 11: Pumping Lemma for CFLs



## **Definition 8.10.** Unrestricted grammars

An unrestricted grammar is a 4-tuple  $G=(V,\Sigma,S,P)$ , where V and  $\Sigma$  are disjoint sets of variables and terminals, respectively, S is an element of V called the start symbol, and P is a set of productions of the form

$$\alpha \to \beta$$

where  $\alpha, \beta \in (V \cup \Sigma)^*$  and  $\alpha$  contains at least one variable.

Notation as for CFGs:

$$\alpha \Rightarrow_G^* \beta$$

$$L(G) = \{ x \in \Sigma^* \mid S \Rightarrow_G^* x \}$$

but...

**Example 8.12.** A Grammar Generating  $\{a^nb^nc^n\mid n\geq 1\}$ 

**Example 8.12.** A Grammar Generating  $\{a^nb^nc^n \mid n \geq 1\}$ 

$$S \to SABC \mid LABC$$
 
$$BA \to AB \quad CB \to BC \quad CA \to AC$$
 
$$LA \to a \quad aA \to aa \quad aB \to ab \quad bB \to bb \quad bC \to bc \quad cC \to cc$$

Correct and incorrect derivation for aabbcc...

**Example 8.11.** A Grammar Generating  $\{a^{2^k} \mid k \in \mathbb{N}\}$ 

**Example 8.11.** A Grammar Generating  $\{a^{2^k} \mid k \in \mathbb{N}\}$ 

$$S \to LaR \quad L \to LD \quad Da \to aaD \quad DR \to R \quad L \to \Lambda \quad R \to \Lambda$$

Correct and incorrect derivation for aaaa...

# Example.

A Grammar Generating  $XX = \{xx \mid x \in \{a,b\}^*\}$ 

# Example.

A Grammar Generating  $XX = \{xx \mid x \in \{a, b\}^*\}$ 

$$S o LM$$
  $M o AMa \mid BMb \mid \Lambda$   $LA o LA_1$   $LB o LB_1$   $A_1A o AA_1$   $A_1B o BA_1$   $A_1a o aa$   $A_1b o ab$   $B_1A o AB_1$   $B_1B o BB_1$   $B_1a o ba$   $B_1b o bb$   $L o \Lambda$ 

#### Theorem 8.13.

For every unrestricted grammar G, there is a Turing machine T with L(T) = L(G).

#### Theorem 8.14.

For every Turing machine T with input alphabet  $\Sigma$ , there is an unrestricted grammar G generating the language  $L(T) \subseteq \Sigma^*$ .

In other words: the languages generated by unrestricted grammars are exactly the recursively enumerable languages.

The proofs of these results do not have to be known for the exam.

# En verder...

Vrijdag 11 december 2015, 13:45: Inleveren huiswerkopgave

Donderdag 7 januari 2016, 10:00–13:00: Tentamen (in Leiden)

Vragenuur?