Fundamentele Informatica 1 (I\&E)

$$
\text { najaar } 2015
$$

http://www.liacs.leidenuniv.nl/~vlietrvan1/fi1ie/

> Rudy van Vliet
> kamer 124 Snellius, tel. 071-527 5777 rvvliet(at)liacs(dot) nl
> college 11 , dinsdag 1 december 2015
6. Context-Free and Non-Context-Free Languages
6.1. The Pumping Lemma for Context-Free Languages

6. Context-Free and Non-Context-Free Languages

6.1. The Pumping Lemma for Context-Free Languages

reg. languages	FA	reg. grammar	reg. expression
determ. cf. languages	DPDA		
cf. languages	PDA	cf. grammar	
re. Ianguages	TM	unrestr. grammar	

A slide from lecture 3:

2.4 The Pumping Lemma

Theorem 2.29.
The Pumping Lemma for Regular Languages.
Suppose L is a language over the alphabet Σ.
If L is accepted by a finite automaton $M=\left(Q, \Sigma, q_{0}, A, \delta\right)$, and if n is the number of states of M,
then for every $x \in L$ satisfying $|x| \geq n$, there are three strings u, v, and w such that $x=u v w$ and the following three conditions are true:

1. $|u v| \leq n$.
2. $|v|>0$ (i.e., $v \neq \Lambda$).
3. For every $i \geq 0$, the string $u v^{i} w$ also belongs to L.

A slide from lecture 3:

Example 2.30. The language $A n B n$.
Let $L=\left\{a^{i} b^{i} \mid i \geq 0\right\}$.

Now, context-free languages.

Intuitively clear that PDA cannot accept AnBnCn or $X X \ldots$

Now, context-free languages.

Intuitively clear that PDA cannot accept $A n B n C n$ or $X X .$.

Pumping lemma based on derivation in CFG (not on PDA):
$S \Rightarrow^{*} v \underline{A} z \Rightarrow^{*} v w \underline{A} y z \Rightarrow^{*} v w x y z$
$S \Rightarrow^{*} v \underline{A} z \Rightarrow^{*} v w \underline{A} y z \Rightarrow^{*} v w w A y y z \Rightarrow^{*} v w^{m} x y^{m} z$

Theorem 6.1.

The Pumping Lemma for Context-Free Languages.

Suppose L is a context-free language. Then there is an integer n so that for every $u \in L$ with $|u| \geq n, u$ can be written as $u=v w x y z$, for some strings v, w, x, y and z satisfying

1. $|w y|>0$
2. $|w x y| \leq n$
3. for every $m \geq 0, v w^{m} x y^{m} z \in L$

Proof. . .

A slide from lecture 7:

Definition 4.29. Chomsky Normal Form

A context-free grammar is said to be in Chomsky normal form if every production is of one of these two types:

$$
\begin{aligned}
& A \rightarrow B C \text { (where } B \text { and } C \text { are variables) } \\
& A \rightarrow \sigma \text { (were } \sigma \text { is a terminal symbol) }
\end{aligned}
$$

A slide from lecture 8:

Theorem 4.30. (not Theorem 4.31!)

For every context-free grammar G, there is another CFG G_{1} in Chomsky normal form such that $L\left(G_{1}\right)=L(G)-\{\Lambda\}$.

What if $\wedge \notin L(G)$?

Number of leaf nodes in a binary tree of a given height

Pumping Lemma for CFLs

Pumping Lemma for CFLs

Theorem 6.1.

The Pumping Lemma for Context-Free Languages.

Proof

Let G be CFG in Chomsky normal form with $L(G)=L-\{\Lambda\}$.
Derivation tree in G is binary tree (where each parent of a leaf node has only one child).

Height of a tree is number of edges in longest path from root to leaf node.

At most 2^{h} leaf nodes in binary tree of height $h:|u| \leq 2^{h}$.

At most 2^{h} leaf nodes in binary tree of height $h:|u| \leq 2^{h}$.

Let p be number of variables in G,
let $n=2^{p}$
and let $u \in L(G)$ with $|u| \geq n$.
(Internal part of) derivation tree of u in G has height at least p. Hence, longest path in (internal part of) tree contains at least $p+1$ (internal) nodes.

Consider final portion of longest path in derivation tree. (leaf node $+p+1$ internal nodes), with ≥ 2 occurrences of a variable A.

Pump up derivation tree, and hence u.

Application of pumping lemma:

mainly to prove that a language L cannot be generated by a context-free grammar.

How?
Find a string $u \in L$ with $|u| \geq n$ that cannot be pumped up!

What is n ?

What should u be?

What can v, w, x, y and z be?

Suppose that there exists context-free grammar G with $L(G)=L$. Let n be the integer from the pumping lemma.

Pumping Iemma:

For every $u \in L$ with $|u| \geq n$, there are five strings v, w, x, y and z such that $u=v w x y z$ and the following three conditions are true:

1. $|w y|>0$
2. $|w x y| \leq n$
3. for every $m \geq 0, v w^{m} x y^{m} z \in L$

Suppose that there exists context-free grammar G with $L(G)=L$. Let n be the integer from the pumping lemma.

We prove:
NOT
(
For every $u \in L$ with $|u| \geq n$, there are five strings v, w, x, y and z such that $u=v w x y z$ and the following three conditions are true:

1. $|w y|>0$
2. $|w x y| \leq n$
3. for every $m \geq 0, v w^{m} x y^{m} z \in L$
)

Suppose that there exists context-free grammar G with $L(G)=L$. Let n be the integer from the pumping lemma.

We prove:
There exists $u \in L$ with $|u| \geq n$, such that
NOT
(
there are five strings v, w, x, y and z such that $u=v w x y z$ and the following three conditions are true:

1. $|w y|>0$
2. $|w x y| \leq n$
3. for every $m \geq 0, v w^{m} x y^{m} z \in L$
)

Suppose that there exists context-free grammar G with $L(G)=L$. Let n be the integer from the pumping lemma.

We prove:
There exists $u \in L$ with $|u| \geq n$, such that
for every five strings v, w, x, y and z such that $u=v w x y z$
NOT
(
the following three conditions are true:

1. $|w y|>0$
2. $|w x y| \leq n$
3. for every $m \geq 0, v w^{m} x y^{m} z \in L$
)

Suppose that there exists context-free grammar G with $L(G)=L$. Let n be the integer from the pumping lemma.

We prove:

There exists $u \in L$ with $|u| \geq n$, such that
for every five strings v, w, x, y and z such that $u=v w x y z$

NOT all of the following three conditions are true:

1. $|w y|>0$
2. $|w x y| \leq n$
3. for every $m \geq 0, v w^{m} x y^{m} z \in L$
)

Suppose that there exists context-free grammar G with $L(G)=L$. Let n be the integer from the pumping lemma.

We prove:
There exists $u \in L$ with $|u| \geq n$, such that
for every five strings v, w, x, y and z such that $u=v w x y z$
if

1. $|w y|>0$
2. $|w x y| \leq n$
then NOT
(
3. for every $m \geq 0, v w^{m} x y^{m} z \in L$
)

Suppose that there exists context-free grammar G with $L(G)=L$. Let n be the integer from the pumping lemma.

We prove:

There exists $u \in L$ with $|u| \geq n$, such that
for every five strings v, w, x, y and z such that $u=v w x y z$
if

1. $|w y|>0$
2. $|w x y| \leq n$
then
3. there exists $m \geq 0$, such that $v w^{m} x y^{m} z$ does not belong to L

Example 6.3. Applying the Pumping Lemma to AnBnCn
AnBnCn $=\left\{a^{i} b^{i} c^{i} \mid i \geq 0\right\}$
Choose $u=\ldots$

Example 6.3. Applying the Pumping Lemma to AnBnCn
AnBnCn $=\left\{a^{i} b^{i} c^{i} \mid i \geq 0\right\}$
Choose $u=a^{n} b^{n} c^{n}$

A slide from lecture 3:

2.4 The Pumping Lemma

Theorem 2.29.
The Pumping Lemma for Regular Languages.
Suppose L is a language over the alphabet Σ.
If L is accepted by a finite automaton $M=\left(Q, \Sigma, q_{0}, A, \delta\right)$, and if n is the number of states of M,
then for every $x \in L$ satisfying $|x| \geq n$, there are three strings u, v, and w such that $x=u v w$ and the following three conditions are true:

1. $|u v| \leq n$.
2. $|v|>0$ (i.e., $v \neq \wedge$).
3. For every $i \geq 0$, the string $u v^{i} w$ also belongs to L.

Theorem 6.1.

The Pumping Lemma for Context-Free Languages.

Suppose L is a context-free language. Then there is an integer n so that for every $u \in L$ with $|u| \geq n, u$ can be written as $u=v w x y z$, for some strings v, w, x, y and z satisfying

1. $|w y|>0$
2. $|w x y| \leq n$
3. for every $m \geq 0, v w^{m} x y^{m} z \in L$

Proof. . .

Example 6.5. Applying the Pumping Lemma to...
$\left\{x \in\{a, b, c\}^{*} \mid n_{a}(x)<n_{b}(x)\right.$ and $\left.n_{a}(x)<n_{c}(x)\right\}$

Choose $u=\ldots$

Example 6.5. Applying the Pumping Lemma to...
$\left\{x \in\{a, b, c\}^{*} \mid n_{a}(x)<n_{b}(x)\right.$ and $\left.n_{a}(x)<n_{c}(x)\right\}$
Choose $u=a^{n} b^{n+1} c^{n+1}$

Example 6.6. The Set of Legal C Programs is Not a CFL

Choose $u=\ldots$

Example 6.6. The Set of Legal C Programs is Not a CFL

Choose $u=$

$$
\text { main()\{int aaa...a;aaa...a;aaa....a;\} }
$$

where aaa....a contains $n+1$ a's

Example 6.4. Appplying the Pumping Lemma to $X X$
$X X=\left\{x x \mid x \in\{a, b\}^{*}\right\}$
Choose $u=\ldots$

Example 6.4. Appplying the Pumping Lemma to $X X$
$X X=\left\{x x \mid x \in\{a, b\}^{*}\right\}$
Choose $u=a^{n} b^{n} a^{n} b^{n}$

