Fundamentele Informatica II

Answer to selected exercises 5
John C Martin: Introduction to Languages and the Theory of Computation

M.M. Bonsangue (and J. Kleijn)

Fall 2011
6.1 Show using the pumping lemma lemma, that the given languages are not context-free.
a. $L=\left\{a^{i} b^{j} c^{k} \mid 0 \leq i<j<k\right\}$.

Suppose L is a CFL. Then L satisfies the pumping lemma (Theorem 8.1a). Let n be the constant of that lemma. Consider $u=a^{n} b^{n+1} c^{n+2} \in L$. Then $|u| \geq n$ and thus there exist v, w, x, y, z such that $u=v w x y z$ with $|w y|>0$, $|w x y| \leq n$, and $v w^{i} x y^{i} z \in L$ for every $i \geq 0$. We distinguish two cases:

1. $w y$ contains at least one a. Then, since $|w x y| \leq n$, there are no c 's in $w y$. Consequently, $v w^{2} x y^{2} z$ contains at least $n+1 a$'s and exactly $n+2 c$'s, which implies that $v w^{2} x y^{2} z$ is not in L. A contradiction.
2. $w y$ does not contain any a. Then it must contain a b or a c. In this case $v w^{0} x y^{0} z$ contains $n a$'s and either at most $n b$'s or at most $n+1 c^{\prime}$'s. Thus $v w^{0} x y^{0} z \notin L$, again a contradiction.
Since we get in all (both) cases a contradiction we conclude that the pumping lemma is not satisfied and hence L is not context-free.
c. $L=\left\{x \in\{a, b\}^{*} \mid n_{b}(x)=n_{a}(x)^{2}\right\}$.

Examples of words in L are: $a a b b b b, b a b b b a, ~ a b b b a b b b a b b b$.
Suppose L is a CFL. Then L satisfies the pumping lemma (Theorem 8.1a). Let n be the constant of that lemma. Consider $u=a^{n} b^{n^{2}} \in L$. Then $|u| \geq n$ and thus there exist v, w, x, y, z such that $u=v w x y z$ with $|w y|>0$, $|w x y| \leq n$, and $v w^{i} x y^{i} z \in L$ for every $i \geq 0$.
Let $n_{a}(w y)=p$ and $n_{b}(w y)=q$. Then for each $i \geq 0$ we have $n_{a}\left(v w^{i} x y^{i} z\right)=$ $n_{a}(u)+(i-1) p=n+(i-1) p$ and $n_{b}\left(v w^{i} x y^{i} z\right)=n_{b}(u)+(i-1) q=n^{2}+(i-1) q$. Since, by our assumption $v w^{i} x y^{i} z \in L$ for every $i \geq 0$, it must be the case that $(n+(i-1) p)^{2}=n^{2}+(i-1) q$ for every $i \geq 0$. This however is impossible as can be seen as follows. Since $|w y|>0$, at least one of p and q is not 0 . If $p=0$ and $q \neq 0$, then $n^{2}=n^{2}+(i-1) q$ for every $i \geq 0$, which clearly is
not true if $i \geq 2$.
If $p \neq 0$ and $q=0$, then $(n+(i-1) p)^{2}=n^{2}$ for every $i \geq 0$, which clearly is not true if $i \geq 2$.
If $p \neq 0$ and $q \neq 0$, then we have (for $i=2$) that $(n+p)^{2}=n^{2}+q$ which implies that $q=2 n p+p^{2}$, and (for $i=3$) that $(n+2 p)^{2}=n^{2}+2 q$ which implies that $q=2 n p+2 p^{2}$. Hence $p=0$ should hold, a contradiction.
We conclude that the pumping lemma is not satisfied and that, consequently, L is not context-free.
g. $L=\left\{a^{n} b^{m} a^{n} b^{n+m} \mid m, n \geq 0\right\}$.

Suppose L is a CFL. Then L satisfies the pumping lemma (Theorem 8.1a).
Let n be the constant of that lemma. Consider $u=a^{n} b^{2 n} a^{n} b^{3 n}$. Thus $u \in L$ and $|u| \geq n$. Hence there exist v, w, x, y, z such that $u=v w x y z$ with $|w y|>0,|w x y| \leq n$, and $v w^{i} x y^{i} z \in L$ for every $i \geq 0$.
Since $|w x y| \leq n$ it is immediately clear that $w x y$ cannot contain more than two distinct symbols.
Suppose first that $w x y$ consists only of a 's or only of b 's. If $w x y$ falls within the first group of a 's, then $v w^{2} x y^{2} z=a^{n+k} b^{2 n} a^{n} b^{3 n}$ for some $k \geq 1$, and this word is not from L. We can use the same argument when $w x y$ falls within the first group of b 's, the second group of a 's or the the second group of b 's.
Secondly, if $w x y$ is a subword of $a^{n} b^{2 n}$, then $v w^{2} x y^{2} z=a^{k} s b^{l} a^{n} b^{3 n}$ with $n_{a}(s)>n-k$ or $n_{b}(s)>2 n-l$, which is not in L. We can use the same argument when $w x y$ is a subword of $b^{2 n} a^{n}$ or of $a^{n} b^{3 n}$.
Thus all cases lead to a contradiction. So L is not a CFL.
6.5 Is the given language context-free? Prove your answer.
a. $L=\left\{a^{n} b^{m} a^{m} b^{n} \mid n, m \geq 0\right\}$ is a CFL; A possible grammar is

$$
S \rightarrow a S B|X \quad X \rightarrow b X A| \Lambda \quad A \rightarrow a \quad B \rightarrow b .
$$

b. $L=\left\{x a y b \mid x, y \in\{a, b\}^{*}\right.$ and $\left.|x|=|y|\right\}$ is a CFL; give a grammar.

$$
S \rightarrow Y b \quad Y \rightarrow a S X|b S X| a \quad X \rightarrow a \mid b
$$

c. $L=\left\{x c x \mid x \in\{a, b\}^{*}\right\}$ is not a CFL; proof similar as in Example 6.2.
d. $L=\left\{x y x \mid x, y \in\{a, b\}^{*}\right.$ and $\left.|x| \geq 1\right\}$ is not a CFL;

Assume that L is context-free. Then it satisfies the pumping lemma. Let n be the constant of that lemma. Now consider $u=x y x$ with $x=a^{n} b^{n}$ and $y=\Lambda$. Thus $u=a^{n} b^{n} a^{n} b^{n}$. There must exist words p, q, r, s, t such that
$u=p q r s t$ such that $|q s|>0,|q r s| \leq n$, and $p q^{i} r s^{i} t \in L$ for every $i \geq 0$. We distinguish two cases:

1. $q s$ consists only of a 's from the first group of a 's in u or it consists only of b 's from the second group of b 's. Then $p q^{2} r s^{2} t$ is either $a^{n+j} b^{n} a^{n} b^{n}$ or $a^{n} b^{n} a^{n} b^{n+j}$ for some $j \geq 1$, which are both not in L. A contradiction.
2. qs contains a b from the first group of b 's in u or it contains an a from the second group of a 's in u. Then $p q^{0} r s^{0} t$ is either $a^{k} b^{l} a^{m} b^{n}$ or $a^{n} b^{k} a^{l} b^{m}$ with $k, m \geq 1$ and $l<n$. Neither of these words is in L, again a contradiction.
Consequently, we always end up with a contradiction and so L is not a CFL. The exercises \mathbf{e}, \mathbf{f}, and \mathbf{g} can be solved efficiently using the material from Chapter 5 (see below).
e. $L=\left\{x \in\{a, b\}^{*} \mid n_{a}(x)<n_{b}(x)<2 n_{a}(x)\right\}$ is a CFL; see Exercise 5.8 b where a PDA is to be given for this language.
f. $L=\left\{x \in\{a, b\}^{*} \mid n_{a}(x)=10 n_{b}(x)\right\}$ is a CFL; give a PDA.
g. L is the set of non-balanced strings of parentheses (and). This language is a CFL, which can be proved by giving a DPDA for its complement the language over $\{(,)\}^{*}$ consisting of all balanced strings. Note that the family of deterministic context-free languages is closed under complementation.
6.7 Generalizing statement I of exercise 2.23 to context-free languages yields: If L is an infinite context-free language, then there are strings v, w, x, y, and z such that $|w y|>0$ and $v w^{i} x y^{i} z \in L$, for every $i \geq 0$.
Generalizing statement II of exercise 2.23 to context-free languages yields: If L is an infinite context-free language, then the set of lengths of words in L contains an infinite arithmetic progression.
Similar to the pumping lemma for regular languages, the two statements above follow from (are weaker forms of) the pumping lemma for contextfree languages.
a. Let $L=\left\{x \in\{a, b, c\}^{*} \mid n_{a}(x)=n_{b}(x)=n_{c}(x)\right\}$. Then using the pumping lemma L can be shown to be not context-free (see Example 8.1). The above generalization of statement I cannot be successfully applied: there is no way to guarantee that the string $w y$ doesn't have an equal number of a 's, b 's and c 's (which allows pumping without leaving the language).
b. Let $L=\left\{a^{i} b^{i} c^{i} \mid i \geq 0\right\}$. Then the generalization of Statement I can be used to prove that this language is not a CFL, but the generalization of statement II cannot (the length set does contain an infinite arithmetic progression).
c. Let $L=\left\{a^{n^{2}} \mid n \geq 0\right\}$. This language is not a CFL, and this can be proved using statement II.
6.8 The PDA M constructed in the proof of Theorem 6.13 is a DPDA for $L_{1} \cap L_{2}$ whenever the PDA M_{1} accepting L_{1} is deterministic (a DPDA). Thus, it follows that the family of DCFLs is also closed under intersection with regular languages.
6.9 Show that the given languages are CFLs, but their complements not. a. $L=\left\{a^{i} b^{j} c^{k} \mid i \geq j \vee i \geq k\right\}$.

We have $L=L_{1} \cup L_{2}$ with $L_{1}=\left\{a^{i} b^{j} c^{k} \mid i \geq j\right\}$ and $L_{2}=\left\{a^{i} b^{j} c^{k} \mid i \geq k\right\}$. It is easy to see that these languages are both context-free.
L_{1} is generated by the CFG G_{1} with axiom S_{1} and set of productions P_{1} consisting of $S_{1} \rightarrow A C, \quad A \rightarrow a A b|a A| \Lambda, \quad C \rightarrow c C \Lambda$;
and L_{2} is generated by the CFG G_{2} with axiom S_{2} and set of productions P_{2} consisting of $S_{2} \rightarrow a S_{2} c\left|a S_{2}\right| B, \quad B \rightarrow b B \mid \Lambda$.
Then L is generated by the grammar with axiom S and set of productions $\left\{S \rightarrow S_{1}, S \rightarrow S_{2}\right\} \cup P_{1} \cup P_{2}$.
The complement of L is $K=K_{1} \cup K_{2}$ with $K_{1}=\{a, b, c\}^{*}\{b a, c a, c b\}\{a, b, c\}^{*}$ consisting of all words over $\{a, b, c\}$ in which the order a 's before b 's before c^{\prime} s is not respected and $K_{2}=\left\{a^{i} b^{j} c^{k} \mid i<j \wedge i<k\right\}$ consisting of all words over $\{a, b, c\}$ in which the symbols appear in the right order but in wrong numbers. Now assume that K is a CFL. Then by Theorem 8.4, also $K_{2}=K \cap\{a\}^{*}\{b\}^{*}\{c\}^{*}$ is a CFL. Hence it satisfies the pumping lemma. Let n be the constant of that lemma. Consider the word $u=a^{n} b^{n+1} c^{n+1}$. Since $u \in K_{2}$ and $|u| \geq n$, there must exist words v, w, x, y, and z such that $u=v w x y z$ with $|w y|>0,|w x y| \leq n$, and $v w^{m} x y^{m} z \in K$ for all $m \geq 0$.
If $w y$ contains at least one a, it cannot contain a c, because $|w x y|<n+1$. Consequently $v w^{2} x y^{2} z$ has at least as many a 's as c 's and is not in K_{2}. Thus $w y$ consists solely of b 's and c 's. But this implies that in $v w^{0} x y^{0} z$ the number of b 's or the number of c 's is at most n and so $v w^{0} x y^{0} z \notin K$, a contradiction. We conclude that K_{2} doesn't satisfy the pumping lemma and consequently, is not context-free. Moreover, our assumption that K is context-free was wrong.
(Try to apply the pumping lemma directly to K instead of K_{2}.)
b. Similar to a. $L=\left\{a^{i} b^{j} c^{k} \mid i \neq j \vee i \neq k\right\}=\left\{a^{i} b^{j} c^{k} \mid i \neq j\right\} \cup$ $\left\{a^{i} b^{j} c^{k} \mid i \neq k\right\}$ is a union of two (easy) CFLs. The complement of L is $K=K_{1} \cup K_{2}$ with $K_{1}=\{a, b, c\}^{*}\{b a, c a, c b\}\{a, b, c\}^{*}$ consisting of all words over $\{a, b, c\}$ in which the order a 's before b 's before c 's is not respected and $K_{2}=\left\{a^{i} b^{j} c^{k} \mid i=j=k\right\}$ consisting of all words over $\{a, b, c\}$ in which the symbols appear in the right order but in wrong numbers. Now assume that K is a CFL. Then by Theorem 8.4, also $K_{2}=K \cap\{a\}^{*}\{b\}^{*}\{c\}^{*}$ is a CFL. In Example 8.1 however it has been shown (using the pumping lemma) that
K_{2} is not a CFL. Thus the assumption that K is a CFL is wrong.
6.11 Prove, by using Ogden's lemma, that the following languages are not context-free.
a. $L=\left\{a^{i} b^{i+k} a^{k} \mid i, k \geq 0\right.$ and $\left.i \neq k\right\}$

Assume that L is a CFL. Then it satisfies Ogden's lemma (Theorem 6.7). Let $n \geq 1$ be the integer in that lemma. We now have to find a word $u \in L$ of length at least n that when pumped using the distinguished postions we have chosen will (always) yield a word not in L, thus proving that Ogden's lemma does not hold for L. A contradiction, which implies that L is not a CFL.
Let $u=a^{n} b^{2 n+n!} a^{n+n!}$ which is in L and certainly longer than n. We designate the first n positions in u as distinguished. According to Ogden, there exist v, w, x, y, z such that $u=v w x y z$, both the string $w y$ and the string x contain at least one a from the first group of a 's, and for all $m \geq 0$, the word $v w^{m} x y^{m} z$ is in L.
Since x contains at least one distinguished position, we have that w consists only of a 's from the first group. If y would contain both an a and a b, then $y=y_{1} a y_{2} b y_{3}$ or $y=y_{1} b y_{2} a y_{3}$ and then $y^{2}=y_{1} a y_{2} b y_{3} y_{1} a y_{2} b y_{3}$ or $y^{2}=$ $y_{1} b y_{2} a y_{3} y_{1} b y_{2} a y_{3}$. Then $v w^{2} x y^{2} z \notin L$ because it has two b 's separated by at least an a. Hence y consists only of a 's or only of b 's, that is $y \in\{a\}^{*} \cup\{b\}^{*}$. If $y \in\{a\}^{*}$, then pumping w and y would involve only a 's implying that the relationship between the number of a 's and the number of b 's would be lost. Thus $y \in\{b\}^{*}$ and we now know that it must be the case that $w=a^{p}$ and $y=b^{q}$ for some integers $p \geq 1$ and $q \geq 0$. If $p \neq q$, then $v w^{0} x y^{0} z=$ $a^{n-p} b^{2 n+n!-q} a^{n+n!} \notin L$. Consequently, $p=q \geq 1$.
Now consider $m=1+n!/ p$. Thus m is an integer and $m p=p+n!$. Then $v w^{m} x y^{m} z=a^{n-p} a^{m p} b^{m p} b^{2 n+n!-p} a^{n+n!}=a^{n+n!} b^{2 n+2(n!)} a^{n+n!}$ which is not in L. We conclude that there is no possibility to pump u correctly, and L is not a CFL.
b. $L=\left\{a^{i} b^{i} a^{j} b^{j} \mid i, j \geq 0\right.$ and $\left.i \neq j\right\}$

Assume that L is a CFL. Then it satisfies Ogden's lemma (Theorem 8.2). Let $n \geq 1$ be the integer in that lemma. Let $u=a^{n} b^{n} a^{n+n!} b^{n+n!}$ which is in L and is certainly longer than n. We designate the first n positions in u as distinguished. According to Ogden, there exist v, w, x, y, z such that $u=v w x y z$, both the string $w y$ and the string x contain at least one a from the first group of a 's, and for all $m \geq 0$, the word $v w^{m} x y^{m} z$ is in L.
Since x contains at least one distinguished position, we have that w consists only of a 's from the first group. If y would contain both an a and a b, then
$y=y_{1} a y_{2} b y_{3}$ or $y=y_{1} b y_{2} a y_{3}$ and then $v w^{3} x y^{3} z \notin L$ because it has at least three groups of b 's. Hence y consists only of a 's or only of b 's, that is $y \in\{a\}^{*} \cup\{b\}^{*}$.
If $y \in\{a\}^{*}$, then pumping w and y would involve only a 's implying that the relationship between the number of a 's and the number of b 's would be lost. Thus $y \in\{b\}^{*}$ and if y would be part of the second group of b 's, then pumping w and y would violate the relationships between the first a 's and b 's and between the second a 's and b 's. Thus y belongs to the first group of b 's. We now know that $v w x y=a^{n} b^{k}$ for some $0 \leq k \leq n$ and $w=a^{p}$ and $y=b^{q}$ for some integers $p \geq 1$ and $q \geq 0$. If $p \neq q$, then $v w^{0} x y^{0} z=$ $a^{n-p} b^{n-q} a^{n+n!} b^{n+n!} \notin L$. Consequently, $p=q \geq 1$.
Now consider $m=1+n!/ p$. Thus m is an integer and $m p=p+n!$. Then $v w^{m} x y^{m} z=a^{n-p} a^{m p} b^{m p} b^{n-p} a^{n+n!} b^{n+n!}=a^{n+n!} b^{n+n!} a^{n+n!} b^{n+n!}$ which is not in L. We conclude that there is no possibility to pump u correctly, and L is not a CFL.
c. $L=\left\{a^{i} b^{j} a^{i} \mid i, j \geq 0\right.$ and $\left.i \neq j\right\}$

Assume that L is a CFL. Then it satisfies Ogden's lemma (Theorem 8.2). Let $n \geq 1$ be the integer in that lemma. Let $u=a^{n} b^{n+n!} a^{n}$ which is in L and is certainly longer than n. We designate the first n positions in u as distinguished. According to Ogden, there exist v, w, x, y, z such that $u=v w x y z$, both the string $w y$ and the string x contain at least one a from the first group of a 's, and for all $m \geq 0$, the word $v w^{m} x y^{m} z$ is in L.
More or less as before, we can now argue that $w=a^{p}$ belongs to the first group of a 's and $y=a^{p}$ belongs to the second group of a 's. Next let $m=1+n!/ p$. Thus m is an integer and $m p=p+n!$. Then $v w^{m} x y^{m} z=$ $a^{n-p} a^{m p} b^{n+n!} a^{m p} a^{n-p}=a^{n+n!} b^{n+n!} a^{n+n!}$ which is not in L. We conclude that there is no possibility to pump u correctly, and L is not a CFL.

6.12

a. Let L be a CFL and F a finite language. Then $L-F$ is a CFL:

Let Σ be an alphabet such that $L, F \subseteq \Sigma^{*}$.
F is finite implies F is regular which implies that its complement $\Sigma^{*}-F$ is regular (Theorem 3.4, page 110). Using Theorem 8.4, we conclude that $L \cap\left(\Sigma^{*}-F\right)=L-F$ is a CFL.
b. L is not a CFL and F is a finite language. Then $L-F$ is not a CFL, which we prove by contradiction. Assume that $L-F$ is a CFL.
Note that $L \cap F \subseteq F$ is finite and hence a CFL. Since a union of two CFLs is a CFL (Theorem 6.1), it follows that $(L-F) \cup(L \cap F)=L$ is context-free, a contradiction. We conclude that $L-F$ is not a CFL.
c. L is not a CFL and F is a finite language. Then $L \cup F$ is not a CFL,
which we prove by contradiction. Assume that $L \cup F$ is a CFL.
Note that $F-L \subseteq F$ is finite. It then follows from a that $(L \cup F)-(F-L)=L$ is context-free, a contradiction. We conclude that $L-F$ is not a CFL.
6.13 Consider once more exercise 8.10, now with every occurrence of "finite" replaced by "regular".
a. Let L be a CFL and F a regular language. Then $L-F$ is a CFL, which can be proved as in 8.10a.
b. L is not a CFL and F is a regular language. Then $L-F$ may or may not be a CFL. As seen above, if F is a finite language, then $L-F$ is not context-free. On the other hand, if we let $F=\Sigma^{*}$ where Σ is an alphabet such that $L \subseteq \Sigma^{*}$, then Then $L-F=\emptyset$ which is a CFL.
c. L is not a CFL and F is a regular language. Similar to $\mathrm{b}, L \cup F$ may or may not be CFL. As seen above, if F is a finite language, then $L \cup F$ is not context-free. On the other hand, if we let $F=\Sigma^{*}$ where Σ is an alphabet such that $L \subseteq \Sigma^{*}$, then $L \cup F=F=\Sigma^{*}$ is a CFL.
6.14 Each of the three statements in exercise 8.10 is true when "CFL" is replaced by "DCFL": Let L and F both be languages over some alphabet Σ.
a. If L is a DCFL and F is a finite language, then $L-F$ is a DCFL: true; first observe that F is a regular language and thus also its complement \bar{F} is regular. Since $L-F=L \cap \bar{F}$ it follows from exercise 6.8 that $L-F$ is a DCFL.
b. If L is not a DCFL and F is a finite language, then $L-F$ is not a DCFL: true; $L=(L-F) \cup(F \cap L)$. Since F is finite also $F \cap L$ is finite and thus regular; since $F \cap L$ is regular, so is its complement $\overline{F \cap L}$. Since the family of DCFLs is closed under complementation, it follows from exercise 6.8 that $\bar{L}=\overline{(L-F) \cup(F \cap L)}=\overline{L-F} \cap \overline{F \cap L}$ is a DCFL and so, again by the closure under complementation it follows that L is a DCFL, a contradiction. c. If L is not a DCFL and F is a finite language, then $L \cup F$ is not a DCFL: true; $L=(L \cup F)-(F-L)$. Since F is finite also $F-L$ is finite. Hence if $L \cup F$ is a DCFL it follows from a that also L is a DCFL, a contradiction.
8.13 See the DPDA M drawn as a solution to exercise 7.13c.

Then $a b \in L(M):\left(q_{0}, a b, Z_{0}\right) \vdash\left(q_{0}, b, a Z_{0}\right) \vdash\left(q_{2}, \Lambda, Z_{0}\right) \vdash\left(q_{1}, \Lambda, Z_{0}\right)$.
However if we interchange accepting and nonaccepting states we still have that $a b$ is accepted, because now q_{2} is accepting.
6.20 The family of deterministic context-free languages is not closed under union, intersection, concatenation, Kleene ${ }^{*}$, difference.
a. Union: Let $L_{1}=\left\{a^{i} b^{j} c^{k}: i, j, k \geq 0\right.$ and $\left.i \neq j\right\}$ and $L_{2}=\left\{a^{i} b^{j} c^{k}\right.$: $i, j, k \geq 0$ and $i \neq k\}$ are both DCFLs (give DPDAs for each of them). However, $L_{1} \cup L_{2}=\left\{a^{i} b^{j} c^{k}: i, j, k \geq 0\right.$ and $(i \neq j$ or $\left.i \neq k)\right\}$ is not a DCFL which can be seen as follows. Suppose that $L_{1} \cup L_{2}$ is a DCFL. Then its complement is also a DCFL Moreover, by Theorem 6.13 (exercise 6.8) $\left(L_{1} \cup L_{2}\right)^{\prime} \cap\{a\}^{*}\{b\}^{*}\{c\}^{*}=\left\{a^{i} b^{j} c^{k}: i, j, k \geq 0\right.$ and $\left.i=j=k\right\}$ is a (D)CFL. This however is in contradiction with Example 6.2a.
b. Non-closure under intersection follows from the closure under complement and the non-closure under union (see above): $K \cup L=\left(K^{\prime} \cap L^{\prime}\right)^{\prime}$; thus if the family of DCFLs would be closed under intersection it follows with the help of closure under complementation that it would also be closed under union, a contradiction.
c. Concatenation: Let L_{1} and L_{2} be the languages as in a above. and let $L_{3}=\{d\} L_{1} \cup L_{2}$, where d is a symbol different from a, b, and c. It is easy to see that L_{3} is a DCFL. Also $\{d\}^{*}$ is a DCFL. We intend to show that $\{d\}^{*} L_{3}$ is not a DCFL.
Consider $\{d\}^{*} L_{3} \cap\{d\}\{a\}^{*}\{b\}^{*}\{c\}^{*}=\{d\} L_{1} \cup\{d\} L_{2}$. If $\{d\}^{*} L_{3}$ would be a DCFL, then (by exercise 8.7) also $\{d\} L_{1} \cup\{d\} L_{2}=\{d\}\left(L_{1} \cup L_{2}\right)$ is a DCFL. It is fairly easy to see that for all words w and all languages K we have that K is a DCFL whenever $\{w\} K$ is a DCFL. Consequently, since $L_{1} \cup L_{2}$ is not a DCFL (see a), also $\{d\}\left(L_{1} \cup L_{2}\right)$ is not a DCFL, a contradiction. Thus $\{d\}^{*} L_{3}$ is not a DCFL.
d. Kleene *: Let $L_{4}=\{d\} \cup\{d\} L_{1} \cup L_{2}$ where L_{1} and L_{2} are as in a above. We show that L_{4}^{*} is not a DCFL.
Consider $L_{4}^{*} \cap\{d\}\left(\{a\}^{*}\{b\}^{*}\{c\}^{*}-\{\Lambda\}\right)=\{d\} L_{1} \cup\{d\} L_{2}$. If L_{4}^{*} would be a DCFL, then by exercise 6.8 also $\{d\} L_{1} \cup\{d\} L_{2}$ which is not the case as we have seen in c. Hence L_{4}^{*} is not a DCFL.
e. Non-closure under difference follows from the closure under complement and the non-closure under intersection (see b): $K \cap L=K-L^{\prime}$; thus if the family of DCFLs would be closed under difference it follows with the help of closure under complementation that it would also be closed under intersection, a contradiction.
6.21 Using exercise 6.8 (or Theorem 6.13) we can prove that the given languages are not DCFLs.
a. pal the language consisting of all palindromes over $\{0,1\}$ is not a DCFL. Suppose to the contrary that it is a DCFL. Then it is easy to see that also $L=\{x \# y \mid x, x y \in \mathrm{pal}\}$ is a DCFL. As suggested by the hint and exercise 6.8, consider $L^{\prime}=L \cap\{0\}^{*}\{1\}^{*}\{0\}^{*} \#\{1\}^{*}\{0\}^{*}=\left\{0^{i} 1^{j} 0^{i} \# 1^{j} 0^{i} \mid\right.$ $i, j \geq 0\}$. This language L^{\prime} should be context-free as it is an intersection of
a (deterministic) context-free language and a regular language. However it follows from the pumping lemma that L^{\prime} is not context-free, a contradiction. Consequently L is not even a CFL and thus pal is not a DCFL.
b. $K=\left\{x \in\{a, b\}^{*} \mid n_{b}(x)=n_{a}(x)\right.$ or $\left.n_{b}(x)=2 n_{a}(x)\right\}$ is not a DCFL. Suppose to the contrary that it is a DCFL. Then it is easy to see that also $L=\{x \# y \mid x, x y \in K\}$ is a DCFL. Consider $L^{\prime}=L \cap\{a\}^{+}\{b\}^{*} \#\{a\}^{+}=$ $\left\{a^{i} b^{j} \# a^{k} \mid i, j, k \geq 1,(j=i\right.$ or $j=2 i)$ and $(j=i+k$ or $\left.j=2(i+k))\right\}=$ $\left\{a^{i} b^{2 i} \# a^{i} \mid i \geq 1\right\}$. By Theorem 6.13 (and exercise 6.8) this language is (deterministic) context-free. However, L^{\prime} doesn't satisfy the pumping lemma (why not?), a contradiction. Thus L is not even a CFL and so K cannot be a DCFL.
c. $K=\left\{x \in\{a, b\}^{*} \mid n_{b}(x)<n_{a}(x)\right.$ or $\left.n_{b}(x)>2 n_{a}(x)\right\}$ is not a DCFL. Suppose to the contrary that it is a DCFL. Then it is easy to see that also $L=\{x \# y \mid x, x y \in L\}$ is a DCFL. Consider $L^{\prime}=L \cap\{a\}^{+}\{b\}^{*} \#\{a\}^{+}=$ $\left\{a^{i} b^{j} \# a^{k} \mid(j<i \vee j>2 i)\right.$ and $\left.(j<i+k \vee j>2(i+k))\right\}=$ $\left\{a^{i} b^{j} \# a^{k} \mid(j<i) \vee j>2(i+k) \vee(j>2 i\right.$ and $\left.j<i+k)\right\}=$ $\left\{a^{i} b^{j} \# a^{k} \mid(j<i) \vee j>2(i+k) \vee(i<j-i<k\}\right.$. By Theorem 6.13 (and exercise 6.8) this language is (deterministic) context-free. However, L^{\prime} doesn't satisfy the pumping lemma (why not?), a contradiction. Thus L is not even a CFL and so K cannot be a DCFL.
version 2 december 2011

