
Fundamentele Informatica II
Answer to selected exercises 4

John C Martin: Introduction to Languages and the Theory of Computation

M.M. Bonsangue (and J. Kleijn)

Fall 2013

4.1 In each case say which language is generated by the CFG G with the
productions as indicated.
a. L(G) = a, b∗.
b. L(G) = {a, b}∗{a}.
c. L(G) = {ba}∗{b}.
d. L(G) = {x ∈ {a, b}∗ | bb does not occur in x}.
e. L(G) = {a, b}∗{b}.
f. L(G) = {xaybxr, xbyaxr | x, y ∈ {a, b}∗ ∧ y = yr}, i.e. the language of all
words which are palindromes over {a, b} with exactly one single “mistake”.
g. L(G) = {x ∈ {a, b}∗ | |x| is even }.
h. L(G) = {x ∈ {a, b}∗ | |x| is odd }.

4.3 Find a context-free grammar generating the given language.
a. For L = {xay | x, y ∈ {a, b}∗ ∧ |x| = |y|} the CFG with productions
S → aSa | aSb | bSa | bSb | a
b. For L = {xaay, xbby | x, y ∈ {a, b}∗ ∧ |x| = |y|} the CFG with
S → aSa | aSb | bSa | bSb | aa | bb
c. For L = {axaya, bxbyb | x, y ∈ {a, b}∗ ∧ |x| = |y|} the CFG with
S → aAa | bBb, A → aAa | aAb | bAa | bAb | a, B → aBa | aBb | bBa | bBb | b

4.4 The productions of two context-free grammars are given. Prove that
neither one generates the language L = {x ∈ {a, b}∗ | na(x) = nb(x)}, the
language consisting of all words with an equal number of a’s and b’s.
a. S → SabS |SbaS |Λ
Clearly, every word generated by this grammar has an equal number of a’s
and b’s, but it cannot generate every word of L: Every non-empty word
generated by this grammar is of the form xaby or xbay with both x and y

1

also generated by S. Hence if x (or y) is non-empty it also contains at least
one occurrence of ab or ba. This implies that aabb cannot be generated even
though it is in L.
b. S → aSb | bSa | abS | baS |Sab |Sba |Λ
Clearly, every word generated by this grammar has an equal number of a’s
and b’s, but it cannot generate every word of L: Every non-empty word
generated by this grammar is of the form ayb, bya, aby, bay, yab, or yba
with y also a word generated by the grammar. Consequently, x = aabbbbaa
cannot be generated even though x ∈ L.

4.5 S → aSbScS | aScSbS | bSaScS | bScSaS | cSaSbS | cSbSaS |Λ .
Does the CFG G with these productions generate the language
L = {x ∈ {a, b, c}∗ | na(x) = nb(x) = nc(x)}?
No. Since every production introduces an equal number of a’s, b’s, and c’s,
it is clear that L(G) is included in L. Thus the question is whether G can
generate every word in L. This turns out to be not the case.
Consider aabbcc ∈ L. Any derivation of this word has to start with an
application of the production S → aSbScS because we need an a in the first
place and b’s have to precede c’s. To derive aabbcc from aSbScS, rewriting
the first occurrence of S should lead to the terminal word a or ab, but this
is impossible, because each word derivable from S has an equal number of
a’s, b’s, and c’s (as observed before).

• Give a CFG that generates all regular expressions over an alphabet Σ.
For simplicity, let us assume Σ = {a, b}. It is easy to generalize the

result below to other aplphabets. De terminal symbols includes all elements
of Σ, the operators {+, ·,∗ , (,)}, and distinct symbols for ∅ en Λ, say ϕ en
λ, respetively. We construct a grammar with starting symbol S and with
the following productions:

S → (S + S) | (S · S) | (S∗) | a | b | λ | ϕ .

4.10 Find a CFG for each of the given langages.
a. S → aSb | B and B → bB | Λ.
b. S → aSb | B and B → bB | b.
c. S → aSbb | Λ.
d. S → aSb | aSbb | Λ.
e. S → aSBB | Λ and B → b | Λ.
f. S → aSBB | a | ab and B → b | Λ.

2

• Find a CFG for each of the given langages.
a. L = {aibjck | i = j+ k}. Thus each word in L has the form akajbjck and
such words are exactly generated by the CFG with productions
S → aSc |T , T → aTb |Λ.
e. L = {aibjck | i < j ∨ i > k}. Thus each word in L is of the form aibibnck

or akanbjck for some n ≥ 1. Such words are exactly generated by the CFG
with productions
S → XC |A
X → aXb |Xb | b, C → Cc |Λ,
Y → aY c | aY | aZ, Z → bZ |Λ.
h. L = {aibj | i ≤ j ≤ 2i}. Thus each word in L is in {a}i{b, bb}i for some
i ≥ 0. These words are exactly generated by the CFG with productions
S → aSb | aSbb |Λ.

4.25 Given a language L ⊆ Σ∗ we need to prove that a., b. and c. are
equivalent.
a. implies b.: it follows directly because regular grammar are a special case
of the grammar specified in b.
b. implies a.: Let L be a language generated by a grammar with productions
of the form A → xB of A → Λ with A,B variables and x ∈ Σ∗. First we find
an equivalent grammar without unit productions (i.e. without productions
A → xB with |x| = 0) using Theorem 4.28. In the resulting grammar, we
look at all its productions. If A → xB with |x| = 1 we leave at it is, but
if x = a1a2 · · · an for n ≥ 2 and each ai ∈ Σ, then we substitute A → xB
by a sequence of production A → a1X1, X1 → a2X2, . . .Xn → anB, with
X1, . . . , Xn new variable symbols.

The new grammar so obtained is clearly regular and generates the same
language as the original grammar.
a. implies c.: It is enough to change every production A → σB into A → Bσ.
The language of the new grammar is the reverse of the language of the
language generated by the original grammar. Since the latter is regular, so
is the language of our new grammar.
c. implies a.: We can use a construction similar to the one we have used for
proving a. implies b., by first transforming each production A → Bx into
A → xRB, where xR is the reverse of x. The new grammar generates a
regular language (the reverse of the original one) because is of the form as
specified in b.. Since regular language are closed under reversal, the original
language must be regular too.

4.26 Describe the language generated by the given grammars.

3

a. S → aA | bC | b, A → aS | bB, B → aC | bA | a, C → aB | bS
This is a regular grammar. Using the construction given in the proof of
Theorem 4.14, we obtain the following NFA accepting L(G).

S A B C

a b

a

a

b

b

a

b

b a

f

Now it is not difficult to see that
L(G) = {x ∈ {a, b}∗ | na(x) is even and nb(x) is odd }.
S corresponds to “even number of a’s and even number of b’s”
A corresponds to “odd number of a’s and even number of b’s”
B corresponds to “odd number of a’s and odd number of b’s”
C corresponds to “even number of a’s and odd number of b’s”.
b. S → bS | aA |Λ, A → aA | bB | b, B → bS
This is a regular grammar. Using the construction given in the proof of
Theorem 4.14, we obtain the following NFA accepting L(G).

S A B

a b
f

b a

b b

From this automaton we can read the regular expression (b∗aa∗bb)∗(Λ +
b∗aa∗b) which describes L(G).

4.27 See the FA M in Figure 4.33. The regular grammar G with L(G) =
L(M) constructed from M as in Theorem 4.4 has the productions:
A → aB | bD |λ, B → aB | bC | b, C → aB | bC | b, D → aD | bD.
This grammar has A as its staring symbol. Note that the state D is a ’sink’
state and that,consequently, the productions relating to D can be safely
omitted from the grammar without affecting the successful derivations (and
hence the generated language). This yields:
A → aB |Λ, B → aB | bC | b, C → aB | bC | b.

4

4.28 Given is the CFG with productions:
S → abA | bB | aba, A → b | bA | aB, B → aA | aB.
This grammar is not a regular grammar but we transform it into an equiv-
alent regular CFG G:
S → aX | bB | aY , X → bA, Y → bZ, Z → a,
A → b | bA | aB, B → aA | aB.
Next we apply the method from the proof of Theorem 4.4 and obtain an
NFA accepting L(G):

X

fZ

b

b

b

a

a

AS

a

B

Y

a b

b a

a

4.29 Each of the given grammars, though not regular, generates a regular
language. Find for each a regular grammar (a CFG with only productions
of the form X → aY and X → a) generating its language.
a. S → SSS | a | ab
The only non-terminating production for S is S → SSS, which means that
the number of occurrences of S in the current string increases with 2 each
time this production is used. Terminating productions can be postponed
until no production S → SSS will be applied anymore. Since we begin with
one S, this means that just before termination we will have an odd number
of S’s. Termination of S yields for every occurrence of S either a or ab.
Hence L(G) consists of an odd number of concatenated a or ab strings:
L(G) = ({a, ab}{a, ab})∗{a, ab} which is indeed a regular language.
A regular grammar for this language would be (with starting symbol Z):
Z → aU | aV | a | aB, B → b, V → bU . U → aZ | aW , W → bZ
b. S → AabB, A → aA | bA |Λ, B → Bab |Bb | ab | b
It is easy to see that from A the language {a, b}∗ is generated.
From B we obtain the language {ab, b}{ab, b}∗ = {ab, b}∗{ab, b}.
Consequently L(G) = {a, b}∗{ab}{ab, b}∗{ab, b}, a regular language.
A regular grammar for this language would be (with starting symbol Z):

5

Z → aZ | bZ | aB, B → bY , Y → aX | b | bY , X → b | bY
c. S → AAS | ab | aab, A → ab | ba |Λ
As long as no terminating productions have been used every string derived
from S consists of an even number of A’s followed by an S. Upon termination
the S will be rewritten into ab or aab, while each A yields ab or ba or Λ. An
even number of concatenated A’s yields a string consisting of an arbitrary
number of concatenated occurrences of ab and ba. Note that this number is
not necessarily even, since any A may also be rewritten into Λ.
Consequently, L(G) = {ab, ba}∗{ab, aab}, a regular language.
A regular grammar for this language would be (with starting symbol Z):
Z → aY | bX, X → aZ, Y → bZ | b | aW , W → b

d. S → AB, A → aAa | bAb | a | b, B → aB | bB |Λ
From A we generate the language consisting of all odd-length palindromes
over {a, b}, which is not a regular language! However B generates {a, b}∗.
Thus L(G) consists of words formed by an odd-length palindrome followed
by an arbitrary word over {a, b}. Now note that every non-empty word
over {a, b} can be seen as an a or b (both odd-length palindromes) followed
by an arbitrary word over {a, b}. Consequently, L(G) = {a, b}+, a regular
language after all!
A regular grammar for this (easy) language would be: Z → aZ | bZ | a | b
e. S → AA |B, A → AAA |Ab | bA | a, B → bB | b
Clearly, every occurrence of B generates {b}+. Because of S → B, this
implies that {b}+ ⊆ L(G).
The other production for S is S → AA. Each A can surround itself with
any number of b’s before either terminating as a or producing two more A’s.
Hence after S ⇒ AA we can produce any word over {a, b} with an even
(non-zero) number of a’s. Together with {b}+ ⊆ L(G), this implies that
L(G) = ({b}∗{a}{b}∗{a}{b}∗)+ ∪ {b}+.
A regular grammar for this language would be (with starting symbol Z):
Z → aY | bZ | b, Y → bY | aZ | a.

4.34 S → a |Sa | bSS |SSb |SbS. This grammar is ambiguous, the word
abaa has two different leftmost derivations:
S ⇒ SbS ⇒ abS ⇒ abSa ⇒ abaa and S ⇒ Sa ⇒ SbSa ⇒ abSa ⇒ abaa.

4.35 Consider the context-free grammar with productions
S → AB, A → aA | Λ, B → ab | bB | Λ
This grammar is NOT unambiguous, even though every derivation of a string
from S has to begin with S → AB, and any string derivable from A has
only one derivation from A and likewise for B.

6

There are strings in L(G) which have more than one derivation tree (more
than one leftmost derivation). Examples are ab and aab:
S ⇒ AB ⇒ B ⇒ ab and S ⇒ AB ⇒ aAB ⇒ aB ⇒ abB ⇒ ab;
S ⇒ AB ⇒ aAB ⇒ aB ⇒ aab and S ⇒ AB ⇒ aAB ⇒ aaAB ⇒ aaB ⇒
aabB ⇒ aab.

4.36 We look at the grammars given in Exercise 4.1. For each of them we
have to decide if the grammar is ambiguous or not. We discuss here b, c, d,
e, f and g. Grammars a and h are both not ambiguous, as it can be proved
in a similar manner as for grammar g.
b The grammar given in b is ambiguous. This follows from the two dif-
ferent leftmost derivations for aaa: S ⇒ SS ⇒ SSS ⇒3 aaa and
S ⇒ SS ⇒ aS ⇒ aSS ⇒2 aaa.
c and d The grammar given c and d are ambiguous. This follows from the
two different leftmost derivations for the word babab:
S ⇒ SaS ⇒ SaSaS ⇒3 babab and S ⇒ SaS ⇒ baS ⇒ baSaS ⇒2 babab.
e This grammar is ambiguous. We have the following two leftmost deriva-
tions for abab:
S ⇒ TT ⇒ aTT ⇒ aTaT ⇒ abaT ⇒ abab and S ⇒ TT ⇒ TaT ⇒
aTaT ⇒2 abab.
f We prove by induction on the length n of the derivation that S ⇒n x for
x ∈ (V ∪ Σ)∗ has only one leftmost derivation from S.
(Induction base) n = 1 thus x is either aSa, bSb, aAb of bAa. In each case
there is only one production that can be applied to obtain x from S.
(Induction step) For a given n, assume that there is only one leftmost deriva-
tion for S ⇒n x, If x containing at least a variable, then x = uSv or x = uAv
(with u and v having length n). If we consider an n+ 1 leftmost derivation
S ⇒n x ⇒ y, then if y ̸= uv, the first two symbols immediately after u
in y determine uniquely the production applied. For example, if x = uSv
and y = uaSv′ then we have applied the production S → aSa. Similarly,
if x = uSv and y = uaAv′ then we have applied the production S → aAb.
When y = uv then it must have been the case that x = uAv and we applied
the production A → Λ. In every of these cases there is only one production
that we can apply, so, using our induction hypothesis, all derivations are
unique.
g We prove by induction on the length n of the derivation that S ⇒n x for
x ∈ (V ∪ Σ)∗ has only one leftmost derivation from S.
(Induction base) n = 1 thus x is either Λ, aT or bT . In each case there is
only one production that can be applied to obtain x from S.
(Induction step) For a given n, assume that there is only one leftmost deriva-

7

tion for S ⇒n x and consider an n + 1 leftmost derivation S ⇒n x ⇒ y.
Because of the format of the production of the grammar, x is either of the
form wS or wT , where w ∈ {a, b}∗. In the first case, either y = w (i.e. we
have applied the production S → Λ), or y = waT or wbT . In every of these
cases there is only one production that we can apply, so, using our induc-
tion hypothesis, the all derivations are unique. The case when y = waS or
y = wbS can be treated similarly.

4.38
Gevraagd wordt aan te tonen dat de gegeven grammatica dubbelzinnig is
en vervolgens een equivalente niet dubbelzinnige grammatica te geven.
a. S → SS | a | b
Volgens deze grammatica heeft het woord aba twee verschillende links-preferente
(leftmost) afleidingen: S ⇒ SS ⇒ aS ⇒ aSS ⇒ abS ⇒ aba en
S ⇒ SS ⇒ SSS ⇒ aSS ⇒ abS ⇒ aba.
De bijbehorende afleidingsbomen zien er zo uit:

S

S S

b

S S a

a

S

S S

Sa

b

S

a

De grammatica kan op het lege woord Λ na, alle woorden over {a, b} gene-
reren, d.w.z. de reguliere taal {a, b}+.
Een equivalente (reguliere) grammatica is dan ook: S → aS | bS | a | b .
Dat deze grammatica niet dubbelzinnig is volgt eenvoudig uit het feit dat
hij bij een (deterministische!) FA hoort.
b. S → ABA A → aA |Λ B → | bB |Λ
Volgens deze grammatica heeft het woord a twee verschillende links-preferente
(leftmost) afleidingen: S ⇒ ABA ⇒ aABA ⇒3 a en
S ⇒ ABA ⇒ BA ⇒ A ⇒ aA ⇒ a.
De bijbehorende afleidingsbomen zien er zo uit:

8

S

Λ

Λ Λ

B A

S

A B A

a A

A

Λ Λ

Λ

a A

De grammatica genereert woorden bestaande uit 0 of meer a’s gevolgd door 0
of meer b’s gevolgd door 0 of meer a’s, d.w.z. de reguliere taal {a}∗{b}∗{a}∗.
Een equivalente grammatica is dan ook:
S → aS | bX |Λ X → bX | aY |Λ Y → aY |Λ .
Deze grammatica is niet dubbelzinnig. (Vanwege de Λ-producties is deze
grammatica strikt gesproken niet regulier, maar de onderliggende eindige
automaat is ten duidelijkste deterministisch.) Zo heeft het woord a nu als
enige afleiding S ⇒ aS ⇒ Λ.
d. S → aSb | aaSb |Λ .
Volgens deze grammatica heeft het woord aaab twee verschillende links-
preferente (leftmost) afleidingen: S ⇒ aSb ⇒ aaaSb ⇒ aaab en
S ⇒ aaSb ⇒ aaaSb ⇒ aaab .
De grammatica genereert woorden bestaande uit een aantal a’s gevolgd door
een aantal b’s waarbij het aantal a’s minstens even groot is als het aantal
b’s maar maximaal twee keer zo groot. d.w.z. de {aibj | j ≥ i ≥ 2j}.
De dubbelzinnigheid van de gegeven grammatica wordt veroorzaakt door-
dat de extra a’s op willekeurige momenten kunnen worden toegevoegd. De
volgende grammatica genereert dezelfde taal, maar genereert eerst per b één
a en als er eenmaal twee a’s per b worden gegenereerd, gaat dat door totdat
de afleiding stopt. We hebben dus een extra niet-terminaal nodig om die
twee processen te kunnen scheiden:
S → aSb |Λ | aaAb A → aaAb |Λ .
Deze grammatica is niet dubbelzinnig: de enige afleiding voor elk woord van
de vorm aj+kbj waarbij 0 ≤ k ≤ j, is
S ⇒j ajSbj ⇒ ajbj als k = 0 en
S ⇒j−k aj−kSbj−k ⇒ aj−kaaAbbj−k ⇒k−1 aj−k+2a2(k−1)Abk−1bj−k+1 ⇒
aj+kbj als k ≥ 1.

4.39 Let G be a regular grammar (note that Λ ̸∈ L(G)). Convert G into an
NFA MG as in the proof of Theorem 4.14. Make MG deterministic (using
the subset construction) and transform the resulting FA M in an equivalent
unambiguous regular grammar.

9

4.48 Let G = (V,Σ, S, P) be a CFG. According to Definition 6.6, a variable
is nullable if and only if it has a production with righthand-side Λ or a
production with righthand-side consisting of nullable variables only.
We have to prove that for all A ∈ V it holds that A is nullable if and only
if A ⇒∗ Λ in G.
Let A ∈ V . First assume that A is nullable. We use (structural) induction.
If A is nullable, because of the production A → Λ, then we have immediately
that A ⇒ Λ. Otherwise there is a production A → B1B2 . . . Bn with n ≥ 1
and the Bi nullable variables. By the induction hypothesis we have Bi ⇒∗ Λ
for all 1 ≤ i ≤ n. Thus A ⇒ B1B2 . . . Bn ⇒∗ B2 . . . Bn ⇒∗ Bn ⇒∗ Λ as
desired.
Next assume that A ⇒m Λ in G for some m ≥ 1 (the case m = 0 does
not occur). We prove by induction on m that A is nullable. If m = 1,
then A ⇒ Λ. This implies that A → Λ is a production of G and so A is
nullable. Next assume (induction hypothesis) that whenever B ⇒k Λ for
some k ≤ m, then B is nullable. Then consider the case A ⇒m+1 Λ. This
implies that the first production used in this derivation has been of the form
A → B1 . . . Bn for some n ≥ 1. Thus A ⇒ B1 . . . Bn ⇒m Λ. Consequently,
for each 1 ≤ i ≤ n, we have Bi ⇒ki Λ where 1 ≤ ki ≤ m. By the induction
hypothesis each Bi is nullable and so also A is nullable.

4.49 Find a CFG without Λ-productions that generates the same language
(except for Λ) as the given CFG. We apply Algorithm 6.1.
a. CFG G is given as S → AB |Λ, A → aASb | a, B → bS.
The nullable variables are N0 = {S} = N1.
Modify the productions: S → AB |Λ, A → aASb | aAb | a, B → bS | b.
Finally, remove the Λ productions to obtain G′ with
S → AB, A → aASb | aAb | a, B → bS | b.
Note that S is nullable. Thus (see exercise 6.33) S ⇒∗ Λ which implies that
Λ ∈ L(G). Hence, in this case L(G)− L(G′) = {Λ}.
b. CFG G is given as
S → AB |ABC, A → BA |BC |Λ | a,
B → AC |CB |Λ | b, C → BC |AB |A | c.
The nullable variables are obtained as N3 = N2 = {S,A,B,C} from
N0 = {A,B}, N1 = N0 ∪ {C}, N2 = N1 ∪ {S}.
Modify the productions (duplicates not included):
S → AB |A |B |Λ |ABC |BC |AC |C, A → BA |B |A |BC |C |Λ | a,
B → AC |A |C |CB |B |Λ | b, C → BC |B |C |Λ |AB |A | c.
Finally, remove the Λ productions and X → X productions to obtain G′

S → AB |A |B |ABC |BC |AC |C, A → BA |B |BC |C | a,

10

B → AC |A |C |CB | b, C → BC |B |AB |A | c.
Note that S is nullable and so Λ ∈ L(G). Hence, also in this case L(G) −
L(G′) = {Λ}.

4.50 For each grammar G given, find a CFG G′ without Λ-productions
and without unit productions such that L(G′) = L(G) − {Λ}. We apply
Theorem 4.27 (Note that eliminating Λ-productions may introduce new unit
productions, whereas eliminating unit productions does not introduce Λ-
productions.)
a. G has productions S → ABA, A → aA |Λ, B → bB |Λ.
Elimination of nullable productions: all variables of G are nullable, because
N2 = N1 = N0 ∪ {S} with N0 = {A,B}.
Modifying the productions leads to
S → ABA |BA |AA |AB |B |A |Λ, A → aA | a |Λ, B → bB | b |Λ.
Then we delete the Λ-productions and we obtain:
S → ABA |BA |AA |AB |B |A, A → aA | a, B → bB | b.
Elimination of unit productions: Both A and B are S-derivable; since neither
A nor B have unit productions, there are no variables that are A-derivable
or B-derivable.
A is S-derivable, so we add S → aA and S → a;
B is S-derivable, so we add S → bB and S → b.
Then we delete all unit productions.
Consequently we arrive at the CFG G′ defined by
S → ABA |BA |AA |AB | bB | b | aA | a, A → aA | a, B → bB | b.

4.51, 4.52, 4.53 These exercises are all concerned with reducing CFGs
in the sense that superfluous symbols (those that can never be used in a
successful derivation) are removed. Let G = (V,Σ, S, P) be a CFG.
4.51 Live variables:
A is live (in G) iff there exists an x ∈ Σ∗ such that A ⇒∗ x.
Recursive definition/algorithm:
L0 = {A ∈ V | ∃x ∈ Σ∗ . A → x ∈ P}
Lk+1 = Lk ∪ {A ∈ V | ∃x ∈ (Lk ∪ Σ)∗ . A → x ∈ P} for all k ≥ 0;
the algorithm terminates if Lm+1 = Lm for some m ≥ 0.
4.52 Reachable variables:
A is reachable (in G) iff there exists x, y ∈ (V ∪ Σ)∗ such that S ⇒∗ xAy.
Recursive definition/algorithm:
R0 = {S} and, for all k ≥ 0,
Rk+1 = Rk ∪ {A ∈ V | ∃Z ∈ Rk . ∃x, y ∈ (V ∪ Σ)∗ . Z → xAy ∈ P};
the algorithm terminates if Rm+1 = Rm for some m ≥ 0.

11

4.53 Useful variables:
A is useful (in G) iff there exists x, y ∈ (V ∪ Σ)∗ and z ∈ Σ∗ such that
S ⇒∗ xAy ⇒∗ z. Thus if A is useful, it is reachable and live.
6.38a. The converse does not hold. As an example, consider the CFG with
productions S → AB and A → a. Then, clearly A is reachable and live, but
not useful (B cannot terminate).
6.38d. Note that only useful variables appear in successful derivations (and
vice versa: all variables appearing in a successful derivation are useful). As
discussed in b. and c. we can find for each CFG an equivalent CFG in
which all variables are useful by first eliminating all dead variables and then
all non-reachable ones. As an example consider the grammar G given by
the productions
S → ABC |BaB, A → aA |BaC | aaa, B → bBb | a, C → CA |AC.
First determine the live variables: L0 = {A,B}, L1 = L0 ∪ {S}, L2 = L1.
Eliminate the remaining (“dead”) variables (in this case C) from G:
S → BaB, A → aA | aaa, B → bBb | a.
Next determine (in the new grammar) the reachable variables: R0 = {S},
R1 = R0 ∪ {B}, R2 = R1.
Eliminate the remaining, unreachable, variables (in this case A) from G:
S → BaB, B → bBb | a.
This grammar generates L(G) and is “reduced” (all its variables are useful).
Finally, note that eliminating dead variables may make others unreachable:
For the CFG given by S → AB and A → a, eliminating S → AB makes A
unreachable. On the other hand, eliminating non-reachable variables does
not affect the liveness of the (reachable) others.

4.54 Construct for each grammar G given, a grammar G′ in CNF with
L(G′) = L(G)− {Λ}.
a. G with productions S → SS | (S) |Λ.
1. Eliminate the Λ-production from G which yields G1 with productions
S → SS | (S) | (). The newly introduced production S → S is removed
together with the Λ-production. L(G1) = L(G)− {Λ}.
2. There are no unit productions.
3. Finally, adapt to CNF; first we get S → SS |LSR |LR, L → (, R →);
next we have S → SS |LX |LR, X → SR, L → (, R →),
which are the productions of G′ and L(G′) = L(G1) = L(G)− {Λ}.

• Let G = (V,Σ, S, P) be a CFG in Chomsky normal form and x ∈ L(G)
with |x| = k for some k ≥ 1. We compute the number of derivation steps
needed to generate x.

12

As in the beginning of section 6.6, we consider, for words w ∈ (V ∪ Σ)∗,
their length |w| and the number of occurrences of terminals which appear
in them: t(w). Let N(w) = |w| + t(w). Thus N(S) = 1 and N(x) =
|x|+ t(x) = k + k = 2k for our given x. Since G is in CNF its productions
are of the form A → BC or A → a. Consequently, applying a production
ia single derivation step u ⇒ v either increases the length by 1 or increases
the number of terminal occurrences by 1. In other words: N(v) = N(u)+1.
Since N(x)−N(S) = 2k − 1, it follows that a (each!) derivation of x from
S in G consists of 2k − 1 derivation steps.

version October 2011

13

