
Fundamentele Informatica II
Answer to selected exercises 3

John C Martin: Introduction to Languages and the Theory of Computation

M.M. Bonsangue (and J. Kleijn)

Fall 2011

3.1 a. r = b∗(ab)∗a∗: the word aab is not in the language, defined by r,
since every a should be followed by a b or belong to a suffix of a’s. Note
that Λ, a, b, and all words of length 2 are in the language, defined by r. So,
aab is of minimal length.
Another example is abb: every b should be preceded by a a unless it is part
of a prefix of b’s.
b. r = (a∗ + b∗)(a∗ + b∗)(a∗ + b∗): the words abab and baba are examples
of words not belonging to the language defined by r, because r allows only
a maximum of two a-b or b-a changes in a word when reading it from left
to right. Verify that there are no shorter words (i.e. of length ≤ 3) not
belonging to the language of r.
c. r = a∗(baa∗)∗b∗: the word bba does not belong to the language defined by
r, because every occurrence of b should be followed by at least one a unles
it belongs to a suffix of b’s. Verify that all words of length ≤ 2 belong to
the language.
d. r = b∗(a + ba)∗b∗: the word abba does not belong to the language of r,
because that requires that a b can only be followed by a b if it belongs to a
prefix or suffix consisting of b’s. Verify that all words of length ≤ 3 belong
to the language.

3.3 a. r(r∗r + r∗) + r∗ = r∗.
b. (r + Λ)∗ = r∗.
c. The expression (r + s)∗rs(r + s)∗ + s∗r∗ denotes all words that

contains at least once rs (i.e. the expression (r + s)∗rs(r + s)∗) or do not
contains any occurrence of rs at all (i.e. the expression s∗r∗). This is thus
equivalent to (r + s)∗.

extra 1 The expression (r(r + s)∗)+ can be simplified in r(r + s)∗

1

3.6 a. (w)∗(z)∗

b. (w)∗a(w + z)∗

c. (w + z)∗(a+ Λ)

3.7 a. b∗ab∗ab∗

b. (a+ b)∗ab∗ab∗

c. Λ + b+ (a+ b)∗a+ (a+ b)∗bb
e. (b+ ab)∗(Λ + a) and (Λ + a)(b+ ba)∗

f. b∗(ab∗ab∗)∗

g. (b+ ab)∗(Λ + a+ aa)(b+ ba)∗

h. b∗(abbb∗)∗

k. (a+ ba)∗b∗.
l. (a+ b)∗(bab+ aba)(a+ b)∗.
m. ((aa + ab(bb)∗ba) ∗ (b + ab(bb)∗a)(a(bb)∗a) ∗ (b + a(bb)∗ba))∗(aa +

ab(bb)∗ba)∗(b+ ab(bb)∗a)(a(bb)∗a)∗.
m. ((aa+bb)∗(ab+ba)(bb+aa)∗(ba+ab))∗(aa+bb)∗(ab+ba)(bb+aa)∗.

3.10 The reverse function rev assigns to each string its reversal (mirror
image).
Formally, given an alphabet Σ, we define rev: Σ∗ → Σ∗ recursively by:
rev(Λ) = Λ (no change)
rev(xa) = arev(x) for x ∈ Σ∗, a ∈ Σ (last letter first, reverse the rest)
rev(x) may be abbreviated as xr.
For a language L we use Lr to denote the language consisting of the reversals
of the words from L, thus Lr = {xr | x ∈ L}.
a. Consider the regular expression e = (aab + bbaba)∗baba defining the
regular language ||e||. Then the language ||e||r can be defined by the regular
expression er = abab(baa+ ababb)∗; thus ||er|| = ||e||r.
b. In general we have the recursively defined function rrev which “reverses”
regular expressions (in the sense that it yields a regular expression with a
reversed semantics): rrev(∅) = ∅; rrev(Λ) = Λ; rrev(a) = a for all a ∈ Σ.
and for the composite elements:
if e1 and e2 are regular expressions, then rrev(e1+e2) =rrev(e1)+rrev(e2);
rrev(e1e2) =rrev(e2)rrev(e1); and rrev(e∗1) = (rrev(e1))

∗.
Now we have to prove that this rrev has the property ||rrev(e)|| = ||e||r.
This is proved by induction on the structure of e:
e = ∅: then ||rrev(∅)|| = ||∅|| = ||∅||r;
e = Λ: then ||rrev(Λ)|| = ||Λ|| = ||Λ||r;
e = a: then ||rrev(a)|| = ||a|| = ||a||r.
Induction step, assuming that ||rrev(e1)|| = ||e1||r and ||rrev(e2)|| = ||e2||r:

2

e = e1 + e2: then
||rrev(e1 + e2)|| = ||rrev(e1)+rrev(e2)|| = ||rrev(e1)|| ∪ ||rrev(e2)|| =
(induction) ||(e1)||r ∪ ||(e2)||r = (||e1|| ∪ ||e2||)r = ||e1 + e2||r;
e = e1e2: then
||rrev(e1e2)|| = ||rrev(e2)rrev(e1)|| = ||rrev(e2)|| · ||rrev(e1)|| =
(induction) ||(e2)||r||(e1)||r = (||(e1)|| · ||(e2)|)|r = ||e1e2||r;
e = e∗1: then
||rrev(e∗1)|| = ||(rrev(e1))∗|| = ||rrev(e1)||∗ =
(induction) (||e1||r)∗ = (||e1||∗)r = ||e∗1||r.
c. It follows from b. that the language Lr is regular whenever the language
L is regular: we have seen that L = ||e|| implies that Lr = ||rrev(e)|| and
that rrev(e) is a regular expression follows immediately from the definition
of rrev as given above.

3.18 See Figure 3.34.
a. We determine δ∗(1, aba). First observe that δ∗(1,Λ) = Λ({1}) = {1};
then δ∗(1, a) = Λ(

∪
r∈δ∗(1,Λ) δ(r, a) = Λ(δ(1, a)) = Λ({2}) = {2, 3}. This

means that processing symbol a from the initial state leads to state 2 or
state 3.
We add b: δ∗(1, ab) = Λ(δ(2, b) ∪ δ(3, b)) = Λ(∅ ∪ {3, 4}) = {3, 4, 5} and so
after ab we are in either state 3 or state 4 or state 5.
Finally we process another a: δ∗(1, aba) = Λ(δ(3, a) ∪ δ(4, a) ∪ δ(5, a)) =
Λ({4} ∪ {4} ∪ ∅) = Λ({4}) = {4, 5}. Thus after reading aba we are in state
4 or in state 5 and since 5 is an accepting state, aba is accepted by M .
b. abab is not accepted: from a. we know that δ∗(1, aba) = {4, 5}. Thus
δ∗(1, abab) = Λ(δ(4, b) ∪ δ(5, b)) = Λ(∅) = ∅. Not only is there no accepting
state for abab, it cannot even be completely processed!
c. aaabbb is accepted by M (check!).

3.21: as in 3.18.

3.22
a. Λ({2, 3}) = {2, 3, 5}.
b. Λ({1}) = {1, 2, 5}.
d. To determine δ∗(1, ba) = first observe that δ∗(1,Λ) = Λ({1}) = {1, 2, 5}
(see above item b.). We thus have δ∗(1, b) = Λ(

∪
p∈δ∗(1,Λ) δ(p, b)) = Λ(δ(1, b)∪

δ(2, b) ∪ δ(5, b)) = Λ({6, 7}) = {1, 2, 5, 6, 7}. Finally we obtain δ∗(1, ba) =
Λ(

∪
p∈δ∗(1,b) δ(p, a)) = Λ(δ(1, a)∪δ(2, a)∪δ(5, a)∪δ(6, a)∪δ(7, a)) = Λ({3, 5}) =

{3, 5}.

3.37 See Figure 3.36. Use the algorithm from the proof of Theorem 3.17

3

to obtain for each NFA an NFA without -Λ transitions accepting the same
language.
a. In the table below, the first four columns describe the transition function
of M . Its initial state is 1 and it has one final state: 4. As a useful extra
we then compute Λ({q}), the set consisting of all states that can be reached
from q using only Λ-transitions. Next we compute the transitions of M ′, for
each state q and symbol c ∈ {a, b}, using the formula δ′(q, c) = δ∗(q, c) =
Λ(

∪
r∈Λ(q) δ(r, a)).

Now we have the transitions of M ′ in the last two columns. Its initial state
is again 1. As accepting states it has now 4 (just like M), but also the inital
state 1, since Λ(1) ∩ {4} = {4} ̸= ∅!!!

q δ(q,Λ) δ(q, a) δ(q, b) Λ({q}) δ∗(q, a) δ∗(q, b)

1 {4} ∅ {2, 3} {1, 4} ∅ {2, 3, 5}
2 ∅ {3} ∅ {2} {3} ∅
3 ∅ ∅ ∅ {3} ∅ ∅
4 ∅ ∅ {5} {4} ∅ {5}
5 ∅ {4} ∅ {5} {4} ∅

Draw M ′.

3.41 a. We use the partial derivatives method to compute the transitions
and the states of the nondeterministic automaton corresponding to the reg-
ular expression E0 = (b + bba)∗a. First we note that Λ ̸∈ L(E0), so E0 is
not an accepting state. We have ∂a((b+ bba)∗a) = ∂a((b+ bba)∗)a∪ ∂a(a) =
∂a((b + bba))(b + bba)∗a ∪ {Λ} = (∂a(b) ∪ ∂a(bba))(b + bba)∗a ∪ {Λ} = {Λ}.
This is a new state, clearly accepting, that we denote by E1. Continuing
our calculation we obtain ∂b((b+ bba)∗a) = ∂b((b+ bba)∗)a∪∂b(a) = ∂b((b+
bba))(b+bba)∗a∪∅ = (∂b(b)∪∂b(bba))(b+bba)∗a = ({Λ}∪{ba}(b+bba)∗a =
{(b+bba)∗a, ba(b+bba)∗a}. The first element in the set is E0, and we denote
the other one by E2. Also here Λ ̸∈ L(E2).

The transitions from E1 = Λ are calculated as follows: ∂a(λ) = ∂b(λ) =
∅.

The transitions from E2 = ba(b + bba)∗a are: ∂a(ba(b + bba)∗a) =
∂a(b)a(b+ bba)∗a = ∅. and ∂b(ba(b+ bba)∗a) = ∂b(b)a(b+ bba)∗a = {Λ}a(b+
bba)∗a = {a(b+bba)∗a}. The element of this set is a new state, say E3, with
Λ ̸∈ (E3), thus non accepting.

The transitions from E3 = a(b+bba)∗a are: ∂a(a(b+bba)∗a) = ∂a(a)(b+
bba)∗a = {λ}(b + bba)∗a = {(b + bba)∗a}. (this is just E0) and ∂b(a(b +
bba)∗a) = ∂b(a)(b+ bba)∗a = ∅a(b+ bba)∗a = ∅.

4

The resulting automaton (with E0 as initial state) is summarized in the
following table:

q δ(q, a) δ(q, b) Accepting?

E0 {E1} {E0, E2} No
E1 ∅ ∅ Yes
E2 ∅ {E3} No
E3 {E0} ∅ No

3.41 d. Let E0 = (a∗bb)∗ + bb∗a∗. We use the method of derivatives to find
a deterministic finite automaton M accepting the language L(E0). Since
Λ ∈ L(E0), the state E0 is accepting. Further we calculate the two deriva-
tives: Da((a

∗bb)∗ + bb∗a∗) = Da((a
∗bb)∗) +Da(bb

∗a∗) = Da(a
∗bb)(a∗bb)∗ +

Da(b)b
∗a∗ = (Da(a

∗)bb+Da(bb))(a
∗bb)∗+∅b∗a∗ = (Da(a)a

∗bb+Da(b)b)(a
∗bb)∗+

∅ = (a∗bb + ∅)(a∗bb)∗ = (a∗bb)(a∗bb)∗ = E1 and Db((a
∗bb)∗ + bb∗a∗) =

Db((a
∗bb)∗)+Db(bb

∗a∗) = Db(a
∗bb)(a∗bb)∗+Db(b)b

∗a∗ = (Db(a
∗)bb+Db(bb))(a

∗bb)∗+
b∗a∗ = (Db(a)a

∗bb+Db(b)b)(a
∗bb)∗+b∗a∗ = (∅+b)(a∗bb)∗+b∗a∗ = b(a∗bb)∗+

b∗a∗ = E2 Note that Λ is in the language of E2 but not in the languages of
E1. Thus only E2 is accepting.

Next we calculate the derivatives of E1. Da(a
∗bb(a∗bb)∗) = Da(a

∗)bb(a∗bb)∗+
Da(bb(a

∗bb)∗) = a∗bb(a∗bb)∗ + ∅ = a∗bb(a∗bb)∗ = E1 and Db(a
∗bb(a∗bb)∗) =

Db(a
∗)bb(a∗bb)∗ +Db(bb(a

∗bb)∗) = ∅+ b(a∗bb)∗ = b(a∗bb)∗ = E3. Also E3 is
not accepting.

Next we calculate the derivatives of E2. Da(b(a
∗bb)∗+b∗a∗) = Da(b(a

∗bb)∗)+
Da(b

∗a∗) = Da(b)(a
∗bb)∗ +Da(b

∗)a∗ +Da(a
∗) = ∅ + ∅ + a∗ = a∗ = E4 (an

accepting state!). Further Db(b(a
∗bb)∗ + b∗a∗) = Db(b(a

∗bb)∗) +Db(b
∗a∗) =

Db(b)(a
∗bb)∗+Db(b

∗)a∗+Db(a
∗) = (a∗bb)∗+ b∗a∗+∅ = (a∗bb)∗+ b∗a∗ = E5

(again, an accepting state!).
The derivatives of E3 are: Da(b(a

∗bb)∗) = Da(b)(a
∗bb)∗ = ∅ = E6 and

Db(b(a
∗bb)∗) = Db(b)(a

∗bb)∗ = (a∗bb)∗ = E7 (an accepting state).
The derivatives of E5 are Da((a

∗bb)∗+b∗a∗) = Da((a
∗bb)∗)+Da(b

∗a∗) =
Da(a

∗bb)(a∗bb)∗+Da(b
∗)a∗+Da(a

∗) = a∗bb(a∗bb)∗+∅+a∗ = a∗bb(a∗bb)∗+
a∗ = E8 (an accepting state) and Db((a

∗bb)∗ + b∗a∗) = Db((a
∗bb)∗) +

Db(b
∗a∗) = Db(a

∗bb)(a∗bb)∗+Db(b
∗)a∗+Db(a

∗) = Db(bb)(a
∗bb)∗+b∗a∗+∅ =

b(a∗bb)∗ + b∗a∗ = E2.
We skip the calculation of the derivatives of the other states, which

are either easy or can be derived by the above calculations. The resulting
automaton (with E0 as initial state) is summarized in the following table:

5

q RegExp δ(q, a) δ(q, b) Accepting?

E0 (a∗bb)∗ + bb∗a∗ E1 E2 Yes
E1 (a∗bb)(a∗bb)∗ E1 E3 No
E2 b(a∗bb)∗ + b∗a∗ E4 E5 Yes
E3 b(a∗bb)∗ E6 E7 No
E4 a∗ E4 E6 Yes
E5 (a∗bb)∗ + b∗a∗ E8 E2 Yes
E6 ∅ E6 E6 No
E7 (a∗bb)∗ E1 E3 Yes
E8 (a∗bb)(a∗bb)∗ + a∗ E8 E3 Yes

3.44 a. We add a new initial state qi ̸∈ Q and a Λ-transition δ(qi,Λ) = {q0}.
All the rest remains unchanged.
b. We add a new single accepting state qf ̸∈ Q and a Λ-transition δ(q,Λ) =
{qf} from every q ∈ A. All the rest remains unchanged.

3.46 The construction proposed does not work: take two automata M1 =
({q1}, {a, b}, q1, {q1}, δ1) andM2 = ({q2}, {a, b}, q2, {q2}, δ2), with δ1(q1, a) =
{q1}, and δ2(q2, a) = {q2}. Then L(M1) = {an|n ≥ 0} and L(M2) = {bn|n ≥
0}. In the new automata Mu we would have a path δ∗(q1, aaλ) bringing to
an accepting state (namely q2), but aab ̸∈ L(M1) ∪ L(M2).

3.51a See Figure 3.40 (a). We use the algebraic of Brzozowski to derive for
the depicted automata a corresponding regular expression.
First we write the automaton in Figure 3.40 (a) as a system of 3 equations
in three variables:

x1 = ax3 + bx2
x2 = ax1 + bx3
x3 = ax2 + bx1 + Λ

By substituting x3 in the first two equations we obtain the system

x1 = a(ax2 + bx1 + Λ) + bx2 = abx1 + (aa+ b)x2 + a
x2 = ax1 + b(ax2 + bx1 + Λ) = bax2 + ((a+ bb)x1 + b)

Using the Arden’s lemma, we obtain that x2 = (ba)∗((a+ bb)x1 + b). If we
substitute x2 in the first equations we have

x1 = abx1 + (aa+ b)(ba)∗((a+ bb)x1 + b) + a
= (ab+ (aa+ b)(ba)∗(a+ bb))x1 + ((aa+ b)(ba)∗b+ a)

6

Using again Arden’s lemma, we obtain that x1 = ((ab + (aa + b)(ba)∗(a +
bb)))∗((aa + b)(ba)∗b + a). This is a regular expression denoting the same
language of the automaton in Figure 3.40 (a).

3.51 c See Figure 3.40 (c). We use the state removal method of Brzozowski
and McCluskey to derive for the depicted automata a corresponding regular
expression.
First we add a new initial state q0 without incoming transitions and a new
(the only) final state qf without outgoing transitions in such a way that the
resulting NFA accepts the same language (see exercise 3.44). At the same
time we combine with + the labels of parallel edges into a single regular
expression.

a, b

a, ba

a, b

b a b

Λ

Λ
Λ

q0
qf

1 2

34

1 2

34

a+ b

a+ b

a+ b

Now we remove state 4. Before deleting 4, we consider the transitions from
3 to 4 and from 4 to 1 and 2. This leads to the introduction of an arc labeled
with (a+ b)a from 3 to 1 and an arc labeled with (a+ b)b from 3 to 2.

Λ

Λ
Λ

q0
qf

1 2

3

(a+ b)a

(a+ b)b
a+ b

a+ b

Then state 1 is removed. This leads to the introduction of an arc labeled
with Λ(a + b) from q0 to 2 and an arc labeled with (a + b)a(a + b) from 3
to 2. The latter is combined using + with the label (a+ b)b of the already
existing arc from 3 to 2.

Λ

Λ
q0

qf

2

3

Λ(a+ b)

a+ b
(a+ b)b+ (a+ b)a(a+ b)

7

Then state 3 is removed. This leads to the introduction of an arc labeled
with (a+ b)Λ from 2 to qf which is combined with the existing parallel arc
labeled with Λ. Also an arc from 2 to 2 is added which is labeled with
(a+ b)((a+ b)b+(a+ b)a(a+ b)), a combination of the label of the arc from
2 to 3 and that of the arc from 3 to 2.

q0
qf

2Λ(a+ b)
Λ + (a+ b)Λ

(a+ b)((a+ b)b+ (a+ b)a(a+ b))

Finally, we remove state 2 and find a regular expression for L(M).

qf
q0

Λ(a+ b)((a+ b)((a+ b)b+ (a+ b)a(a+ b)))∗(Λ + (a+ b)Λ)

L(M) = {a, b}({a, b}({a, b}{b} ∪ {a, b}{a}{a, b}))∗{Λ, a, b}.

version 19 September 2011

8

