Fundamentele Informatica II

Answer to selected exercises 1
John C Martin: Introduction to Languages and the Theory of Computation

M.M. Bonsangue (and J. Kleijn)

Fall 2011

- Let L be a language. It is clear from the definition that $L^{+} \subseteq L^{*}$. Under which circumstances are they equal?
By definition $L^{*}=\bigcup_{i \geq 0} L^{i}=L^{0} \cup \bigcup_{i \geq 1} L^{i}=\{\Lambda\} \cup L^{+}$for any language L. Hence, it is clear that $L^{+} \subseteq L^{*}$. Moreover, we see immediately that $L^{*}=L^{+}$if and only if $\Lambda \in L^{+}$. We claim that $\Lambda \in L^{+}$if and only if $\Lambda \in L$. This can be proved as follows:
Clearly, if $\Lambda \in L$, then $\Lambda \in L^{+}$.
Now assume that $\Lambda \in L^{+}$. Thus there exists an $i \geq 1$ such that $\Lambda \in L^{i}$. Hence Λ is the shortest word in L^{i}. Since the length of any shortest word in L is i times the length of a shortest word in L, it follows that $\Lambda \in L$.
The claim being proved, we have $L^{*}=L^{+}$if and only if $\Lambda \in L$.
- Find a language L over $\{a, b\}$ that is neither $\{\Lambda\}$ nor $\{a, b\}^{*}$ and satisfies $L=L^{*}$.
First of all observe that $L=L^{*}$ implies that $\Lambda \in L$. Moreover, in combination with $L \neq\{\Lambda\}$ it follows that L must be an infinite language.
A good example is $\{a\}^{*}$, because $\{a\}^{*} \neq\{\Lambda\}$ and $\left(\{a\}^{*}\right)^{*}=\{a\}^{*}$, since $\{a\}^{*}\{a\}^{*}=\{a\}^{*}$.
Another example is $\left\{x \in\{a, b\}^{*}| | x \mid\right.$ is even $\}$.
- Find an infinite language L over $\{a, b\}$ for which $L \neq L^{*}$.

Observe that each finite language such that $L \neq\{\Lambda\}$ has the property that $L \neq L^{*}$, even $\emptyset^{*}=\{\Lambda\} \neq \emptyset$. This follows from the fact that $\Lambda \in L^{*}$ whatever L. Similarly: for very infinite language L such that $\Lambda \notin L$, we have $L \neq L^{*}$. Consequently, example languages as requested are, e.g., $\{a\}^{+},\{a, b\}^{+}$, and $\left\{x \in\{a, b\}^{*}| | x \mid\right.$ is odd $\}$; observe that $\left\{x \in\{a, b\}^{*}| | x \mid \text { is odd }\right\}^{*}$ contains not only Λ, but actually all even words: $\left\{x \in\{a, b\}^{*}| | x \mid \text { is odd }\right\}^{*}=\{a, b\}^{*}$.

- Give examples of languages L_{1} and L_{2} such that $L_{1} L_{2}=L_{2} L_{1}$ and
a. $L_{1} \neq\{\Lambda\} \neq L_{2}$ and neither language contains the other one:

Take $L_{1}=\{a\}$, and $L_{2}=\{a a\}$.
b. $\emptyset \neq L_{1} \subset L_{2}$ and $L_{1} \neq\{\Lambda\}$:

Take $L_{1}=\{a\}$ and $L_{2}=\{\Lambda, a\}$.

- Show that for any language $L, L^{*}=\left(L^{*}\right)^{*}=\left(L^{+}\right)^{*}=\left(L^{*}\right)^{+}$.

Whatever the language L, it always holds that $L \subseteq L^{+} \subseteq L^{*}$, by the definition of + and $*$.
Then exercise 1.33 implies that $L^{*} \subseteq\left(L^{+}\right)^{*} \subseteq\left(L^{*}\right)^{*}$.
Moreover, $L^{*} \subseteq\left(L^{*}\right)^{+} \subseteq\left(L^{*}\right)^{*}$.
Now assume that the inclusion $\left(L^{*}\right)^{*} \subseteq L^{*}$ is always true. Then $L^{*}=\left(L^{*}\right)^{*}$ and all inclusions above are equalities: $L^{*}=\left(L^{+}\right)^{*}=\left(L^{*}\right)^{+}=\left(L^{*}\right)^{*}$.
Thus the only thing left to prove is that the inclusion $\left(L^{*}\right)^{*} \subseteq L^{*}$ is always true. Consider $w \in\left(L^{*}\right)^{*}$. Thus there exist a $k \geq 0$ and words $v_{1}, \ldots, v_{k} \in L^{*}$ such that $w=v_{1} \cdots v_{k}$ (note that $w=\Lambda$ if $k=0$). Thus w is a concatenation of 0 or more words from L, in other words: $w \in L^{*}$.
1.32 If L is a finite set, then $|L|$ denotes the number of elements (the cardinality) of L.
Let L_{1} and L_{2} be two finite languages. Then, clearly, $\left|L_{1} L_{2}\right| \leq\left|L_{1}\right|\left|L_{2}\right|$ because every element of $L_{1} L_{2}$ is obtained by combining an element from L_{1} with one from L_{2} and there are $\left|L_{1}\right| \times\left|L_{2}\right|$ ways to do this. It is however not necessarily the case that $\left|L_{1} L_{2}\right|=\left|L_{1}\right|\left|L_{2}\right|$, because different choices may still yield the same result. Let $L_{1}=L_{2}=\left\{a, a^{2}\right\}$ then $L_{1} L_{2}=\{a a, a a a, a a a a\}$ and $\left|L_{1} L_{2}\right|=3 \neq 4$.
Another example are $L_{1}=\{a, a b\}, L_{2}=\{a, b a\}$. Then $L_{1} L_{2}=\{a a, a b a, a b b a\}$.
1.33 Let $L_{1}, L_{2} \subseteq\{a, b\}^{*}$. a. Assume $L_{1} \subseteq L_{2}$. Then $L_{1}^{2}=L_{1} L_{1} \subseteq L_{1} L_{2} \subseteq$ L_{2}^{2} and in general $L_{1}^{k}=L_{1}^{k-1} L_{1} \subseteq L_{1}^{k-1} L_{2} \subseteq L_{2}^{k-1} L_{2}=L_{2}^{k}$ for all $k \geq 1$. Consequently,
$L_{1}^{*}=\{\Lambda\} \cup L_{1} \cup L_{1}^{2} \cup \ldots \cup L_{1}^{k} \cup \ldots \subseteq\{\Lambda\} \cup L_{2} \cup L_{2}^{2} \cup \ldots \cup L_{2}^{k} \cup \ldots=L_{2}^{*}$.
b. $L_{1}^{*} \cup L_{2}^{*} \subseteq\left(L_{1} \cup L_{2}\right)^{*}$ always holds, since $L_{1} \subseteq L_{1} \cup L_{2}$ which implies that $L_{1}^{*} \subseteq\left(L_{1} \cup L_{2}\right)^{*}$ (see item a. above) and similarly $L_{2}^{*} \subseteq\left(L_{1} \cup L_{2}\right)^{*}$.
c. The inclusion $L_{1}^{*} \cup L_{2}^{*} \subseteq\left(L_{1} \cup L_{2}\right)^{*}$ may be strict: for $L_{1}=\{0\}$ and $L_{2}=\{1\}$ we have $\{0\}^{*} \cup\{1\}^{*} \neq\{0,1\}^{*}$.
d. If $L_{1}^{*} \subseteq L_{2}^{*}$ then $L_{1}^{*} \cup L_{2}^{*}=L_{2}^{*}$ and since $L_{1} \subseteq L_{1}^{*} \subseteq L_{2}^{*}$ also $\left(L_{1} \cup L_{2}\right)^{*} \subseteq$ $\left(L_{2}^{*} \cup L_{2}\right)^{*}=L_{2}^{*}$. Similarly, $L_{2}^{*} \subseteq L_{1}^{*}$ implies that $L_{1}^{*} \cup L_{2}^{*}=L_{1}^{*}=\left(L_{1} \cup L_{2}\right)^{*}$. Next consider $L_{1}=\left\{0^{2}, 0^{5}\right\}$ and $L_{2}=\left\{0^{3}, 0^{5}\right\}$.
Then $L_{1}^{*}=\left\{\Lambda, 0^{2}, 0^{4}, 0^{5}, \ldots\right\}=\{0\}^{*}-\left\{0,0^{3}\right\}$ and
$L_{2}^{*}=\left\{\Lambda, 0^{3}, 0^{5}, 0^{6}, 0^{8}, 0^{9}, \ldots\right\}=\{0\}^{*}-\left\{0,0^{2}, 0^{4}, 0^{7}\right\}$. Thus neither $L_{1}^{*} \subseteq L_{2}^{*}$ nor $L_{2}^{*} \subseteq L_{1}^{*}$. However, $L_{1}^{*} \cup L_{2}^{*}=\{0\}^{*}-\{0\}$ and also $\left(L_{1} \cup L_{2}\right)^{*}=$ $\left\{0^{2}, 0^{3}, 0^{5}\right\}^{*}=\left\{\Lambda, 0^{2}, 0^{3}, 0^{4}, 0^{5}, \ldots\right\}=\{0\}^{*}-\{0\}$.

- List some elements of $\{a, a b\}^{*}$ and give a proposition describing all and only these elements. Further try to find a procedure to test if a word x satisfies your proposition.
$\{a, a b\}^{*}$ contains (among others) the following words: $\Lambda, a, a b, a a b, a b a, a a$, $a b a b, a a a, a a a b, a a b a$, etc.
a. $\{a, a b\}^{*}$ is precisely the set of strings in which every b is preceded by at least one a or -alternatively - $\{a, a b\}^{*}$ is precisely the set of strings which do not start with b and do not have a subword $b b$.
b. Hence a procedure to test whether a word belongs to $\{a, a b\}^{*}$ is to simply go from left to right through the string, symbol by symbol: it should not begin with b and after every occurrence of b either the next letter is an a or the end of the string has been reached.
1.36 L consists of all strings from $\{a, b\}^{*}$ that do not end with b and do not have a subword $b b$.
a. $L=\{a, b a\}^{*}$.
b. Consider now the language K consisting of all strings from $\{a, b\}^{*}$ that do not have a subword $b b$. Assume that $K=S^{*}$ for a finite set S. Then $b \in K=S^{*}$. Since $S^{*}=S^{*} S^{*}$, it follows that $b b \in S^{*} S^{*}=S^{*}=K$, a contradiction. Hence there cannot exist a finite S such that $K=S^{*}$.
1.37 Let $L_{1}, L_{2}, L_{3} \subseteq \Sigma^{*}$ for some alphabet Σ.
a. $L_{1}\left(L_{2} \cap L_{3}\right) \subseteq L_{1} L_{2} \cap L_{1} L_{3}$, because $w \in L_{1}\left(L_{2} \cap L_{3}\right)$ implies that $w=x y$ with $x \in L_{1}$ and $y \in L_{2} \cap L_{3}$. Consequently, $w \in L_{1} L_{2}$ and $w \in L_{1} L_{3}$.
Equality does not necessarily hold. Let $L_{1}=\{a, a b\}, L_{2}=\{b a\}$, and $L_{3}=\{a\}$. Then $L_{1}\left(L_{2} \cap L_{3}\right)=\emptyset \neq\{a b a\}=\{a b a, a b b a\} \cap\{a a, a b a\}=$ $L_{1} L_{2} \cap L_{1} L_{3}$,
b. $L_{1}^{*} \cap L_{2}^{*} \supseteq\left(L_{1} \cap L_{2}\right)^{*}$, because $w \in\left(L_{1} \cap L_{2}\right)^{*}$ implies that w is a concatenation of 0 or more words from $L_{1} \cap L_{2}$. Consequently, $w \in L_{1}^{*}$ and $w \in L_{2}^{*}$.
Equality does not necessarily hold. Let $L_{1}=\{a\}$ and $L_{2}=\{a a\}$. Then $L_{1}^{*} \cap L_{2}^{*}=\{a\}^{*} \cap\{a a\}^{*}=\{a a\}^{*} \neq\{\Lambda\}=\emptyset^{*}=\left(L_{1} \cap L_{2}\right)^{*}$.
c. $L_{1}^{*} L_{2}^{*}$ and $\left(L_{1} L_{2}\right)^{*}$ are not necessarily included in one another.

Let $L_{1}=\{a\}$ and $L_{2}=\{b\}$. Then $L_{1}^{*} L_{2}^{*}=\{a\}^{*}\{b\}^{*}$ consisting of words with a number of a 's followed by some number of b 's and $\left(L_{1} L_{2}\right)^{*}=\{a b\}^{*}$ consisting of words with alternating a 's and b 's. These two languages are incomparable: $a a b \in L_{1}^{*} L_{2}^{*}-\left(L_{1} L_{2}\right)^{*}$ and $a b a b \in\left(L_{1} L_{2}\right)^{*}-L_{1}^{*} L_{2}^{*}$.

- Let $x, y \in \Sigma^{*}$ for some alphabet Σ. Whereas in general $x y$ and $y x$ are two different words, equality is possible, for instance if $x=\Lambda$ or $y=\Lambda$. Can this still happen if x and y are both nonnull? Describe the precise conditions when this can happen.
Assume that $x \neq \Lambda$ and $y \neq \Lambda$ and $x y=y x$ holds. Before giving a characterization of the conditions allowing this situation, we first informally explore what is going on.
If $|x|=|y|$, then it must be the case that $x=y$.
If $|x| \neq|y|$ we may assume that $|x|>|y|$; the other case follows by symmetry. $|x|>|y|$ in combination with $x y=y x$ implies that there exists a non-empty word z such that $x=y z=z y$. Since $y \neq \Lambda$, we have $|y z|=|x|<|y x|$ and we may use induction to prove the following
Claim For all $s, t \in \Sigma^{*}$ such that $s \neq \Lambda \neq t: s t=t s$ if and only if there exists a word u and natural numbers p, q such that $s=u^{p}$ and $t=u^{q}$.
Proof of claimThe if-direction is obvious: $s t=u^{p} u^{q}=u^{p+q}=u^{q} u^{p}=t s$.
For the only-if-direction we use induction on $|s t|$:
If $|s|=1=|t|$, then $s=a$ and $t=b$ for some $a, b \in \Sigma$. From $s t=s t$ it follows that $a=b$. Hence we let $u=a$ and $p=q=1$ and we are done.
Next assume that $|s|>|t| \geq 1$. Then as argued above, there exists a word z such that $s=t z=z t$. Since $|t z|=|t z|<|s t|=|t s|$ we can apply the induction hypothesis: there exists a word u and natural numbers r, q such that $z=u^{r}$ and $t=u^{q}$. Consequently, $s=u^{r+q}$ and we are done with $p=r+q$.
- Show that there is no language L so that $L^{*}=\{a a, b b\}^{*}\{a b, b a\}^{*}$. We prove by contradiction that exists no language L such that $L^{*}=\{a a, b b\}^{*}\{a b, b a\}^{*}$. Suppose that L is such that $L^{*}=\{a a, b b\}^{*}\{a b, b a\}^{*}$. Consequently, $a a \in L^{*}$ and $a b \in L^{*}$ which implies that $a b a a \in L^{*}$. However, $a b a a$ is not an element of $\{a a, b b\}^{*}\{a b, b a\}^{*}$.
- Let $L=\left\{x \in\{0,1\}^{*} \mid x=y y\right.$ for some string $\left.y\right\}$. Prove or disprove that there exist two languages $L_{1} \neq\{\Lambda\}$ and $L_{2} \neq\{\Lambda\}$ such that $L_{1} L_{2}=L$.
We prove by contradiction that the statement is not true:
Suppose L_{1} and L_{2} are such that $L_{1} L_{2}=L$. Observe that $\{00\}^{*}$ and $\{11\}^{*}$ are both subsets of $L=L_{1} L_{2}$.
If $0^{i} \in L_{1}$ and $1^{j} \in L_{2}$ for some $i, j \geq 1$, then $0^{i} 1^{j} \in L_{1} L_{2}=L$, a contradiction. Similarly, we arrive at a contradiction if $1^{i} \in L_{1}$ and $0^{j} \in L_{2}$ for some $i, j \geq 1$.
Hence it must be the case that either L_{1} or L_{2} contains only "mixed" strings with at least one occurrence of a 0 and at least one occurrence of a 1 . We
only consider the case that L_{1} has this property. The case that it would be L_{2} is symmetrical.
Let $w=x_{1} 0 x_{2} 1 x_{3}$ be such a word. Consider $1^{j} \in L_{2}$ with $j \geq|w|$. Then $x_{1} 0 x_{2} 1 x_{3} 1^{j} \in L_{1} L_{2}$, but it cannot be an element of L, a contradiction.
The remaining case ($w=x_{1} 1 x_{2} 0 x_{3}$) is dealt with in an analogous way. Hence we arrive in all cases at a contradiction and the assumed languaes L_{1}, L_{2} cannot exist.
version 2 September 2011

