
Parallel	Graph	Algorithms	
(con4nued)	

MaxFlow	
• 		

•  A	flow	network	G=(V,E):	a	directed	graph,	where	each	
edge	(u,v)	∈	E	has	a	nonnega4ve	capacity	c(u,v)>=0.	

•  If	(u,v)	∉	E,	we	assume	that	c(u,v)=0.	
•  Two	dis4nct		ver4ces	:	source	s	and	sink	t.	

Find	f:	E	->	R,	such	that	

•  Capacity	constraint:	For	all	u,v	∈	V,		
																		we	require		f(u,v)		≤		c(u,v)	
•  Flow	conserva4on:	For	all	u	∈V\{s,t},		
	 	we	require		

	
•  Maximize		

∑ ∑=
vine voute

efef
.. ..

)()(

∑
∈

=
Vv

vsff),(

A	Long	History	
• 				

Ini4ally	defined	by	Ford	and	Fulkerson	(1956)	

MaxFlow	for	sparse	digraphs	with	m	edges	
and	integer	capaci4es	between	1	and	C	

Applica4ons	

•  Data	mining.	
•  Open-pit	mining.	
•  Bipar4te	matching.	
•  Network	reliability.	
•  Baseball	elimina4on.	
•  Image	segmenta4on.	
•  Network	connec4vity.	

•  Distributed	compu4ng.	
•  Security	of	sta4s4cal	data.	
•  Egalitarian	stable	matching.	
•  Network	intrusion	detec4on.	
•  Mul4-camera	scene		

	reconstruc4on.	
•  Sensor	placement	for		

	homeland	security.	
•  Many,	many,	more.	

Example:	Matching	
• 		

Given	an	undirected	graph	G	=	(V,	E)	a	subset	of	edges	M	⊆	E	is	a		
matching	if	each	node	appears	in	at	most	one	edge	in	M.	
	
Max	matching:	Given	a	graph,	find	a	max	cardinality	matching.	

Bipar4te	Matching	

A	graph	G	is	bipar4te	if	the	nodes	can	be	
par44oned	into	two	subsets	L	and	R	such	that	
every	edge	connects	a	node	in	L	to	one	in	R	
	

Note	that	nodes	
2,	5,	3’	and	4’	are	
not	covered	

Bipar4te	Matching:	Maxflow	Formula4on	

•  Create	digraph	G’=	(L∪R∪{s,	t},	E’).	
•  Direct	all	edges	from	L	to	R,	and	assign	infinite	(or	unit)	capacity.	
•  Add	source	s,	and	unit	capacity	edges	from	s	to	each	node	in	L.	
•  Add	sink	t,	and	unit	capacity	edges	from	each	node	in	R	to	t.	

Solving	MaxFlow:	The	Ford-Fulkerson	method	

The	Ford-Fulkerson	method	depends	on	three	
important	ideas	that	transcend	the	method	and	
are	relevant	to	many	flow	algorithms	and	
problems:	residual	networks,	augmen4ng	paths,	
and	cuts.	These	ideas	are	essen4al	to	the	
important	max-flow	min-cut	theorem,	which	
characterizes	the	value	of	maximum	flow	in	
terms	of	cuts	of	the	flow	network.	
	

FORD-FULKERSON-METHOD(G,s,t)	
ini4alize	flow	f	to	0	
while	there	exists	an	augmen*ng	path	p	
										do	augment	flow	f	along	p	
return	f	
	

Augmen4ng	Paths	

•  Given	a	flow	network	and	a	flow,	the	residual	
network	consists	of	edges	that	can	admit	more	net	
flow.		

•  The	amount	of	addi4onal	net	flow		from	u	to	v	
before	exceeding	the	capacity	c(u,v)	is	the	residual	
capacity	of	(u,v),	given	by:		
	 	 	 	 	 	 	cf	(u,v)=c	(u,v)	-	f	(u,v)	

	
				and	in	the	other	direc4on:							
	 	 	 	 	 	 	 	cf	(v,	u)=c	(v,	u)	+	f	(u,	v).	

		
•  If	f	is	a	flow	in	G	and	f’	is	a	flow	in	the	residual	
network	Gf	then	f	+	f’	is	also	a	valid	flow	in	G	

	
	

Augmen4ng	Paths	

•  Given	a	flow	network	G=(V,E)	and	a	flow	f,	an	
augmen4ng	path	is	a	simple	path	from	s	to	t	in	
the	residual	network	Gf		.	

•  Residual	capacity	of	p	:	the	maximum	amount	
of	net	flow	that	we	can	ship	along	the	edges	
of	an	augmen4ng	path	p,	i.e.,			
	 	cf	(p)=min{cf	(u,v):(u,v)	is	on	p}.	

2	 3	 1	

The	residual	capacity	is	1	

The	basic	Ford-Fulkerson	algorithm	

FORD-FULKERSON(G,s,t)	
for	each	edge	(u,v) 	∈	E[G]	
								do		f	[u,v]	=	0	
															f	[v,u]	=	0	
while	there	exists	a	path	p	from	s	to	t	in	the	residual	
network	Gf	
								do	cf	(p)	=	min{cf	(u,v):	(u,v)	is	in	p}	
													for	each	edge	(u,v)	in	p	
																		do	f	[u,v]	=	f	[u,v]+cf	(p)	

Why	for	every	edge	(u,v)	:	(v,u)?	

5 1

5
5

5

5

5

s	 t	

Why	for	every	edge	(u,v)	:	(v,u)?	

5 1

5
5

5

5

5

Augmented	path	with	residual	capacity	=	min(5,5,1)	=	1	

s	 t	

Why	for	every	edge	(u,v)	:	(v,u)?	

1/5 1/1

5
5

1/5

5

5

Augmented	path	with	residual	capacity	=	min(4,5,5)	=	4	

s	 t	

Why	for	every	edge	(u,v):	(v,u)?	

5/5 1/1

4/5
5

1/5

4/5

5

No	Augmented	Path	possible	anymore.	
	 	 	 	 	 	 	 	OPTIMAL	FLOW	=	5	????	

s	 t	

For	every	edge	(u,v)	an	addiJonal	
(back)edge	(v,u)	with	c(v,u)	=	f(u,v)	

5 1

5

5

5

5

5

s	 t	
0

0

0

0

0

0

0

For	every	edge	(u,v)	an	addi4onal	
(back)edge	(v,u)	with	c(v,u)	=	f(u,v)	

5 1

5

5

5

5

5

s	 t	
0

0

0

0

0

0

0

Augmented	path	with	residual	capacity	=	min(5,5,1)	=	1	

For	every	edge	(u,v)	an	addi4onal	
(back)edge	(v,u)	with	c(v,u)	=	f(u,v)	

1/5 1/1

5

5

1/5

5

5

s	 t	
0/1

0

0/1

0

0

0

0/1

Augmented	path	with	residual	capacity	=	min(4,5,5)	=	4	

For	every	edge	(u,v)	an	addi4onal	
(back)edge	(v,u)	with	c(v,u)	=	f(u,v)	

5/5 1/1

4/5

5

1/5

4/5

5

s	 t	
0/5

0

0/1

0/4

0

0/4

0/1

Now	SJll	Augmented	Paths	POSSIBLE	!!!!!!!!	

For	every	edge	(u,v)	an	addi4onal	
(back)edge	(v,u)	with	c(v,u)	=	f(u,v)	

5/0 1/1

4/5

5

1/4

4/5

5

s	 t	
0/5

0

0/1

0/4

0

0/4

0/1

Augmented	path	with	residual	capacity	=	min(5,5,1,1,1)	=	1	

For	every	edge	(u,v)	an	addi4onal	
(back)edge	(v,u)	with	c(v,u)	=	f(u,v)	

5/0 1/1

5/5

1/5

1/5

5/5

1/5

s	 t	
0/5

0/1

1/1

0/5

0/1

0/5

0/1

MaxFlow	=	6	!!!!!!	

For	every	edge	(u,v)	an	addi4onal	
(back)edge	(v,u)	with	c(v,u)	=	f(u,v)	

5/5 1/1

5/5

1/5

0/5

5/5

1/5

s	 t	

FINAL	SOLUTION	f	+	f’	

More	Complex	Execu4on	

In	the	following	slides:	
(a)-(d)	Successive	itera4ons	of	the	while	loop:	The	
lek	side	of	each	part	shows	the	residual	network	Gf	
from	line	4	with	a	shaded	augmen4ng	path	p.	The	
right	side	of	each	part	shows	the	new	flow	f	that	
results	from	adding	fp	to	f.	The	residual	network	in	
(a)	is	the	input	network	G.	(e)	The	residual	network	
at	the	last	while	loop	test.	It	has	no	augmen4ng	
paths,	and	the	flow	f	shown	in	(d)	is	therefore	a	
maximum	flow.	
	

s	

20	

7	
9	

v2	 v4	

t	

v3	v1	16	

13	

12	

10	 4	

4	

14	

4/9	
s	

v2	 v4	

t	

v3	v1	4/16	

13	

4/12	

10	 4	

20	

4/4	

7	

4/14	

(a)	

Augmented	path	with	maximal	residual	flow	of	4	

s	

20	

7	
9	

v2	 v4	

t	

v3	v1	16	

13	

12	

10	 4	

4	

14	

Original	Graph	

Residual	Graph	 New	Flow	

28	

5	
s	

v2	 v4	

t	

v3	v1	
12	

13	

8	

10	 4	

20	

4	

7	

4	

4	
4	
4	

10	
4/9	

s	

v2	 v4	

t	

v3	v1	11/16	

13	

4/12	

7/10	 4	

7/20	

4/4	

7/7	

11/14	

(b)	

Because	there	is	a	(forward)	flow	of	4	on	this	
edge,	there	is	a	residual	flow	capacity	of	4	on	
the	back-edge,	possibly	nullifying	the	forward	
flow.	The	residual	of	10	equals	the	capacity	14	–	
the	forward	flow	already	established	4.	

New	Flow	Residual	Graph	

29	

5	
s	

v2	 v4	

t	

v3	v1	5	

13	

8	

3	 11	

4	

7	

11	

11	
4	
4	

3	

13	

7	
4/9	

s	

v2	 v4	

t	

v3	v1	11/16	

8/13	

12/12	

10	 1/4	

15/20	

4/4	

7/7	

11/14	

(c)	

8	was	pushed	on	the	“back	edges”	from	v1	to	v2	
pushing	7	to	the	edge	with	capaci4es	7/10	
resul4ng	in	(0/)10	and	1	was	pushed	to	the	
edge	with	capaci4es	(0/)4	resul4ng	in	1/4.	

New	Flow	
Residual	Graph	

30	

5	
s	

v2	 v4	

t	

v3	v1	5	

8	

11	 3	

4	

7	

11	

11	

12	

4	

3	

5	

15	
5	 9	

s	

v2	 v4	

t	

v3	v1	11/16	

12/13	

12/12	

10	 1/4	

19/20	

4/4	

7/7	

11/14	

(d)	

Original	there	was	no	edge	(edge	with	capacity	
0)	going	from	v2	to	v3,	but	because	there	was	
forward	flow	established	on	v3	to	v2,	the	
capacity	of	(v2,v3)	was	increased	to	4!!!!!	

The	already	established	flow	of	4	on	edge	(v3,v2)	
was	nullified,	thereby	increasing	the	(residual)	
capacity	on	this	edge	to	the	original	value	of	9	

New	Flow	

Residual	Graph	

31	

s	

v2	 v4	

t	

v3	v1	5	

12	

12	

11	 3	

1	

4	

11	

9	

3	

1	
19	7	

(e)	

NO	AUGMENTED	PATH	FOUND	Residual	Graph	

The	Edmonds-Karp	algorithm	
A	prac4cal	implementa4on	of	Ford	Fulkerson	

•  Find	the	augmen4ng	path	using	breadth-first	
search.	

•  Breadth-first	search	gives	the	shortest	path	for	
graphs.	(Assuming	the	length	of	each	edge	is	1.)	

•  Time	complexity	of	Edmonds-Karp	algorithm	is	
O(VE2).	

•  The	proof		is	very	hard	and	is	not	required	here.		

Rela4onship	with	Cut	Sets	
A	cut	in	a	network	with	source	s	and	sink	t	is	a	
subset												,	such	that	
	 													and		

(X,	V\X)	is	the	set	of	edges	from	a	vertex	in	X	
to	a	vertex	in	V\X
The	capacity	of	a	cut	X	equals:	
	
	
è For	every	flow	f:	E	->	R	and	cut	X,	
	 	 	 		

s ∈ X t ∉ X
X ⊂V

C(X) = c(x)
x∈(X,V \X)
∑

f ≤C(X)

Max	Flow	==	Min	Cut	
Theorem	1:	A	flow	in	a	network	G	is	maximal	iff	
there	exists	no	augmen4ng	path	in	G	
	
Theorem	2:	The	maximal	flow	in	a	network	G	
equals	the	minimal	capacity	cut	set	of	G	
		
Proof	(sketch)	Given	that	f	is	a	maximal	flow	in	G.	Construct	X	
such	that	s	ε	X,	and	for	all	v	for	which	there	exists	an	augmen4ng	
path	from	s	to	v:	v	ε	X.	Then	t	cannot	belong	to	X,	because	there	
is	no	augmen4ng	path	anymore.	So	X	is	a	proper	cut	of	G.	So		
C	(X)	=	|f|	and	|f|	<=	C	(Y)	for	any	cut	Y.	So	X	is	the	minimal	cut.	
The	reverse	follows	trivially.		

Push-Relabel	Algorithm	by	Goldberg	
and	Tarjan	(JACM	1988)	

•  		

Note	c’(u,v)	=	the	residual	capacity	of	the	back-edge	of	(u,v),	so	an	edge	going	from	v	to	
u.	The	update		of	the	remaining	capacity	of	(u,v)	is	done	on	c(u,v)!!!	

The	labeling	func4on	h	

•  Only	flow	can	be	pushed	from	a	node	v	to	w	if	
h(v) > h(w)	

•  Once	raised,	h(v)	will	never	be	decremented	
•  Ping	Pong	effects	are	avoided	
•  The	algorithm	will	actually	finish	

Example	

•  		

Excess	flow	is	pushed	to	a	

•  		

First	h[a]	is	incremented	to	1	and	then	
excess	flow	is	pushed	from	a	to	b	and	d	

•  		

h[a]	is	incremented	to	7!!	then	excess	
flow	is	pushed	(back)	from	a	to	s	

•  		

First	h[b]	is	incremented	to	1,	then		
excess	flow	is	pushed	from	b	to	c	and	t	

•  		

First	h[c]	is	incremented	to	1,	then	
excess	flow	is	pushed	from	c	to	d	

• 		

First	h[d]	is	incremented	to	1,	then	
excess	flow	is	pushed	from	d	to	t	

• 		

b	is	the	only	node	with	excess	>	0,	b	has	no	outgoing	
residual	edges,	so	h[b]	is	incremented	to	8	and	b	will	

push	back	excess	flow	to	a	

• 		

node	a	is	the	only	ac4ve	node	with		
excess	flow	>	0	and	will	push	flow	back	to	s	

•  		

A	parallel	version	of	push	relabel	
• 		

