Parallel Sparse Matrix Computations

Parallel Sparse BLAS 2 Matrix Multiplication

Like dense matrix multiplications, sparse matrix time vector multiplication can be blocked:

```
DOALL II = 1, M1
        DOALL JJ = 1, M2
            DOI = II, II + N/M1 - 1
            DO J = JJ, JJ + N/M2 - 1
                C(I) =C(I) +A(I,J) *B(J)
            ENDDO
            ENDDO
        ENDDO
ENDDO
```

However, this can lead to uneven load balance!!!!!!!

This can (partly) be prevented by only row slicing/partitioning:

$$
\begin{aligned}
& \text { DOALL II }=1, \mathrm{M} 1 \\
& \text { DO I }=\mathrm{II}, \mathrm{II}+\mathrm{N} / \mathrm{M} 1-1 \\
& \text { DO } \mathrm{J}=1, \mathrm{~N} \\
& \mathrm{C}(\mathrm{I})=\mathrm{C}(\mathrm{I})+\mathrm{A}(\mathrm{I}, \mathrm{~J}) * \mathrm{~B}(\mathrm{~J}) \\
& \text { ENDDO } \\
& \text { ENDDO } \\
& \text { ENDDO }
\end{aligned}
$$

Mostly the number of NNZ per row/column is rather constant.

Each processor needs a full copy of the B vector!!

Column slicing/partitioning:

$$
\begin{aligned}
& \text { DOALL JJ = 1, M1 } \\
& \text { DO J = JJ, JJ }+\mathrm{N} / \mathrm{M} 1-1 \\
& \text { DO I }=1, \mathrm{~N} \\
& \mathrm{C}(\mathrm{I})=\mathrm{C}(\mathrm{I})+\mathrm{A}(\mathrm{I}, \mathrm{~J}) * \mathrm{~B}(\mathrm{~J}) \\
& \text { ENDDO } \\
& \text { ENDDO } \\
& \text { ENDDO }
\end{aligned}
$$

Each processor just has a part of the B vector.
But every processor needs a full copy of the C vector plus the processors need to communicate their changes to C!!

Solution:

Let NNZ be the number of non-zero elements of the sparse matrix. Assume we want to compute in parallel on PxQ processors.
\rightarrow Divide the rows into P partitions: $R_{1} R_{2} \ldots R_{p-1} R_{p}$ such that for all k : NNZ $\left(R_{k}\right) \approx N N Z / P$, then partition every row partition R_{k} into Q partitions: $\mathrm{C}_{1}{ }_{1} \mathrm{C}_{2}^{\mathrm{k}} \ldots \mathrm{C}^{\mathrm{k}}{ }_{\mathrm{Q}-1} \mathrm{C}_{\mathrm{Q}}^{\mathrm{k}}$ columns, such that for every m : $\operatorname{NNZ}\left(C_{m}^{k}\right) \approx \operatorname{NNZ}\left(R_{k}\right) / Q$.

By doing so, we have for all k, m :

$$
N N Z\left(C_{m}^{k}\right) \approx N N Z / P Q
$$

In a picture:

Parallel Sparse (Upper) Triangular Solver

$$
U x=c
$$

Levelization:

Take a DFS spanning tree of the associated symmetric graph of $\mathrm{U}+\mathrm{U}^{\top}$, and group all nodes at the same level of the tree together

\rightarrow the nodes within each group are not connected, i.e. will not have an edge in common
\rightarrow some nnz's might be introduced in the lower triangle, which will be corrected by simple permutations
\rightarrow in other words each group will form a diagonal, diagonal block
\rightarrow in fact the associated digraph of a triangular matrix can be seen as a "partially ordered" set (poset) and a diagonal block as an incomparable subset of elements

So, not only do we have easily invertible U_{kk} blocks, this operation can be executed in parallel or as a vector operation.

In fact not only do we have parallelism on a block level but also on column/row level

$\left[\right.$| U_{1} | | \tilde{U}_{1} | |
| :---: | :---: | :---: | :---: |
| | U_{2} | | \tilde{U}_{2} |
| | | | U_{3} |
| | | \tilde{U}_{3} | |
| | | | U_{4} |\(]\left[\begin{array}{l}x_{1}

x_{2}

x_{3}

x_{4}\end{array}\right]=\left[$$
\begin{array}{l}c_{1} \\
c_{2} \\
c_{3} \\
c_{4}\end{array}
$$\right]\)

1. Solve $U_{4} x_{4}=c_{4}$
2. $c_{3}=c_{3}-\tilde{U}_{3} \cdot x_{4}$
3. Solve $U_{3} x_{3}=c_{3}$
4. $c_{2}=c_{2}-\tilde{U}_{2} \cdot\left[\begin{array}{l}x_{3} \\ x_{4}\end{array}\right]$
5. Solve $U_{2} x_{2}=c_{2}$
6. $c_{1}=c_{1}-\tilde{U}_{1} \cdot\left[\begin{array}{l}x_{2} \\ x_{3} \\ x_{4}\end{array}\right]$
7. Solve $U_{1} x_{1}=c_{1}$

Orderings to Special Form

An ordering of a sparse matrix A to a sparse matrix B is called asymmetric if

$$
B=P A Q^{T},
$$

with P and Q permutation matrices
If $P=Q$, then the ordering is symmetric.
Note that the minimum degree ordering is a symmetric ordering. Also the levelization ordering is symmetric. Partial Pivoting is asymmetric!!
\rightarrow With a symmetric ordering the associated digraphs of A and B are isomorphic.
\rightarrow Properties like diagonal dominant and eigenvalues do not changes with symmetric orderings

Example

	x	x		x			x	x	
	x	x		x			x		
row			x	x	\uparrow		x		x
interchange	x	x	x	x	\downarrow	x	x	x	
inter			x	x					

Block Triangular Form for Parallel LU

$>$ Based on finding strongly connected components $\mathrm{O}(\mathrm{n}+\mathrm{m})$
\Rightarrow Symmetric ordering
\rightarrow Unique decomposition
$>$ Every diagonal block can be factured in parallel

Banded Structure

> Better Storage Opportunities (Diagonal Storage)
$>$ Minimization of fill-in in $L U$ factorization
$>$ Better exploitation of spatial locality (stride 1 accesses)
$>$ In some cases convergence of iterative methods are enhanced if nnz's are located near the diagonal

Banded structure through Cuthill-McKee

- Start with an arbitrary node α. Let $S_{1}=\{\alpha\}$.
- Let $S_{i}=\left\{\right.$ nodes, which are not contained in any S_{j} with $\left.j<i\right\}$. The nodes in S_{i} are ordered such that first nodes are the nodes which are neighbors of the first node in $\mathrm{S}_{\mathrm{i}-1}$, the following nodes are neighbors of the second node in $\mathrm{S}_{\mathrm{i}-1}$, etc.
(Basically a BFS tree is constructed of $A+A^{\top}$)

This results in:

BTW As a side effect: Reversing Cuthill-McKee leads in many cases to minimization of fill-in

Banded Structure through One-Way/ Nested Dissection

One way dissection is based on Cuthill-KcKee:
$>$ Let $S_{1} S_{2} \ldots S_{k}$ be the levelization sets obtained by CuthillMcKee on the associated graph of a (symmetric) matrix A
$>$ Compute

$$
m=\left\lfloor\left(\Sigma_{i=1,2 ., k} S_{i}\right) / k\right\rfloor,
$$

the average number of elements per set.
$>$ Let

$$
\delta=\sqrt{ }((3 m+13) / 2)
$$

$>$ Take all the nodes from sets S_{j} with $j=\lfloor i \delta+0.5\rfloor, i=1,2, \ldots$
$>$ Number these nodes last

The choice of δ is based on experiments run on regular grid matrices.

This results in the following matrix

The same result can be obtained by nested dissection

And recursively computing separator sets for B and
C, and so on, and so on....

Number the nodes of these separator sets last
\rightarrow As a result we have a more general method, not only suited for grid matrices.

Tearing Techniques

A large grain decomposition for computing LU factorization in parallel
The desired form is bordered upper block triangular form

Hellerman-Rarick

> Unsymmetric Ordering
$>$ Diagonal elements are assigned pivots
$>$ The q columns are called spikes and will form the border

The algorithm

1. $p=0, q=0$ and the whole matrix is active
2. m is the minimum NNZ entries in any row of the active (sub)matrix. Choose m columns, by choosing first the column with most NNZ's in rows with NNZ-count of m, then the column is chosen with most NNZ's in rows with NNZ-count of $m-1$, and so on.
3. If the last column has s rows with a singleton NNZ then these rows are permuted to the beginning of the active (sub) matrix and these rows are assigned pivot rows
4. The last s columns chosen are also permuted to the front of the active (sub) matrix and these columns are assigned pivot columns
5. The remaining $m-s$ columns are permuted to the border
6. $p=p+s$ and $q=q+m-s$
7. If $p+q=n$ then stop else goto 2

Example

Column 1 is chosen first: it has most entries in rows of count 3. Then column 4 is chosen, because it has most entries in rows with new count 2.
Then column 6 is chosen because it has singletons in rows 2 and 4
\rightarrow Rows 2 and 4 are permuted to the front

Example 2

	1	2	3	4	5	6
4	X			X		X
2	X			X		X
3	X	X	X	X		
1	X	X	X		X	
5		X	X	X	X	X
6	X	X	X		X	

Now columns 6 and 4 are permuted to the front and column 1 is permuted to the back As a results we have:

Tearing based on nested dissection

Remark: Separator sets were constructed on $\mathrm{A}+\mathrm{A}^{\top}$

Edges from the separators can go both directions to B and C

For nodes u in S with only incoming edges from B, move u to C

For nodes v in S with only outgoing edges to C, move v to B

\rightarrow As a result the size of the separator sets (border) is reduced, while there are NNZ introduced in the upper triangular part

A Hybrid Reordering H^{*}

- HO: Through an asymmetric ordering $A^{\prime}=P A Q^{T}$ permute "large values to the diagonal", i.e. for each k find the largest $a_{m n}$ such that $\left|a_{m n}\right|>=\left|a_{i j}\right|$, for all $a_{i j} \varepsilon A_{k k}$. Permute row k and row m, permute column k and column n.
- H1: Find strongly connected components using Tarjan's algorithm, and permute the matrix with a symmetric ordering into block upper triangular form: $A^{\prime \prime}=V A^{\prime} V^{T}$
- H2: Use tearing based on nested dissection on each diagonal block, and number all nodes of the separator sets last. As a results the (block upper triangular) matrix is transformed into a bordered block upper triangular matrix: $A^{\prime \prime \prime}=W A^{\prime \prime} W^{T}$
- So A"' = WVPAQ ${ }^{\top} V^{\top} W^{\top}$ and the L and U factors can be computed in parallel using the diagonal elements as pivots

