(Parallel) Sparse Matrix Computations

Sparse Matrices arise in

- Simulation of Physical/Chemical Phenomena
- Modeled through particles/molecules/point clouds
- (Spatial) Database Applications
- Graph Computations
- Combinatorial Optimization

Example: Finite Differences

In case of a 5×5 grid this leads to 25 grid points and the following sparse matrix:

$$
\begin{aligned}
& \text { Number of grid points in the } x \text { direction }
\end{aligned}
$$

Example: Finite Elements for more complex geometries

Leads to:

(Spatial) Databases Applications:

City		State	ZipCode	Latitude	Longitude
1	Troy	AL	36081	31.809675	-85.972173
2	Mobile	AL	36685	30.686394	-88.053241
3	Trussville	AL	35173	33.621385	-86.602739
4	Montgomery	AL	36106	32.35351	-86.265837
5	Selma	AL	36701	32.41179	-87.022234
6	Talladega	AL	35161	33.43451	-86.102689
7	Tuscaloosa	AL	35402	33.209003	-87.571005
8	Huntsville	AL	35801	34.729135	-86.584979
9	Gadsden	AL	35901	34.014772	-86.007172
10	Birmingham	AL	35266	33.517467	-86.809484
11	Montgomery	AL	36124	32.38012	-86.300629
12	Decatur	AL	35602	34.60946	-86.977029
13	Eufaula	AL	36072	31.941565	-85.239689

Stored using longitude and latitude values, normalized x10

Example: Graph Algorithms

A B C D E F						
A	-	1	1	1	1	
B	1	-		1	1	
C	1		-			1
D	1	1		-		1
E	1	1			-	1
F			1	1	1	-

Example: Combinatorial Optimization

Solving $A x=b$, with sparse A

- Direct Methods
- $A x=L U x=b$
- Iterative Methods
- Write $A x=b$ as
$M x=(M-A) x+b$, for some matrix M
- Solve each time:

$$
M x_{k+1}=(M-A) x_{k}+b
$$

- Until
$\| x_{k+1}-x_{k}| |<\varepsilon$, for some small ε
Choose easy invertible M:
- Diagonal part of A (Jacobi's)
- Triangular part of A (Gauss Seidel)
- Combination of the two (Successive Overrelaxation)
- If $M=A$, then we have the direct method
- Incomplete $L U$ Factorization

Stability in direct methods

- Recapture Dense LU:

```
DO I = 1, N
        PIVOT = A(I, I)
        DO J = I+1, N
            MULT = A(J, I) / PIVOT
            A(J, I) = MULT
            DO K = I+1, N
                A(J, K) = A(J, K) - MULT * A(I, K)
            ENDDO
        ENDDO
ENDDO
```

- What if the PIVOT IS 0 (or very small) ?

Pivoting

$$
\left(\begin{array}{ll}
0 & 1 \\
2 & 3
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{4}{5}
$$

\rightarrow Whenever $a_{k k}=0$ (or small) for some k. Look for $a_{m k}$ which is not zero (or large)
\rightarrow Permute row m to row k (exchange row m and row k)
$\rightarrow a_{m k}$ is now on the diagonal

$$
\left(\begin{array}{ll}
2 & 3 \\
0 & 1
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{5}{4}
$$

Numerical instability with small pivots

$$
\left(\begin{array}{cc}
0.001 & 2.42 \\
1.00 & 1.58
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{5.20}{4.57}
$$

If Gaussian elimination is performed with 3 decimal floating point arithmetic (0.123 E10), then ($1.58-2420=-2420$ and $4.57-5200=-5200$)

$$
\left(\begin{array}{cc}
0.001 & 2.42 \\
0 & -2420
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{5.20}{-5200}
$$

Which gives as result $\quad \tilde{x}=\binom{-3.00}{2.15} \quad\left(0.001^{*} x_{1}=5.20-2.42 * 2.15=-0.003\right)$
While true solution is $x=\binom{1.18}{2.15} \begin{gathered}\left(1.18^{*} 1+2.15^{*} 1.58=4.57\right. \\ 1.18 * 0.001+2.15 * 2.42=5.20)\end{gathered}$

This is solved by partial pivoting (again).
\rightarrow Ensure that all multipliers <1, or for all entries $l_{i j}$ of L : $\left|l_{i j}\right|<1$

This is achieved by choosing only pivots $a_{k k}$ such that

$$
\left|\mathrm{a}_{k k}^{(k)}\right|>=\left|a_{i k}^{(k)}\right|, i>k
$$

This is again achieved by row interchanges.

Example

$$
A=\left[\begin{array}{rrr}
3 & 17 & 10 \\
2 & 4 & -2 \\
6 & 18 & -12
\end{array}\right]
$$

At the first step 6 is chosen as pivot.
So row 1 -> row 3, row 2 -> row 2 , and row 3 -> row 1
This can be represented with permutation matrices:

$$
P_{1}=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right], \text { and } P_{1} A=\left[\begin{array}{rrr}
6 & 18 & -12 \\
2 & 4 & -2 \\
3 & 17 & 10
\end{array}\right]
$$

The elimination step can be represented by:

$$
E_{1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-1 / 3 & 1 & 0 \\
-1 / 2 & 0 & 1
\end{array}\right], \text { so } E_{1} P_{1} A=\left[\begin{array}{rrr}
6 & 18 & -12 \\
0 & -2 & 2 \\
0 & 8 & 16
\end{array}\right]
$$

At the second step compute: $E_{2} P_{2} E_{1} P_{1} A$
With $P_{2}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$ and

$$
E_{2}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 / 4 & 1
\end{array}\right] \text { to yield }\left[\begin{array}{rrr}
6 & 18 & -12 \\
0 & 8 & 16 \\
0 & 0 & 6
\end{array}\right]=U
$$

In general all steps can be represented as:
with

Solution is obtained by

$$
\begin{aligned}
& \text { 1. } \quad c=P b \\
& \text { 2. } L y=c \\
& \text { 3. } U x=y
\end{aligned}
$$

with: $\quad P=P_{n-1} P_{n-2} \ldots P_{2} P_{1}, P A=L U$
$A x=b \Rightarrow P A x=P b=>L U x=P b=>L(U x)=P b$

Complete Pivoting

With partial pivoting the growth of the entries in the lower triangular matrix can still be as large as $2^{\mathrm{n-1}}$ (if pivot ≈ 1 at each step, then entries can double at each step)
\rightarrow Need for finding better pivots
Instead of

$$
\left|a_{k k}^{(k)}\right|>=\max \left(\left|a_{i k}^{(k)}\right|, i>k\right)
$$

choose

$$
\left|a_{k k}^{(k)}\right|>=\max \left(\left|a_{i j}^{(k)}\right|, i, j>k\right)
$$

So with complete pivoting each step can be expressed as:

$$
E_{n-1} P_{n-1} E_{n-2} P_{n-2} \ldots E_{1} P_{1} A Q_{1} Q_{2} \ldots Q_{n-1}=U
$$

So,

$$
P A Q=L U
$$

with $P=P_{n-1} P_{n-2} \ldots P_{2} P_{1}, Q=Q_{1} Q_{2} \ldots Q_{n-2} Q_{n-1}$
So, the solution x can be obtained by

$$
\begin{aligned}
& \text { 1. } c=P b \\
& \text { 2. } L y=c \\
& \text { 3. } U z=y \\
& \text { 4. } Q^{T} x=z \quad\left(Q^{T}=Q^{-1}\right)
\end{aligned}
$$

For many systems pivoting is not required

1. A is strictly diagonally dominant, if $\left|A_{i i}\right|>\sum_{j=1_{j \neq i}}^{n}\left|a_{i j}\right|$.

Theorem 1 If A^{T} is strictly diagonally dominant, then $L U$ obtained with no pivoting has the property that $\left|L_{i j}\right| \leq 1$, for all i, j.
2. A is symmetric, if $A_{i j}=A_{j i}$ for all $i, j . A$ is positive definite, if for every $x \neq 0$

$$
x^{T} A x>0
$$

($x^{T} A x$ often reflects the energy of the underlying physical system and is therefore often positive.)

Theorem 2 If A is symmetric positive definite, then

$$
\varrho=\max _{i, j, k}\left|a_{i j}^{(k)}\right| \leq \max _{i, j}\left|a_{i j}\right| .
$$

In this case $L U$ can be written as $A=L \cdot L^{T}$ (or $L D L^{T}$, avoiding the calculation of square roots). This is called Choleski Factorization.

Iterative Methods

$$
M x_{k+1}=(M-A) x_{k}+b
$$

with M easy invertible, meaning that in most of the cases M^{-1} can be directly expressed by a single matrix \mathcal{M}
\rightarrow So, the solution can be obtained by simply performing (sparse) matrix multiplications

$$
x_{k+1}=\mathcal{M}\left((M-A) x_{k}+b\right)
$$

Implementation Issues

- Data Storage: Pointer structures, Linked lists, Linear Arrays
- Pivot Search: Multiple storage schemes
- Masking Operations: Gather/Scatter Operations
- Garbage collection: Fill-in, Explicit garbage collection
- Permutation Issues: Implicit and/or explicit

$$
A=\left(a_{i j}\right)=\left(\begin{array}{rrrrr}
1 . & 0 . & 0 . & -1 . & 0 . \\
2 . & 0 . & -2 . & 0 . & 3 . \\
0 . & -3 . & 0 . & 0 . & 0 . \\
0 . & 4 . & 0 . & -4 . & 0 . \\
5 . & 0 . & -5 . & 0 . & 6 .
\end{array}\right)
$$

Coordinate Scheme Storage

int IRN[11], JCN[11];

float VAL[11];

	1	2	3	4	5	6	7	8	9	10	11
IRN	1	2	2	1	5	3	4	5	2	4	5
JCN	4	5	1	1	5	2	4	3	3	2	1
VAL	-1.	3.	2.	1.	6.	-3.	-4.	-5.	-2.	4.	5.

$>$ No explicit order of the nonzero entries is enforced
$>$ Fetching row/column requires the whole data structure to be searched
$>$ Insertion and/or deletion of nonzero entries is simple

Sparse Compressed Row/Column Format

int LENROW[5], POINTER[5], ICN[11] float VAL[11]

| LENROW | 2 | 3 | 1 | 2 | 3 | | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| POINTER | 1 | 3 | 6 | 7 | 9 | | | | | | |
| ICN | 4 | 1 | 5 | 1 | 3 | 2 | 4 | 2 | 3 | 1 | 5 |
| VAL | -1. | 1. | 3. | 2. | -2. | -3. | -4. | 4. | -5. | 5. | 6. |

$>$ LENCOL, POINTER, and IRN are used for compressed column format
$>$ Fetching row or column is very easy in corresponding format
$>$ Insertion of nonzero elements is a big problem - expanded row/column is put at the end, and the LENROW/LENCOL is updated correspondingly
$>$ Instead of LENROW/LENCOL the last element in each row in ICN is negated

Linked List (Pointer) Implementations

$>$ Very flexible
$>$ Access to data very inefficient
$>$ Pointer chasing
> Addresses not consecutive: bad spatial locality

ExtendedColumn/ITpack/JaggedDiagonal Format

Shift all nonzero entries to the beginning of each row
int INDEX[5][max] float VALUE[5][max]

INDEX: $\left(\begin{array}{ccc}1 & 4 & 0 \\ 1 & 3 & 5 \\ 2 & 0 & 0 \\ 2 & 4 & 0 \\ 1 & 3 & 5\end{array}\right)$ and VALUE: $\left(\begin{array}{rrr}1 . & -1 . & 0 . \\ 2 . & -2 . & 3 . \\ -3 . & 0 . & 0 . \\ 4 . & -4 . & 0 . \\ 5 . & -5 . & 6 .\end{array}\right)$
$>$ Especially suited for vector processing
$>$ Commonly used in sparse matrix multiplication
$>$ Very good use of spatial locality

Full Dense Format

float $A[i][j]$

$>$ Seems wasteful
> Mostly restricted to sub-blocks of the matrix which contain many nonzero's
$>$ Used to locally expand rows and/or columns
$>$ Often used in hybrid storage schemes with other formats

Pivot Search

- When doing Gaussian Elimination: rows are added to other rows
- Compressed row storage seems to be the natural choice
- However, for partial pivoting for instance: each time all elements in a column need to be inspected
\rightarrow Both row AND column compressed storage are required

Masking Operations (GATHER/SCATTER)

Adding one sparse row to another:

- Two incrementing pointers
- Scattering target row into a dense row, with a masking array indicating which position in the row are nonzero

```
DO J = POINTER (K), POINTER (K+1) - 1
    TARGET (ICN (K) ) = VAL (K ) | SCATTER
    MASK (ICN (K) ) = TRUE
DO J = POINTER (I), POINTER (I+1) - 1
    TARGET ( ICN (J) ) = TARGET ( ICN (J) ) + PIV * VAL ( J )
    IF MASK (ICN(J)) = FALSE THEN MASK (ICN(J)) = True
DO J = 1,N
    IF ( MASK (ICN(J)) = TRUE ) THEN write TARGET (ICN(J)) back | GATHER
```


Fill-in / Garbage Collection

- Note that the write back will cause problems in general
- Additional space is reserved to store the expanded columns or rows and the old location will have to be released at some point
- In direct solvers this is mostly explicitly controlled!!!!!
- In any case: it is extremely important to minimize the amount of fill-in

Fill-in Control (Markowitch counts)

$r^{(k)}{ }_{i}=$ the number of nonzero elements in row i of the active $(n-k) x(n-k)$ sub-matrix
$c^{(k)}{ }_{j}=$ the number of nonzero elements in column j of the active $(n-k) x(n-k)$ sub-matrix
\rightarrow Instead of complete pivoting, choose pivot based on:

```
|aij}\mp@subsup{a}{ij}{(k)}\\gequ.| values in column j of the active submatrix |
such that }(\mp@subsup{r}{i}{(k)}-1)(\mp@subsup{c}{j}{(k)}-1) is minimized.
```

$u(0<u<=1)$ is thresshold parameter balancing between stability and fill-in control

Permutations

\Rightarrow If $Q=P^{T}$ then $P A Q\left(=P A P^{T}\right)$ is a symmetric permutation

- Diagonal elements stay on the diagonal
$>$ The associated (di)graph stays the same
$>$ Permutations can be executed explicitly (beforehand), on the fly, or implicitly by referring each time to $\mathrm{P}(\mathrm{I})$ instead of I

Lab Assignment

Write a C-program which implements LU factorization with partial pivoting.

See course website for details.

