
(Parallel)	Sparse	Matrix	
Computa4ons	

Sparse	Matrices	arise	in	

•  Simula4on	of	Physical/Chemical	Phenomena	
– Modeled	through	par4cles/molecules/point	
clouds	

•  (Spa4al)	Database	Applica4ons	
•  Graph	Computa4ons	
•  Combinatorial	Op4miza4on	

Example:	Finite	Differences	

	
	
	
	

In	case	of	a	5x5	grid	this	leads	to	25	grid	points	and	
the	following	sparse	matrix:		

• 		

Number	of	grid	points	in	the	x	direc4on	

N
um

be
r	o

f	g
rid

	p
oi
nt
s	i
n	
th
e	
y	
di
re
c4
on

	

Example:	Finite	Elements	for	more	
complex	geometries	

•  			

• 				

Leads	to:	
• 			

(Spa4al)	Databases	Applica4ons:	
• 		

Stored	using	longitude	and	la4tude	
values,	normalized	x10	

318	

307	

336	

324	

324	

334	

332	

348	

340	

335	

324	

346	

319	

-885	

-880	

-875	

-870	

-865	

-860	

-855	

-850	

Example:	Graph	Algorithms	
• 			

Example:	Combinatorial	Op4miza4on	
• 			

Solving	Ax	=	b,	with	sparse	A	
•  Direct	Methods		

–  A x = LU x = b
•  Itera4ve	Methods	

–  Write	Ax = b as		
	M x= (M-A)	x + b,	for	some	matrix	M

–  Solve	each	4me:	
	M xk+1 = (M-A)	xk + b

–  Un4l	
	||	xk+1 – xk ||	<	ε	,	for	some	small	ε	

	Choose	easy	inver4ble	M:	
–  Diagonal	part	of	A	(Jacobi’s)	
–  Triangular	part	of	A	(Gauss	Seidel)	
–  Combina4on	of	the	two	(Successive	Overrelaxa4on)	
–  If	M = A,	then	we	have	the	direct	method	
–  Incomplete	LU	Factoriza4on	

	

Stability	in	direct	methods	

•  Recapture	Dense	LU:	

•  What	if	the	PIVOT	IS	0	(or	very	small)	?	
	

Pivo4ng	

		

è 	Whenever	akk = 0 (or	small)	for	some	k.	Look	for	amk	
	which	is	not	zero	(or	large)	

è 	Permute	row	m	to	row	k	(exchange	row	m	and	row	k)	
è 	amk	is	now	on	the	diagonal	

Numerical	instability	with	small	pivots	

•  		

If	Gaussian	elimina4on	is	performed	with	3	decimal	floa4ng	
point	arithme4c	(0.123	E10),	then	(1.58	–	2420	=	-2420	and	
4.57-5200	=	-5200)	

Which	gives	as	result																												(0.001*x1	=	5.20	–	2.42*2.15	=	-0.003)	

While	true	solu4on	is																												(1.18*1	+	2.15*1.58	=		4.57		
																																																																																											1.18*0.001+2.15*2.42=5.20)	

-3.	00	

• 		

This	is	solved	by	par4al	pivo4ng	(again).	
	
è Ensure	that	all	mul4pliers	<	1,	or		

	for	all	entries	lij	of	L:	|lij|	<	1	
	
This	is	achieved	by	choosing	only	pivots	akk	such	that	
	

	 	 	 	|akk
(k)|	>=	|aik

(k)|,	i	>	k	
	
This	is	again	achieved	by	row	interchanges.	
	
	

Example	
• 		

At	the	first	step	6	is	chosen	as	pivot.	
	So	row	1	->	row	3,	row	2	->	row	2,	and		row	3	->	row	1	

This	can	be	represented	with	permuta4on	matrices:	
	
	
	
	
The	elimina4on	step	can	be	represented	by:	

At	the	second	step	compute:	
	
With																																							and	

In	general	all	steps	can	be	represented	as:	
	
	
with																																																					and	

t(i)

Solu4on	is	obtained	by	
	

1.  c = Pb		
2.  Ly = c	
3.  Ux = y	

	
	
with: 	 	P = Pn-1 Pn-2… P2 P1 , P A = L U
	
Ax = b => PAx = Pb => LUx = Pb => L (Ux) = Pb

Complete	Pivo4ng	

With	par4al	pivo4ng	the	growth	of	the	entries	in	
the	lower	triangular	matrix	can	s4ll	be	as	large	as	
2n-1	(if	pivot	≈	1	at	each	step,	then	entries	can	
double	at	each	step)	
èNeed	for	finding	bemer	pivots	
Instead	of	
	 	 	 	 	|akk

(k)|>=	max	(|aik
(k)|,	i	>	k)	

choose		
	 	 	 	 	|akk

(k)|>=	max	(|aij
(k)|,	i	,	j	>	k)	

So	with	complete	pivo4ng	each	step	can	be	expressed	
as:	
	 	En-1 Pn-1 En-2 Pn-2 … E1 P1 A Q1 Q2 ... Qn-1 = U.	

	
So,	 	 	 	 	 	 		
	 	 	 	 	 	PAQ = LU

with	P = Pn-1 Pn-2… P2 P1 ,	Q = Q1 Q2… Qn-2 Qn-1 	
	
So,	the	solu4on	x	can	be	obtained	by	
	 	 	 1. c = Pb
 2. Ly = c
 3. Uz = y
 4. QTx = z (QT = Q-1)

	
	
	

	
	

For	many	systems	pivo4ng	is	not	required	

Itera4ve	Methods	

	 	 	 	 	Mxk+1 = (M-A) xk + b
	
with	M	easy	inver4ble,	meaning	that	in	most	of	
the	cases	M-1 can	be	directly	expressed	by	a	
single	matrix M	
è So,	the	solu4on	can	be	obtained	by	simply	 	
	performing	(sparse)	matrix	mul4plica4ons	

	 	xk+1 = M ((M-A) xk + b)	

Implementa4on	Issues	

•  Data	Storage:	Pointer	structures,	Linked	lists,	Linear	Arrays	
•  Pivot	Search:	Mul4ple	storage	schemes	
•  Masking	Opera4ons:	Gather/Scamer	Opera4ons		
•  Garbage	collec4on:	Fill-in,	Explicit	garbage	collec4on	
•  Permuta4on	Issues:	Implicit	and/or	explicit	

Coordinate	Scheme	Storage	

	 	 	int			 	IRN[11],	JCN[11];	
	 	 	float		VAL[11];	

Ø No	explicit	order	of	the	nonzero	entries	is	enforced	
Ø Fetching	row/column	requires	the	whole	data	
structure	to	be	searched	

Ø Inser4on	and/or	dele4on	of	nonzero	entries	is	simple	

Sparse	Compressed	Row/Column	Format	
	 	int	 	LENROW[5],	POINTER[5],	ICN[11]	
	 	float 	VAL[11]	

Ø LENCOL,	POINTER,	and	IRN	are	used	for	compressed	column	
format	

Ø Fetching	row	or	column	is	very	easy	in	corresponding	format	
Ø Inser4on	of	nonzero	elements	is	a	big	problem	–	expanded	
row/column	is	put	at	the	end,	and	the	LENROW/LENCOL	is	
updated	correspondingly	

Ø Instead	of	LENROW/LENCOL	the	last	element	in	each	row	in	ICN	
is	negated	

Linked	List	(Pointer)	Implementa4ons	
		

Ø Very	flexible	
Ø Access	to	data	very	inefficient	

Ø Pointer	chasing	
Ø Addresses	not	consecu4ve:	bad	spa4al	locality	

	

ExtendedColumn/ITpack/JaggedDiagonal	Format	

Shis	all	nonzero	entries	to	the	beginning	of	each	
row	
	 	 	 	int	 	INDEX[5][max]	
	 	 	 	float 	VALUE[5][max] 	 		

Ø Especially	suited	for	vector	processing	
Ø Commonly	used	in	sparse	matrix	mul4plica4on	
Ø Very	good	use	of	spa4al	locality	

Full	Dense	Format	

	 	 	 	 	 	float 	A[i][j]	
	
Ø Seems	wasteful	
Ø Mostly	restricted	to	sub-blocks	of	the	matrix	which	
contain	many	nonzero’s	

Ø Used	to	locally	expand	rows	and/or	columns	
Ø Osen	used	in	hybrid	storage	schemes	with	other	
formats	

	

Pivot	Search	

§  When	doing	Gaussian	Elimina4on:	rows	are	
added	to	other	rows	

§  Compressed	row	storage	seems	to	be	the	natural	
choice	

§  However,	for	par4al	pivo4ng	for	instance:	each	
4me	all	elements	in	a	column	need	to	be	
inspected	

	
è Both	row	AND	column	compressed	storage	
	are	required	

Masking	Opera4ons	(GATHER/SCATTER)	
Adding	one	sparse	row	to	another:	
– Two	incremen4ng	pointers	
– Scamering	target	row	into	a	dense	row,	with	a	
masking	array	indica4ng	which	posi4on	in	the	row	
are	nonzero	

	DO	J	=		POINTER	(K),	POINTER	(K+1)	–	1	 	 	 	 	 	 	|	
	 	TARGET	(ICN	(K))	=	VAL	(K) 	 	 	 	 	 	 	 	|	SCATTER	
	 	MASK	(ICN	(K))	=	TRUE 	 	 	 	 	 	 	 	 	|	

	
	DO	J	=		POINTER	(I),	POINTER	(I+1)	–	1	
	 	TARGET	(ICN	(J))	=	TARGET	(ICN	(J))	+	PIV	*	VAL	(J)	
	 	IF	MASK	(ICN(J))	=	FALSE	THEN	MASK	(ICN(J))	=	True	

	
	DO	J	=	1,	N	
	 	IF	(MASK	(ICN(J))	=	TRUE)	THEN	write	TARGET	(ICN(J))	back 	|	GATHER	

Fill-in	/	Garbage	Collec4on	

•  Note	that	the	write	back	will	cause	problems	
in	general	

•  Addi4onal	space	is	reserved	to	store	the	
expanded	columns	or	rows	and	the	old	
loca4on	will	have	to	be	released	at	some	point	

•  In	direct	solvers	this	is	mostly	explicitly	
controlled!!!!!	

•  In	any	case:	it	is	extremely	important	to	
minimize	the	amount	of	fill-in	

Fill-in	Control	(Markowitch	counts)	

r(k)
i =	the	number	of	nonzero	elements	in	row	i	of	the	

ac4ve	(n-k)x(n-k)	sub-matrix	
c(k)

j =	the	number	of	nonzero	elements	in	column	j	of	the	
ac4ve	(n-k)x(n-k)	sub-matrix	
è	Instead	of	complete	pivo4ng,	choose	pivot	based	on:	
	

u	(0	<	u	<=	1)	is	thresshold	parameter	balancing	between	
	 	 	 	 	stability	and	fill-in	control	

Permuta4ons	

Ø If	Q = PT then	PAQ	(=	PAPT)	is	a	symmetric	
permuta4on	
Ø Diagonal	elements	stay	on	the	diagonal	
Ø The	associated	(di)graph	stays	the	same	

Ø Permuta4ons	can	be	executed	explicitly	
(beforehand),	on	the	fly,	or	implicitly	by	
referring	each	4me	to	P(I)	instead	of	I	

Lab	Assignment	

Write	a	C-program	which	implements	LU	
factoriza4on	with	par4al	pivo4ng.	
	
See	course	website	for	details.	

