
Parallel	Numerical	Algorithms	



Need	for	standardiza6on	
•  With	the	advent	of	parallel	(high	performance)	
computers	came	the	disillusion	of	bad	
performance	

•  The	peak	rates	adver6sed	with	the	introduc6on	
of	new	machines	were	mostly	not	aAainable	for	
real	life	applica6ons	

•  A	need	arised	to	standardize	primi6ves	of	
computa6ons	

•  This	effort	also	was	based	on	already	developed	
numerical	soCware	libraries:	LINPACK,	EISPACK,	
FISHPACK,	Harwell	



Basic	Linear	Algebra	Subrou6nes	(BLAS)	

Three	levels	
– BLAS	1:	vector/vector	opera6ons	

	
– BLAS	2:	matrix/vector	opera6ons	

– BLAS	3:	matrix/matrix	opera6ons	
	



Input/Output	Data	Reuse	

BLAS	1	Example:	Dotproduct	(	x,	y	)	
	Input	Size:	 	 	2n	
	Opera6on	Count:	 	2n-1	
	Output	Size:	 	 	1	
	è	1	opera6on	per	input	element	and	2n	per	output	element	

BLAS	2	Example:	y	=	Ax		
	Input	Size:	 	 	n2+n		
	Opera6on	Count:	 	2n2-n		
	Output	Size:	 	 	n	
	è	2	opera6ons	per	input	element	and	2n	per	output	element	

BLAS	3	Example:	C=A.B	
	Input	Size:	 	 	2n2		
	Opera6on	Count:	 	2n3-n2	
	Output	Size:	 	 	n2	
	è	n	opera6ons	per	input	element	and	2n	per	output	element	

	



More	data	reuse	leads	to	

•  BeAer	Cache/Register	U6liza6on	
•  Less	Communica6on	Overhead	
•  More	effec6ve	input,	output,	or	intermediate	
data	decomposi6on	



Example	Dotproduct	(BLAS	1)	

	 	DO	I	=	1,	N	
	 	 	C	=	C	+	A(I)	*	B(I)	
	 	ENDDO	

	

Parallel	execu6on	on	P	processors:	
	

	 	DOALL	II	=	1,	P	
	 	 	DO	I	=	II,	II+N/P	–	1	
	 	 	 	C(II)	=	C(II)	+	A(I)	*	B(I)	
	 	 	ENDDO	
	 	 	C	=	C	+	C(II)	
	 	ENDDOALL	

	

However,	communica6on	costs	are	involved!!!!!!!	



DOALL	II	=	1,	N,	N/P										#	N/P	is	the	stride,	so	II	=	1,	1+N/P,	1+2*N/P,	…	
	RECEIVE	(A(II:II+N/P-1),	B(II:II+N/P-1))	
	DO	I	=	II,	II+N/P	–	1	
	 	C(II)	=	C(II)	+	A(I)	*	B(I)	
	ENDDO	
	C	=	C	+	C(II) 	çsynchroniza6on,	i.e.	SEND	C(J)	TO	PROCESS	100	

ENDDOALL	
	
So,	on	a	total	of	2N-1	computa6ons:	2N	con6nuous	data	transmissions	and	P	
separate	communica6ons	are	needed.	With	ts+mtw	communica6on	costs	for	m	
words	(cut	through	rou6ng),	this	gives:	

	 	 	P(ts+(2N/P)tw)+P(ts+tw)	=	
	 	 	(P+P)	ts+(2N+P)tw	=	2Pts	+	(2N+P)tw	

communica6on	costs,	which	is	significant!	For	instance	if	tw	is	comparable	to	the	
cost	of	a	computa6onal	step,	then	the	communica6on	overhead	is	greater	than	
the	computa6onal	costs.	
	
è	BLAS	1	rou6nes	were	mainly	used	for	VECTOR	compu6ng	(pipelining)	

	 	 	vadd,	vdotpr,	vmultadd,	etc.	
	



Example	MatVec	(BLAS	2)	
	 	DO	I	=	1,	N	
	 	 	DO	J	=	1,	N	
	 	 	 	C(I)	=	C(I)	+	A(I,J)	*	B(J)	
	 	 	ENDDO	
	 	ENDDO	

	

Parallel	execu6on	on	P	processors:	
	

	 	DO	I	=	1,	N	
	 	 	DOALL	JJ	=	1,	N,	N/P	
	 	 	 	DO	J	=	JJ,	JJ+N/P	–	1	
	 	 	 	 	C(JJ)	=	C(JJ)	+	A(I,J)	*	B(J)	
	 	 	 	ENDDO	
	 	 	 	C(I)	=	C(I)	+	C(JJ)	
	 	 	ENDDOALL	
	 	ENDDO	

	
But	this	is	essen6ally	is	a	repe66on	of	BLAS	1	(dotproduct)	
opera6ons!!!!!	NOTHING	GAINED.	HOWEVER…	



MatVec	can	also	be	computed	as:	
	 	DO	J	=1,	N	
	 	 	DOALL	II	=	1,	N,	N/P	
	 	 	 	DO	I=	II,	II+N/P-1	
	 	 	 	 	C(I)	=	C(I)+A(I,J)*B(J)	
	 	 	 	ENDDO	
	 	 	ENDDOALL	
	 	ENDDO	

In	this	computa6on	the	basic	(inner)	loop	does	not	execute	a	
dotproduct,	but	a	BLAS	1	SAXPY	opera6on:	y	=	y	+	a.x	
More	importantly,	the	vector	C(II:II+N/P-1)	can	be	stored	in	
registers	in	each	processor,	and	reused	N	6mes	
Also	the	fan-in	computa6ons	are	for	each	C(I)	are	not	needed	
anymore!!	So	only	ini6al	distribu6on	costs	are	paid	for.	So,	
overhead	is	reduced	to	

	 	Pts+(2N)tw	



Example	MatMat	(BLAS	3)	

	 	DO	I	=	1,	N	
	 	 	DO	J	=	1,	N	
	 	 	 	DO	K	=	1,	N	
	 	 	 	 	C(I,K)	=	C(I,K)	+	A(I,J)	*	B(J,K)	
	 	 	 	ENDO	
	 	 	ENDDO	
	 	ENDDO	

	
Then	because	of	the	mul6	dimensionality	we	have	
different	ways	of	execu6ng	this	loop	in	parallel.	



Middle	product	form	(K-loop	outer	loop):	
	

	 	DO	K	=	1,	N	
	 	 	DOALL	II	=	1,N,	N/√P	
	 	 	 	DOALL	JJ	=	1,N,	N/√P	
	 	 	 	 	DO	I	=	II,	II+N/√P-1	
	 	 	 	 	 	DO	J	=	JJ,	JJ+N/√P-1	
	 	 	 	 	 	 	C(I,K)	=	C(I,K)	+	A(I,J)	*	B(J,K)	
	 	 	 	 	 	ENDO	
	 	 	 	 	ENDDO	
	 	 	 	ENDDOALL	
	 	 	ENDOALL	
	 	ENDDO	

	
In	this	implementa6on	the	inner	loop	is	a	BLAS	2	MatVec	
rou6ne.	
	



		
Inner	product	form	(I-loop	outer	loop):	
	 	DO	I	=	1,	N	
	 	 	DO	J	=	1,	N	
	 	 	 	DOALL	KK	=	1,	N,	N/P	
	 	 	 	 	DO	K	=	KK,	KK+N/P-1	
	 	 	 	 	 	C(I,K)	=	C(I,K)	+	A(I,J)	*	B(J,K)	
	 	 	 	 	ENDO	
	 	 	 	ENDDOALL	
	 	 	ENDDO	
	 	ENDDO	

è  In	this	implementa6on	the	inner	loop	is	a	BLAS	1	SAXPY	rou6ne.	
The	inner	product	form	has	a	second	variant:	

	 	DO	K	=	1,	N	
	 	 	DO	I	=	1,	N	
	 	 	 	DOALL	JJ	=	1,N,	N/P	
	 	 	 	 	DO	J	=	JJ,	JJ+N/P-1	
	 	 	 	 	 	C(I,K)	=	C(I,K)	+	A(I,J)	*	B(J,K)	
	 	 	 	 	ENDO	
	 	 	 	ENDDOALL	
	 	 	ENDDO	
	 	ENDDO	

In	this	implementa6on	the	inner	loop	executes	a	BLAS	1	DOTPRODUCT	
	



Outer	product	form	(J-loop	outer	loop):	
	

	 	DO	J	=	1,	N	
	 	 	DO	K	=	1,	N	
	 	 	 	DOALL	II	=	1,	N,	N/P	
	 	 	 	 	DO	I	=	II,	II+N/P-1	
	 	 	 	 	 	C(I,K)	=	C(I,K)	+	A(I,J)	*	B(J,K)	
	 	 	 	 	ENDO	
	 	 	 	ENDDOALL	
	 	 	ENDDO	
	 	ENDDO	



Another	look	at	MatMat	

The	original	loop	can	be	wriAen	as	follows:	
	

	 	DO	II	=	1,	N,	M1	
	 	 	DO	JJ	=	1	,N,	M2	
	 	 	 	DO	KK	=	1,	N,	M3	
	 	 	 	 	DO	I	=	II,	II	+	M1	-	1	
	 	 	 	 	 	DO	J	=	JJ,	JJ	+	M2	-	1	
	 	 	 	 	 	 	DO	K	=	KK,	KK	+	M3	-	1	
	 	 	 	 	 	 	 	C(I,K)	=	C(I,K)	+	A(I,J)	*	B(J,K)	
	 	 	 	 	 	 	ENDO	
	 	 	 	 	 	ENDDO	
	 	 	 	 	ENDDO	
	 	 	 	ENDDO	
	 	 	ENDDO	
	 	ENDDO	

	
è  Any	of	these	loops	can	be	executed	in	parallel!!	
è  These	loops	can	be	permuted	in	any	order	as	long	as	II	becomes	before	I,	etc.	
è  So	many	different	implementa6ons	possible	
è  M1,	M2,	and	M3	can	be	used	to	control	the	degree	of	parallelism	but	also	the	size	of	cache	

usage.	



In	fact	
	 	 	 	 	DO	I	=	II,	II	+	M1	-	1	
	 	 	 	 	 	DO	J	=	JJ,	JJ	+	M2	-	1	
	 	 	 	 	 	 	DO	K	=	KK,	KK	+	M3	-	1	
	 	 	 	 	 	 	 	C(I,K)	=	C(I,K)	+	A(I,J)	*	B(J,K)	
	 	 	 	 	 	 	ENDO	
	 	 	 	 	 	ENDDO	
	 	 	 	 	ENDDO	

	
Corresponds	to	a	sub	matrix	mul6ply	of	size	M1xM2	
6mes	M2xM3	
By	choosing	M1,	M2	and	M3	carefully,	this	triple	nested	
loop	can	each	6me	run	out	of	cache	



		 Schema6c:	

m1	

m1	

m3	

m3	



Embeddings	of	BLAS	rou6nes	

Many	scien6fic	computa6ons	involve	the	
solu6on	of	a	system	of	linear	equa6ons	
		

This	is	wriAen	as	Ax = b	where	A	is	an	n	x	n	
matrix	with	A[i, j] = aij,	b	is	an	n	x	1	vector	[	b0, 
b1, … , bn	]T,	and	x	is	the	solu6on.	



LU	Factoriza6on	
	
Find	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
Such	that	A	=	L.U	
Then	solving	Ax	=	b	corresponds	to	solving		

	 	 	 	 	 	L	(U	x)	=b	
This	can	be	done	in	2	steps,	triangular	solves:	

	 	 	 	 	 	L	c	=	b	(forward	subs6tu6on)	
	 	 	 	 	 	U	x	=	c	(backward	subs6tu6on)	



Backward	subs6tu6on	U	x	=	y	
	
	



The	factors	L	and	U	can	be	obtained	through	Gaussian	Elimina6on	
	
	
	
	
	
		
	
DO	I	=	1,	N	
				 	PIVOT	=	A(I,	I)	
				 	DO	J	=	I+1,	N	
								 	MULT	=	A(J,	I)/PIVOT	
								 	A(J,	I)	=	MULT	
								 	DO	K	=	I+1,	N	
										 	 	A(J,	K)	=	A(J,	K)	-	MULT	*	A(I,	K)	
								 	ENDDO	
				 	ENDDO	
	ENDDO	
	
	



			
This	yields:	
	
	
	
ACer	L	and	U	are	computed	the	system	is	solved	by:	
	

	forward	subs6tu6on:	
	
			DO	I	=	1,	N	
						C(I)	=	B(I)	
						DO	J	=	1,	I-1	
									C(I)	=	C(I)	-	A(I,	J)	*	C(J)	
						ENDDO	
			ENDDO	
	

	back	subs6tu6on:	
	
			DO	I	=	N,	1	
						X(I)	=	C(I)	
						DO	J	=	I+1,	N	
									X(I)	=	X(I)	-	A(I,	J)	*	X(J)	
						ENDDO	
						X(I)	=	X(I)/A(I,	I)	
			ENDDO	



Block	LU	decomposi6on	
Write	A	as	follows	
	
	
So	
	
Let	k	be	the	dimension	of	A11	and	N-k	the	dimension	of	A22	

Then	the	algorithm	becomes:	
	
	
	
	
And	proceed	recursively	on	B	
	
	

(A21A11
-1)A11=A21	



•  			

In	a	picture	



As	a	results		
	è	This	algorithm	only	has	only	to	compute	the	
	 	 	inverse	of	A11,	otherwise	only	matrix	 	
	 	 	mul/plies	are	performed	

	
The	only	complica6on	is	that	back	subs6tu6on	is	
a	bit	more	tedious.	



		

Backward	Subs6tu6on	



• 			

Forward	Subs6tu6on	


