## tUPL Parallel Programming Paradigm

## Data Flow Computing

Traditionally, compilers analyze program source code for data dependencies between instructions in order to better organize the instruction sequences in the binary output files.

A dataflow compiler records these dependencies by creating unique tags for each dependency instead of using variable names. By giving each dependency a unique tag, it allows the non-dependent code segments in the binary to be executed out of order and in parallel.

## Dataflow Execution

- Programs are loaded into the Content Addressable Memory (CAM) of a dynamic dataflow computer.
- When all of the tagged operands of an instruction become available (that is, output from previous instructions and/or user input), the instruction is marked as ready for execution by an execution unit. This is known as activating or firing the instruction.
- Once an instruction is completed by an execution unit, its output data is stored (with its tag) in the CAM. Any instructions that are dependent upon this particular datum (identified by its tag value) are then marked as ready for execution.


## In a Picture

## Manchester Data Flow Machine



## Dataflow in Practice

However, in practice the following problems occurred:

- Efficiently broadcasting data tokens in a massively parallel system.
- Efficiently dispatching instruction tokens in a massively parallel system.
- Building Content Addressable Memory (Tag Memory) large enough to hold all of the dependencies of a real program.


## Linda Coordination Language

- Main usage: in combination with other existing languages, e.g. C/Fortran, provide a mean to link less expensive desktop computers together and combine their power so they can jointly tackle problems.
- A logically global associative memory, called a tuplespace, in which processes store and retrieve tuples.
- This model is implemented as a "coordination language" in which several primitives operating on ordered sequence of typed data objects, "tuples"
- in atomically reads and removes-consumes-a tuple from tuplespace
- rd non-destructively reads a tuplespace
- out produces a tuple, writing it into tuplespace
- eval creates new processes to evaluate tuples, writing the result into tuplespace


## tUPL

- Free Computer Programming from common artifacts like data structures, data dependencies, explicit parallelism constructs
- Harness a compilation framework such that
- Data structures are generated automatically
- Data dependencies are turned into opportunities to optimize performance
- Parallel execution is guaranteed


## Basic tUPL Data Type

## < token, data >

Formally, this basic data type is even further stripped down to

$$
<\text { token }>_{\mathrm{A}}
$$

with A an address function, s.t. data is stored at: @A [token] and the value which is stored at @A [token] is: A [token]
So data == A [token]

## Address function $A(d d r)$

A(ddr) can be any invertible function, but mostly it is an affine function:

$$
Z^{n} \rightarrow Z^{k}
$$

So Addr can be represented as

$$
\operatorname{Addr}(t)=\vec{m}+M t^{T}=\left(\begin{array}{c}
m_{10} \\
\ldots \\
m_{k 0}
\end{array}\right)+\left(\begin{array}{cccc}
m_{11} & m_{12} & . . & m_{1 n} \\
\ldots . . & \ldots & \ldots . & \ldots . \\
m_{k 1} & m_{k 2} & \ldots . & m_{k n}
\end{array}\right) t^{T}
$$

## NOTE!!!!

$$
\mathrm{A}[\mathrm{I}, \mathrm{~J}]=5.0
$$

does NOT mean that element [ $\mathrm{I}, \mathrm{J}$ ] of Matrix A, or of a 2-Dimensional Array A
is assigned the value 5.0.

## BUT:

5.0 is stored at location @A [ I, J ], or that the data value of $\langle I, J\rangle_{A}$ becomes 5.0, or that $\langle\mathrm{I}, \mathrm{J}$, data $\rangle=\langle\mathrm{I}, \mathrm{J}, 5.0\rangle^{*}$

* Note that tokens can be more dimensional: token tuples t In this case t.i represents the $i^{\text {th }}$ field of $t$

SO, data structures as we know them do not exists in tUPL, only

## single storage locations for each data item, represented by token tuples

We need a mean to express a collection or set of these single storage locations
$\rightarrow$ (Token) Tuple Reservoirs

## Examples of Tuple Reservoirs (I)

A Digraph G(V,E):

$$
\mathbf{T}=\{\langle u, v\rangle \mid u, v \varepsilon V \text { and }(u, v) \varepsilon E\}
$$

with address function Weigth [ $\mathbf{u}, \mathrm{v}$ ] representing the address at which the weight of edge $(\mathbf{u}, \mathrm{v})$ is stored

## A Sparse Matrix A:

$\mathbf{T}=\{\langle\mathbf{i}, j\rangle \mid$ at row $i$ and column $j$ there is a nnz element\}
with address function Value [i,j] representing the address at which the value of matrix $A[i, j]$ is stored

## Examples of Tuple Reservoirs (II)

A Linked List (of single storage locations):

$$
\begin{array}{ll}
T=\left\{\left\langle i_{k}, \dot{j}_{k}\right\rangle \mid\right. & 1<=k<=n, \\
& \text { for every } j_{k}, 1<=k<n,
\end{array}
$$ there exists exactly one $\mathbf{i}_{\mathrm{m}}$ such that $\mathrm{j}_{\mathrm{k}}=\mathrm{i}_{\mathrm{m}}$, and for all $\mathrm{j}_{\mathrm{k}}, 1<=\mathbf{k}<=\mathrm{n}$, the values are different $\}$

Together with an address function Value [ $\mathbf{i}_{\mathrm{k}}, \mathbf{j}_{\mathrm{k}}$ ] representing the value at the $\mathbf{k}^{\text {th }}$ position in the list. OR address function Value [ $\mathbf{i}_{\mathrm{k}}$ ] ! (tUPL allows both)

## Examples of Tuple Reservoirs (III)

## Relational Database Tables

$$
\begin{aligned}
T=\{ & i>\mid 1<=i<=n, \text { with } i \text { representing } \\
& \text { the } \left.i^{\text {th }} \text { record in the database table }\right\}
\end{aligned}
$$ and associated address functions: field $_{1}\left[\right.$ i ], field 2 [ i ], ..., field ${ }_{\mathrm{t}}$ [ i ]

## tUPL Loop Structures

Two BASIC Loop Structures:

```
forelem ( t; t \varepsilon T )
whilelem ( t; t & T )
```

Both structures are inherently parallel and non-deterministic

This means that any tuple of T can be taken at any time!!

In the forelem structure every tuple is taken exactly once, while in the whilelem every tuple can be taken an arbitrary number of times (details later)

## Example I

## Sparse Matrix-Vector Multiplication

forelem ( t; t $\varepsilon$ T )
\{

$$
\begin{aligned}
\text { Value_C[t.i]+= } & \text { Value_A[t.i,t.j] } \\
& * \text { Value_B[t.j] }
\end{aligned}
$$

\}

```
Example II (LU factorization)
for (k; k\varepsilonN)
    pivot = IDX_A Ai,j>[(k,k)] ();
    forelem (t; t & A.<i,j>[<(k, ) ,k>])
    {
    mult = Value[t.i,t.j]/Value[t.pivot,t.pivot];
    Value[t.i,t.j] = mult;
    forelem (r; r & A.<i,j>[<t.j,(t.j,\infty)>])
    {
            cand = NULL
            forelem (q; q \varepsilon A.<i,j>[<t.i,t.j>])
            cand = q;
            if (cand == NULL)
            {
            cand = <t,i,t.j>
            A = A U cand;
            Value[cand.i,cand.j] = 0
        }
        Value[cand.i,cand.j] -= mult*Value[r.i,r.j]
    }
    }
}
```


## Example III

## SORTING

whilelem ( $t ; t \varepsilon T$ )
\{

$$
\begin{aligned}
& \text { if }(X[t . i]>x[t . j]) \\
& \operatorname{swap}(x[t . i], X[t . j])
\end{aligned}
$$

$$
\text { \} }
$$

## Example IV: MaxFlow

```
T = {<u,v v,w>|(u,v) and (v w,w) (back)edges of G and w!=u }*
whilelem ( t; t \varepsilon T )
{ if (Delta[t.u,t.v] > 0 && Remainder[t.v,t.w] > 0)
    {
        delta_change = min(Remainder[t.v,t.w],Delta[t.u,t.v]);
        Delta[t.v,t.w]+= delta_change;
        Remainder[t.v,t.w] -= delta_change;
        Remainder[t.w,t.v] += delta_change;
        F[t.u,t.v] += delta_change;
        Delta[t.u,t.v] -= delta_change
    }
    if (Delta[t.u,t.v] > 0 && Remainder[t.v,t.w] == 0)
    {
        if (t.v == 's' || t.v == 't')
        {
            F[t.u,t.v] += Delta[t.u,t.v];
            Delta[t.u,t.v] = 0
        }
        else
        { # Reverse Flow
            Delta[t.v,t.u] += Delta[t.u,t.v];
            Remainder[t.v,t.u]-= Delta[t.u,t.v];
            Delta[t.u,t.v] = 0
        } *|T| \approx(aver_out+aver_in)*(aver_out+aver_in-1)* |V|
                    \approx aver_out^4* |V|
```


## tUPL Loop Body

One or more conditionally executed serial codes operating on data items which are defined by the tokens from the Tuple Reservoir and their associated address functions*, i.e.
tUPL Loop Body:

```
if ( Cond_1 )
{
        Serial_Code_1 (< t >)
}
if ( Cond_2 )
Serial_Code_2 (< t >)
}
if ( Cond_n )
{
        Serial_Code_n (< t >)
}
```

> All Cond_i's are exclusive for forelem. For whilelem multiple conditions can be true at the same time for a tuple.
$>\mathrm{n}$ can be 1 and Cond 1 can be true .
*Except for local/temporary variables with respect to the Loop Body

## tUPL Loop Bodies: Two Cases

I For all $i, j, k$, and $m$ there is no flow (anti) dependence between

$$
\begin{array}{lll}
\text { Serial_Code_i } & \left(<t_{k}>\right) \text { and } \\
\text { Serial_Code_j } & \left(<t_{m}>\right)
\end{array}
$$

II There exists $\mathrm{i}, \mathrm{j}, \mathrm{k}$, and m for which there is flow (anti) dependence between

$$
\begin{array}{llll}
\text { Serial_Code_i } & \left(<t_{k}>\right) \text { and } \\
\text { Serial_Code_j } & \left(<t_{m}\right. & >)
\end{array}
$$

## Case I

$\rightarrow$ There are no Read on Write Dependencies, and/ or Write on Read Dependencies
$\rightarrow$ For all i and k : repeated execution of just

$$
\text { Serial_Code_i (< } \left.t_{k}>\right)
$$

does not have any effects, even when these executions are interleaved with the execution of other

$$
\text { Serial_Code_j (< } \left.t_{m}>\right)
$$

$\rightarrow$ Use of
forelem ( $t ; t \in T$ )
$\rightarrow$ As a result each serial_Code_i $\left.\left(<t_{k}\right\rangle\right)$ is executed exactly once, ālbeit in arbitrary order

## Case II

$\rightarrow$ There are dependencies between the execution of one conditional serial code using one tuple with the execution of (possibly another) conditional code on another (the same) tuple
$\Rightarrow$ tUPL relies on tuples to be taken at any time
$\rightarrow$ These dependencies have to be broken
$\rightarrow$ Leading to possible repetitive execution of the same tuples (see next slides)
$\rightarrow$ Use of

$$
\text { whilelem ( } t ; t \in T)
$$

## Case III

In case, a prefixed order of tuples is required for the execution of the tUPL loop body, then tUPL foresees in the use of a ready clause in the condition clause of the whilelem construct.

$$
\begin{aligned}
& \text { whilelem }(t ; t \varepsilon T) \\
& \text { if ( ready }(q)[q \cdot i<t . j]) \text { ) }
\end{aligned}
$$

The use of this clause will severely limit the optimization possibilities of the tUPL framework.

## Example

```
T = {<1>,<2>, ...,<100>}; # <iter>
whilelem ( t; t \varepsilon T )
{
    if ( ready(q) [q.iter < t.iter] )
    {
    }
}
```

Note that:
$>$ tUPL also allows the following notation (tuples thave only 1 field)

```
if ( ready(q)[q < t] )
```

$>$ If there are no tuples found which fulfill the ready clause condition then ready evaluates to true
$>$ The use of ready does not prevent that for each iteration the loop body is being executed multiple times. Use of forelem is recommended in combination with the ready clause if only one execution per iteration is meant.

## Example (continued)

```
T = {<1>,<2>, ...,<100>}; # <iter>
    whilelem ( t; t \varepsilon T )
    {
        if ( ready(q)[q< t] )
        {
    }
}
```

In this case tUPL allows the following shorthand notation:

```
    for (k; k\varepsilonN\mp@subsup{N}{100}{+})*
* k\varepsilon\mp@subsup{\mathbf{N}}{}{+}\mp@subsup{}{100}{}\mathrm{ is used for k&T={<1>,<2>, ...,<100>},}
k\varepsilon\mp@subsup{\mathbf{N}}{100}{}}\mathrm{ is used for k }\varepsilon\textrm{T}={<0>,<1>, ...,<100>
```


## Case IV

As a last resort the programmer can of use the condition clause in the whilelem loop body to explicitly control the order in which the tuples are visited.

```
whilelem ( q; q & T )
    if (q.row > q.col &&
        Count[q.col] == 0 &&
        Visited[q] = False )
    {
        B[q.row] = B[q.row] - Value[q]*B[q.col];
        Count[q.row + 1]--;
        Visited[q] = True;
    }
}
```


## Data Dependencies Denial (DDD) in tUPL

The tUPL compiler framework will (by default):
translate data dependent instructions into independent instructions, by introducing an extra address function (\$Old_...) for each address function on which a data dependence occurs.

Suppose w.l.o.g. that data dependence occurs on address function $X$, so that
for tuple $\mathrm{t}_{1}: \mathrm{X}\left[\mathrm{t}_{1}\right]=\ldots$
for tuple $t_{2}: y=\ldots X\left[t_{2}\right] \ldots$
and that the storage locations are equal: @X[t $\left.\mathrm{t}_{1}\right]==@ \mathrm{X}\left[\mathrm{t}_{2}\right]$
tUPL automatically transforms this into:
Initialize new address function.
forall t: \$Old_X[t] = NULL
And the read instructions are transformed into:
while (X[t] != \$Old_X[t]) y = ... X[t] ... ; \$Old_X[t] = X[t]

The "while" construct is merged into the whilelem construct.

$$
\mathrm{X}\left[\mathrm{t}_{1}\right]=5 ; \mathrm{y}=\mathrm{X}\left[\mathrm{t}_{2}\right] ; \quad \# @ \mathrm{X}\left[\mathrm{t}_{1}\right]==@ \mathrm{X}\left[\mathrm{t}_{2}\right]
$$



## Why not use the same construct for write instructions?

$$
\begin{aligned}
& \mathrm{X}\left[\mathrm{t}_{1}\right]=5 \\
& \mathrm{X}\left[\mathrm{t}_{2}\right]=10
\end{aligned}
$$

and @X[ $\left.\mathrm{t}_{1}\right]==@ X\left[\mathrm{t}_{1}\right]$, then


```
while (X[t [ ] != $Old_X[t 2]) X[t [ ] = 10; $Old_X[t [ ] = X[t 2 ]
```




Etc. etc.
$\rightarrow$ RACE CONDITION

## Example

```
T = {<1, 3>,<2,1>,<3,2>};#<i,j>
A[1,1]=6;A[1,3]=2;A[2,1]=-1;A[2,2]=5;A[3,2]=2;A[3,3]=4
B[1]=8;B[2]=9;B[3]=8;
X[1]=0; X[2]=0;X[3]=0;
whilelem ( t; t \varepsilon T )
    X[t.i]=(B[t.i]-X[t.j]*A[t.i,t.j])/A[t.i,t.i]
}
```

(What is being computed???)
$\rightarrow$ THERE IS A FLOW DEPENDENCE ON X $!!!!!!$
For instance $\quad<1,3>: X[1]=(B[1]-X[3] * A[1,3]) / A[1,1]$ $<2,1>: X[2]=(B[2]-X[1] * A[2,1]) / A[2,2]$

## Loop is transformed

```
T = {<1,3>,<2,1>,<3,2>}; #<i,j>
A[1,1]=6;A[1,3]=2;A[2,1]=-1;A[2,2]=5;A[3,2]=2;A[3,3]=4
B[1]=8; B[2]=9;B[3]=8;
X[1]=0;X[2]=0; X[3]=0;
$Old_X[<1,3>]=NULL;$Old_X[<2,1>]=NULL;$Old_X[<3,2>]=NULL;
```

whilelem ( $t ; t \in T$ )
if (X[t.j]!= \$Old_X[t])
X[t.i]=(B[t.i]-X[t.j]*A[t.i,t.j])/A[t.i,t.i];
\$Old_X[t]=X[t.j]
\}
\}

## Resulting Execution Orders

$<1,3>\#$ X[t.j] $=X[3]=0$ and \$Old_X[t] = NULL $X[1]=\left(8-X[3]^{*} 2\right) / 6=8 / 6=1.333$ \$Old_X[<1,3>] = 0.000
$<2,1\rangle \#$ X[t.j] $=X[1]=1.333$ and \$Old_X[t] = NULL $X[2]=\left(9-X[1]^{*}-1\right) / 5=10.333 / 5=2.067$ \$Old_X[<2,1>] = 1.333
$<3,2>\#$ X[t.j] $=\mathrm{X}[2]=2.067$ and \$Old_X[t] = NULL $X[3]=(8-X[2] * 2) / 4=(8-4.134) / 4=1.466$ \$Old_X[<3,2>] = 2.067
$<1,3\rangle \#$ X[t.j] $=\mathrm{X}[3]=1.466$ and \$Old_X[t] = 0.000 $X[1]=(8-X[3] * 2) / 6=(8-2.932) / 6=0.845$ \$Old_X[<1,3>] = 1.466
$<2,1>\#$ X[t.j] $=\mathrm{X}[1]=0.845$ and \$Old_X[t] = 1.333 $X[2]=\left(9-X[1]^{*}-1\right) / 5=(9+0,845) / 5=1.969$ \$Old_X[<2,1>] = 0.845
$<3,2>\#$ X[t.j] $=\mathrm{X}[2]=1.969$ and \$Old_X[t] = 2.067 $X[3]=(8-X[2] * 2) / 4=(8-3.938) / 4=1.015$ \$Old_X[<3,2>] = 1.969
$<1,3>\#$ X[t.j] $=\mathrm{X}[3]=1.015$ and \$Old_X[t] = 1.466 $X[1]=(8-X[3] * 2) / 6=(8-2.030) / 6=0.995$ \$Old_X[<1,3>] = 1.015
$<2,1\rangle \#$ X[t.j] $=\mathrm{X}[1]=0.995$ and \$Old_X[t] $=0.845$ $X[2]=\left(9-X[1]^{*}-1\right) / 5=(9+0.995) / 5=1.999$ \$Old_X[<2,1>] = 0.995
$<3,2>\#$ X[t.j] $=\mathrm{X}[2]=1.999$ and \$Old_X[t] = 1.969 $X[3]=(8-X[2] * 2) / 4=(8-3.998) / 4=1.000$ \$Old_X[<3,2>] = 1.999
$<1,3>\#$ X[t.j] = X[3] = 1.000 and \$Old_X[t] = 1.015 $X[1]=(8-X[3] * 2) / 6=(8-2.000) / 6=1.000$ \$Old_X[<1,3>] = 1.000
$<2,1>\# X[t . j]=X[1]=1.000$ and \$Old_X[t] = 0.995 $X[2]=\left(9-X[1]^{*}-1\right) / 5=(9+1.000) / 5=2.000$ \$Old_X[<2,1>] = 1.000
$<3,2\rangle \# X[t . j]=X[2]=2.000$ and \$Old_X[t] = 1.999 $X[3]=(8-X[2] * 2) / 4=(8-4.000) / 4=1.000$ \$Old_X[<3,2>] = 2.000

```
<2,1> # X[t.j] = X[1] = 0 and $Old_X[t] = NULL
    X[2] = (9-X[1]*-1)/5 = 9/5 = 1.800
    $Old_X[<2,1>] = 0.000
<1,3> # X[t.j] = X[3] = 0 and $Old_X[t] = NULL
    X[1] = (8-X[3]*2)/6 = 8/6 = 1.333
    $Old_X[<1,3>] = 0.000
<2,1> # X[t.j] = X[1] = 1.333 and $Old_X[t] = 0.000
    X[2]=(9-X[1]*-1)/5 = 10.333/5 = 2.067
    $Old_X[<2,1>] = 1.333
<1,3> # X[t.j] = X[3] = 0 and $Old_X[t] = 0.000
    NOP
<2,1> # X[t.j] = X[1] = 1.333 and $Old_X[t] = 1.333
    NOP
<3,2> # X[t.j] = X[2] = 2.067 and $Old_X[t] = NULL
    X[3] = (8-X[2]*2)/4 = (8-4.134)/4 = 1.466
    $Old_X[<3,2>] = 2.067
<1,3> # X[t.j] = X[3] = 1.466 and $Old_X[t] = 0.000
    X[1] = (8-X[3]*2)/6 = (8-2.932)/6 = 0.845
    $Old_X[<1,3>] = 1.466
<3,2> # X[t.j] = X[2] = 2.067 and $Old_X[t] = 2.067
    NOP
<2,1> # X[t.j] = X[1] = 0.845 and $Old_X[t] = 1.333
    X[2] = (9-X[1]*-1)/5 = (9+0,845)/5 = 1.969
    $Old_X[<2,1>] = 0.845
... ...
```

Otherwise similar (except for interleaving with NOPs)

## Scheduling whilelem (t; t $\varepsilon$ T)

> For each execution of a tuple exactly one of the tuples with a valid conditional serial code is chosen.
$>$ If there are no tuples left with a valid conditional serial code, then the whilelem loop terminates.
$>$ Any loop scheduling for a whilelem loop must guarantee that every tuple with a valid conditional serial code that is continuously enabled beyond a certain point is taken infinitely many times (cf. just computation).

## Scheduling forelem (t; t $\varepsilon$ T)

$>$ For each execution of a tuple exactly one of the tuples is chosen with a valid conditional serial code and which has not been executed so far.
$>$ If there are no tuples left with a valid conditional serial code, then the forelem loop terminates.

Note that if the conditions are not carefully chosen it can happen that the forelem loop terminates before all tuples have been executed.

## Automatic Data Structure Generation in tUPL

## tUPL Code



CUDA Code ${ }^{\bullet \bullet}$ MPI Code

## tUPL Intermediate

```
forelem ( t; t \varepsilon T ) forelem ( i; i \varepsilon pT )
{
```


$>\mathrm{pT}$ and $\mathrm{T}[\mathrm{i}]$ notation allows for a more clear expression of the materialization and concretization phase
$>$ tUPL allows mix use of tUPL notation and intermediate notation

## Tuple Selectors

- (i;i $\boldsymbol{\varepsilon}$ pT.(row, col)[<10,100>]) means choose only these tuples from the reservoir T for which the row field equals 10 and col field equals 100.
- IDX_T $\mathbf{T r o w , ~ c o l > [ < 1 0 , 1 0 0 > ] ~}$ () within the loop body refers to the tuple i, for which row equals 10 and col equals 100.
- [<10, (100, 1000) $>$ ] refers to the second field to be of a value between 10 and 1000 .


## Some Code Transformations*

## Orthogonalization

forelem (i; i $\varepsilon$ pA)
... A[i]...

```
forelem (ii; ii \varepsilon A.fieldl)
    forelem (i; i \varepsilon pA.fieldl[ii])
```

    ... A[i] ...
    A. field1 is the set of all possible field1 values of tuples in A: $\{$ i.field1 $\mid i \varepsilon A\}$

## Encapsulation

forelem (i; i $\varepsilon$ pA.field1)


If A.field1 would be $\{0,1,3,4,7,9,10\}$, for instance. This transformation only makes sense, if the execution of the inner loop for the other $i$-value's results into a NOP. i.e $\mathrm{C}[\mathrm{i}]=\mathrm{C}[\mathrm{i}]+\mathrm{B}[\mathrm{i}]$, and $\mathrm{B}[\mathrm{i}]=0$ for $2,5,6$ and 8 .
*forelem is used in the examples but the trafo's equally apply to whilelem

## Some Code Transformations (2)

## Loop Collapse

```
forelem (i; i \varepsilon pA)
    forelem (j; j \varepsilon pB.field_b[A[i].field_a])
        ... A[i].field_c ... B[j].field_d ...
```



```
forelem (i; i \varepsilon pAxB.field_b[field_a])
    ... AxB[i].field_c ... AxB[i].field_d ...
```

$A x B$ is the cross product of the two tuple sets $A$ and $B:\{\langle i, j\rangle \mid i \varepsilon A$ and $j \varepsilon B\}$

## Some Code Transformations (3)

## Loop Interchange

```
forelem (i; i \varepsilon pA)
    forelem (j; j \varepsilon pB)
    ... A[i] ... B[j] ...
```

```
forelem (j; j \varepsilon pB)
    forelem (i; i \varepsilon pA)
    ... A[i] ... B[j] ...
```


## Horizontal Iteration

Space Reduction
forelem (i; i $\varepsilon \mathrm{pA}$ )
... A[i].field2 ... A[i].field3

```
forelem (i; i & pA')
    ... A' [i].field2 ... A' [i].field3 ...
```

With $A^{\prime}=\{$ <field2,field3> | <field1,field2,field3> $\varepsilon$ A \}

## Materialization

```
forelem (i; i \varepsilon pA.field[X])
    ... A[i]...
```

$$
\begin{aligned}
& \text { forelem (i; i } \left.\varepsilon N^{*}\right) \\
& \text {... PA[i]... }
\end{aligned}
$$

$\mathbf{N *}$ represents the set $\{1,2, \ldots,|P A|\}$, with PA an enumeration of the set:
$\{i \mid i \varepsilon A$ and i.field $==X\}$

DO NOT CONFUSE PA with a linear array data structure

## Some more code transformations

## Tuple Splitting

```
forelem (i; i \varepsilon A.field) forelem (i; i \varepsilon N N
    forelem (k; k \varepsilon pB.field[i])
        ... B[k].value ...
forelem (i; i \(\varepsilon \mathbf{N}_{10}\) )
\[
\text { forelem (k; } k \varepsilon \text { pB.field[i]) }
\]
\(\ldots B[k]\). value \(\ldots\)
    forelem (i; i \varepsilon N No)
        forelem (k; k & N*)
        ... B[i][k].value ...
```

```
forelem (i; i \varepsilon N No)
```

forelem (i; i \varepsilon N No)
forelem (k; k \varepsilon N*)
forelem (k; k \varepsilon N*)
... B[i].value[k] ..

```
    ... B[i].value[k] ..
```

2 dimensional materialization into B[][] necessary because of outerloop dependence.

## Some more code transformations (2)

## N* Materialization

forelem (i; i $\varepsilon \mathbf{N}_{10}$ )
forelem (k; k $\varepsilon \mathbf{N}^{\boldsymbol{*}}$ )
... A[i][k] ...

forelem (i; i $\varepsilon \mathrm{N}_{10}$ ) forelem (k; $k$ ع PA_len[i])
... A[i][k] ...

## Some more code transformations (3)

## Data Localization


forelem (i; i $\left.\varepsilon \mathrm{pA}^{\prime}\right)$
... $A^{\prime}$ [i].field_B ...

Here the tuples in reservoir $A$ are being extended to include the data at address @B[A[i].field_k\}. So $A^{\prime}=\{\langle t, B[t]>| t \varepsilon A\}$. By default, this transformation is only allowed for read only data at B .

## Regrouping of Single Storage Locations (Tuples)



Regrouping as a result of orthogonalization on the first field

## Regrouping after Materialization and Loop Interchange



Regrouping after orthogonalization on the second field followed by materialization and loop interchange


## Concretization

## forelem (i; i $\varepsilon N^{*}$ ) <br> ... PA [i]...

forelem (i; i $\varepsilon$ PA_len[i])
... PA[i] ...

for ( $\mathrm{i}=0 ; \mathrm{i}$ < PA_len; $\mathrm{i}++$ )
... PA[i] ...

## Some Concretization Steps

| tUPLE loop construct | Concretization |
| :---: | :---: |
| $\begin{gathered} \text { forelem (i; i } \varepsilon \text { pA) } \\ \text {... } \mathrm{A}[i] \ldots \end{gathered}$ | Linked list of struct's |
| $\begin{aligned} & \text { forelem (i; i } \varepsilon \mathrm{N}_{10} \text { ) } \\ & \text {... A[i]... } \end{aligned}$ | An array of struct's |
| ```forelem (i; i \varepsilon N forelem (k; k \varepsilon PA_len[i]) ... A[i][k] ...``` | An array of arrays of struct's |
| ```forelem (i; i \varepsilon N N10) forelem (k; k \varepsilon PA_len[i]) ... A[i][k].value ...``` | An array of arrays of struct's |
| ```forelem (i; i \varepsilon N N10) forelem (k; k \varepsilon PA_len[i]) ... A[i].value[k] ...``` | An array of arrays of values |

## Example

forelem (i;iع pA)
... B[A[i]]...
Data Localization
forelem (i;iع $\mathrm{pA}^{\prime}$ )
... $A^{\prime}[i] . f i e l d \_B$...
Materialization
forelem (i;iع $\mathrm{PA}^{\prime}$ _len)
... PA' [i].field_B ...
Tuple Splitting
forelem (i;iع $\mathrm{pA}^{\prime}$ _len)
... PA'.field_B[i]...
Hprizontal Iteration Space Reduction
forelem (i;is $\mathrm{pA}^{\prime}$ _len) Just one array of field_B
... $P^{\prime}$.field_B[i]... values

## The automatic generation of ITPACK data structure




## The Transformation Search Space for SpMxM




## Legend

a loop interchange
b orthogonalization row
c orthogonalization col
d materialize
e pad rows
f struct split
g horiz. IS reduction
b dimensionality reduction
$\mathrm{N}^{*}$ sort
j transpose
k concretive

## END OF COURSE

## Parallel Programming II (this fall)

- tUPL will automatically choose sequences of valid serial codes to be executed one after the other, so that their execution is being optimized.
- So, next to the automatic generation of data structures tUPL will also automatically optimize and change the order in which operations are performed and by doing so will change the actual algorithm being used to compute the results.
- In fact within tUPL new algorithms can be automatically generated which will not only execute in parallel but will also be adaptive to the underlying problem to be solved.

