(Parallel) Sparse Matrix
Computations

Sparse Matrices

Physical Phenomena

— Modeled through particles/molecules/point
clouds

(Spatial) Database Applications
Graph Computations
Combinatorial Optimization

Example: Finite Differences

-l'!-"“! 3
llill.!ﬂﬂ.-ll’““

Leads to

r 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. O.\

0.

(.1:;170.0.

z 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

0.

0.

I

r I

x 0. 0. 0. 0. 0. 0. 0. 0. 0.

0.

0.

z 0. 0. 0. 0. 0. 0. 0. 0.

0.
r x x 0. 0.

z 0. 0. 0. 0. 0. 0. 0.

0.

0. 0.

I

r 0. 0. 0. 0. 0. 0.

0.

0.

rz 0. 0. 0. 0. 0.

0.
r x x 0. 0.

0.

z 0. 0. 0. 0.

0.

0. 0.

I

0. 0. 0. 0.

x 0. 0. 0.

0.
r x 0. 0.

I

0.

L

0. 0.

.

0. 0. =
0.

I

0. 0. 0. 0. 0.

0.

r x x 0. 0.
0.

0.

T

0. 0. 0. 0. 0. 0.

0.

£

0. 0. 0. 0. 0. 0. 0.

0.

0. 0.

:r

0. 0. 0. 0. 0. 0. 0. 0.

= 5

0. 0.
r 0

I

0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

0. 0. 0. 0. 0. 0. 0. 0. 0.
\ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

0. 0.

xIr

Finite Elements

Example

-

N

Leads to

\ - - -
1 .o Hﬁoﬂi - oa }} (- ’.
. ‘e’
.....‘L..o.\ .dr\.oq\o. o ; '0 " -oucol
cl- u.. ..n L) ’ 3 o .
“ -onw.-.-. .onoo. wo (Json\o
S PRI S <
,.r el i S o 5
. - ., o Sy = s
= S Ve e = .
'S B - - .
5 Ml". N«u\..-u.-un ﬁ...la .m..-.n.o - % ...r.wﬂl
1 n..wu.“...m.a. e W v XA
' =t A T e e
R T A

(Spatial) Databases Applications

W 00) Yy i b W N e

ho= D

[y
W

City

Troy

=

Mobile

Trussville

Montgomery

Selma
Talladega
Tuscaloosa
Huntsville
Gadsden

Birmingham

Montgomery

Decatur
Eufaula

FEEEREEEEEREREEE

36081
36685
35173
36106
36701
35161
35402
35801
35901
35266
36124
35602
36072

. State ZipCode Latitude

31.809675
30.686394
33.621385
32.35351
32.41179
33.43451
33.209003
34.729135
34.014772
33.517467
32.38012
34.60946
31.941565

Longitude

-85.972173
-88.053241
-86.602739
-86.265837
-87.022234
-86.102689
-87.571005
-86.584979
-86.007172
-86.809484
-86.300629
-86.977029
-85.239689

Example: Graph Algorithms

— | 2
— | — [

23 I o3 T o Y O T v = N

Example: Combinatorial Optimization

/
’ Lefihumbers = capacity
/ Righthumbers = flow

Solving Ax = b, with sparse A

* Direct Methods
— Ax=LUx=b
* |terative Methods
— Write Ax=Db as
Mx= (M-A)x + b, for some matrix M
— Solve each time:
Mx,,, = (M-A)x, + b
— Until
* || Xey =X || <€, for some small €
Choose easy invertible M:
— Diagonal part of A (Jacobi’s)
— Triangular part of A (Gauss Seidel)
— Combination of the two (Successive Overrelaxation)
— If M = A, then we have the direct method
— Incomplete LU Factorization

Stability in direct methods

* Recapture Dense LU:

DOI =1, N
PIVOT = A(I, I)
DO J = I+1, N
MULT = A(J, I) / PIVOT
A(J, I) = MULT
DO K = I+1, N
A(J, K) = A(J, K) - MULT * A(I, K)
ENDDO
ENDDO
ENDDO

 What if the PIVOT IS O (or very small) ?

Pivoting

(5 3)(2)-(3)

=» Whenever a,, = 0 (or small) for some k. Look for a_,
which is not zero (or large)

=» Permute row m to row k (exchange row m and row k)

=>» a,, is now on the diagonal

(0 1)(5)=(0)

Numerical instability with small pivots

0001 242\ [z, \ [520
1.00 158)\ =y)~ \ 457

If Gaussian elimination is performed with 3 decimal floating
point arithmetic (0.123 E10), then (1.58 — 2420 =-2420 and
4.57-5200 =-5200)

0.001 2.42 0\ [520
0 —2420)\ =z)\ —5200
Which gives as result ; — (0.00)

While true solutionis , _ [1-18
2.15

This is solved by partial pivoting (again).

=>» Ensure that all multipliers < 1, or
for all entries I;; of L: [l;;] <1

This is achieved by choosing only pivots @} such that

|niﬁ,)| > |nf:‘| L >k

This is again achieved by row interchanges.

Example

3 17 10 |
A=12 4 =2
6 18 —12

At the first step 6 is chosen as pivot.
Sorow1l->row 3, row 2 ->row 2, and row 3 ->row 1
This can be represented with permutation matrices:

—

(00 1 6 18 —12
Pl = 0 1 0 , and P|/1: 2 4 —2
1 0 0| 317 10

The elimination step can be represented by:

- — —

1 0 0 6 18 —12
Fi=|-1/3 1 0|,so BEy,PLA=|0 =2 p)
- -1/2 0 1 0O 8 16

— —

At the second step compute: FsPLFE P A

(1.0 0
With P=|0 0 1 and
01 0
(1 0 0] 6 18 —12 |
Eo=|10 1 0| toyield | 0 8 16 | =U
0 1/4 1 | 00 6 |

In general each step can be represented as:

E, \P, |- -EsP,E,PLA=U

With 1\ L, and
E = i o 111 L(I“*'l I’II.,I\') :[,l?—l"’
-l i+1,i1
Y

Solution is obtained by

1. ¢ = Pb
2. Ly =c

3. Urx =y

with: P=P_ P ,..P,P,,PA=LU

Ax=Db -> PAx=Pb ->LUx=Pb->L(Ux)=Pb

Complete Pivoting

With partial pivoting the growth of the entries in
the lower triangular matrix can still be as large
as 2"! (if pivot = 1 at each step, then entries can
double at each step)

=2 Need for finding better pivots

Instead of

|u,£,’;;,)| > 111a.x(|(1.5,§:'|.i > k)

choose Y| > max(|al|,i,5 > k)

So with complete pivoting each step can be
expressed as:

En—an—lEu—ZPu—'.! e Elplfl(zl(z.! T ('211—1 = U.
With P - Pn_lpn_zu. P2P1) Q = Qle... Qn-ZQn-l) and

PAQ = LU

So, the solution x can be obtained by

1.c=Pb
2.Ly=c
3.Uz=y

4.Qx=z (Q'=Q?)

1.

For many systems pivoting is not required

A is strictly diagonally dominant, if |A;;| > Z:;-':lj#! |aij|.

Theorem 1 If AT is strictly diagonally dominant, then LU obtained with
no pivoting has the property that |L;j| <1, for all i, j.

. A is symmetric, if A;; = Aj; for all 7, 5. A is positive definite, if for every

r#0

.'ITTA.'I? >0
(z! Az often reflects the energy of the underlying physical system and is
therefore often positive.)
Theorem 2 If A is symmelric positive definite, then
k)

x| .
0= 1}1}4}3{ la;;'| < ulu;.x |ajj|.

In this case LU can be written as A = L - LT (or LDL?, avoiding the
calculation of square roots). This is called Choleski Factorization.

lterative Methods

with M easy invertible, meaning most of the

cases that M can be directly expressed by a
matrix [1

= So, the solution can be obtained by simply
performing (sparse) matrix multiplications

Implementation Issues

Data Storage: Pointer structures, Linked lists, Linear Arrays
Pivot Search: Multiple storage schemes

Masking Operations: Gather/Scatter Operations

Garbage collection: Fill-in, Explicit garbage collection
Permutation Issues: Implicit and/or explicit

. 0. 0. —1. 0.

(2. 0. -2 3. \
A= (ﬂ-,fj) = 0. —3. 0. 0. 0.
0. 4. 0. —4. 0.

\ 5. 0. =5 6.)

Coordinate Scheme Storage

int IRN[11], JCN[11];
float VAL[11];

1 2 3 4 5 6 7 8 9 10 11
IRN | 1T 2 2 1 5 3 4 5 2 4 5
JCN|1 4 5 1 1 5 2 4 3 3 2 1
VAL | -1. 3. 2. 1. 6. -3. -4. -5. -2. 4. 5.

»No explicit order of the nonzero entries is enforced

» Fetching row/column requires the whole data
structure to be searched

»Insertion and/or deletion of nonzero entries is simple

Sparse Compressed Row/Column Format

int LENROWI5], POINTER[5], ICN[11]
float VAL[11]

LENROW 2 3 1 2 3
POINTER 1 3 6 7 9
ICN 4 1 5 1 3 2 4 2 3 1 5
VAL -1, L. 3. 2. -2, -3. -4. 4. -5. 5. .

» LENCOL, POINTER, and IRN are used for compressed column
format

» Fetching row or column is very easy in corresponding format

» Insertion of nonzero elements is a big problem — expanded
row/column is put at the end, and the LENROW/LENCOL is

updated correspondingly
» Instead of LENROW/LENCOL the last element in each row in ICN

is negated

Linked List (Pointer) Implementations

¢ | §
§ i s 1
TR
o o
: .
» Very flexible
» Access to data very inefficient

» Pointer chasing
» Addresses not consecutive: bad spatial locality

ExtendedColumn/Itpack/JaggedDiagonal Format

Shift all nonzero entries to the beginning of each
row

int INDEX[5][maXx]
float VALUE[5][max]

1 4 0 1. —1. 0.

(1 3 5 \ (2. —2. 3. \
INDEX: 2 0 0 |and VALUE: —3. 0. 0.
2 40 4. —4. 0.

\1 3 5) \ 5 -5 6.

» Especially suited for vector processing
» Commonly used in sparse matrix multiplication
» Very good use of spatial locality

Full Dense Format

float Ali]l[j]

» Seems wasteful

» Mostly restricted to sub-blocks of the matrix which
contain many nonzero’s

» Used to locally expand rows and/or columns

» Often used in hybrid storage schemes with other
formats

Pivot Search

" When doing Gaussian Elimination: rows are
added to other rows

= Compressed row storage seems to be the natural
choice

" However, for partial pivoting for instance: each
time all elements in a column need to be
inspected

=» Both row AND column compressed storage
are required

Masking Operations (GATHER/SCATTER)

Adding one sparse row to another:
— Two incrementing pointers

— Scattering target row into a dense row, with a
masking array indicating which position in the row
are nonzero

DO J = POINTER (K), POINTER (K+1) — 1 |

TARGET (ICN (K)) = TARGET (ICN (K)) + VAL (ICN (K)) | SCATTER
MASK (ICN (K)) = TRUE |

DO J = POINTER (1), POINTER (I+1) — 1
TARGET (ICN (J)) = TARGET (ICN (J)) + PIV * VAL (ICN (J))
IF MASK (J) = FALSE THEN MASK (J) = True

DOJ=1,N
IF (MASK (J) = TRUE) THEN write TARGET (J) back | GATHER

Fill-in / Garbage Collection

Note that the write back will cause problems
in general

Additional space is reserved to store the
expanded columns or rows and the old
location will have to be released at some point

In direct solvers this is mostly explicitly

In any case: it is extremely important to
minimize the amount of fill-in

Fill-in Control (Markowitch counts)

r) = the number of nonzero elements in row | of the
active (n-k)x(n-k) sub-matrix

¢ = the number of nonzero elements in column | of the
active (n-k)x(n-k) sub-matrix

=» Instead of complete pivoting, choose pivot based on:

|a$j)| > u.| values in column j of the active submatrix |

such that (7‘5“") — 1)((:5-“’) — 1) is minimized.

u (0 <u<=1)is thresshold parameter balancing between
stability and fill-in control

Fill-in Control (Minimum Degree)

Rows and columns of a sparse matrix can also be re-ordered
(permuted) beforehand to minimize fill-in.

1 2 3 45 6 7 8 9 10 11
10 11 8 9 7 6 5 4 3 2 1

10|_x X X 13

1] X X 2

8 X X 2

9| X X X X 4

7 X X X X X 5

6 X X X 3

5 X X 2

4 X X 2

3 X X X X |4 tirdpivor

2 X 2 O

1 X (2 second pivot
o B lﬁrst pivot

Original matrix

Rows and corresponding columns are permuted
based on the degree of the nodes in the
associated (di)graph.

11

2 3
o ©
O—0—©
1

10

@-

@

®
6

Resulting in:

4 2 3 45 6 7 8 9 10 11

1 [X X |
2 X X

3 X X
4 X X

5 X X

6 X

7 X X X

8 X X X X
9 X X X X
0] X X X X
11 X X X X X

Note that when pivot are chosen in order of the diagonal elements
then NO FILL-IN occurs. This is in general not the case!!!!

Permutations

»|f Q =PT"then PAQ (= PAP' is a symmetric
permutation
» Diagonal elements stay on the diagonal
»The associated (di)graph stays the same

» Permutations can be executed explicitly

(beforehand), on the fly, or implicitely by
refering each time to P(l) instead of |

EXERCISE

Write a C-program which implements LU
factorization with partial pivoting.

See course website for details.

