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Motivation
➢ When processes share data, writes to this data must be 

coordinated.

➢ In particular when pre-emptive scheduling is used.

- A process can be interrupted at any time.

- Also when it is in the midst of manipulating a shared data 
structure, the data structure may be left in an inconsistent state 
and may be accessed by the other process.

➢ This is also the case for kernel data structures that are 
used to implement system calls.

- E.g. system-wide open file table.
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Example Race Condition
➢ Consider the following (classical) example. The variables 

buffer, in, out and counter are shared.

/* Producer */
while (true) {
  /* produce item in next_produced */

  while (counter == BUFFER_SIZE) ; 
    /* do nothing */ 

  buffer[in] = next_produced; 
  in = (in + 1) % BUFFER_SIZE; 
  counter++; 
} 

/* Consumer */
while (true) {
  while (counter == 0) ;
    /* do nothing */ 

  next_consumed = buffer[out]; 
  out = (out + 1) % BUFFER_SIZE; 
  counter--;

  /* consume item in next_consumed */ 
} 

Example taken from: Silberschatz et al., Operating System Concepts, 9th Edition
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Example Race Condition (2)
➢ We must realize ourselves that counter increments 

typically consist of multiple machine instructions:

    load r1,$counter
    r1 = r1 + 1
    store r1,$counter

➢ These are not guaranteed to be executed one after the 
other, or in a single go. It is not an atomic sequence of 
instructions.

➢ When does this become a problem?
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Example Race Condition (3)
➢ We now execute the producer (P) and consumer (C) 

processes. Recall that they may be pre-empted!
➢ The value of counter is initially 5.
➢ Example sequence of instructions:

P: load r1,$counter (value of r1 in P becomes 5)
P: r1 = r1 + 1 (value of r1 in P becomes 6)
C: load r1,$counter (value of r1 in C becomes 5)
C: r1 = r1 – 1 (value of r1 in C becomes 4)
P: store r1,$counter (value of counter becomes 6)
C: store r1,$counter (value of counter becomes 4)

➢ When first P is fully executed, followed by C, then the value of 
counter would be 5!!!!

➢ Race Condition: both processes are “racing”, the last value 
written remains in memory. This is thus dependent on 
instruction order and time.
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Critical Sections
➢ These problems can be solved using 

critical sections.

- Each process defines a critical section.

- Only one process may be in its critical 
section at any time.

- Manipulate shared resources (memory, 
opened files) while within the critical 
section.

➢ The entry section contains code to 
decide if/when a process may enter its 
critical section.

- Permission has to be asked, or turn awaited.

Source: Silberschatz et al., Operating System 
Concepts, 9th Edition
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do { 

flag[i] = true; 

turn = j; 

while (flag[j] && turn == j); 

critical section 

flag[i] = false; 

remainder section 

 } while (true); 

Critical Sections (2)
➢ Classical solution of the problem: Peterson's solution.

- A solution for two processes and assumes load/store machine 
instructions are atomic.

- int turn and boolean flag[2] are shared variables.

➢ Processes change turn.

➢ flag is used to indicate
process wants to enter
its critical section

Source: Silberschatz et al., Operating System Concepts, 9th Edition
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Critical Sections (3)
➢ Solutions of the critical sections problem must adhere to the 

following properties:

- Mutual Exclusion: “if a process is executing its critical section, none of the other 
processes may be in their critical section.”

- Progress: “if no process is executing its critical section and there exist some 
processes that have indicated they want to enter their critical section, then the 
selection of the process that will enter the critical section next cannot be 
postponed indefinitely.”

Loosely: we must regularly select a process that may enter the critical section 
next.

- Bounded Waiting: “a bound must exist on the number of times that other 
processes are allowed to enter their critical sections after a process has made a 
request to enter its critical section and before that request is granted.”

Loosely: others must get a turn in due time.

➢ Refer to the textbook for more exact and detailed definitions
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Modern Solutions
➢ Peterson's solution cannot always be implemented on modern 

hardware.

- Think about pipelining, speculation, caching, etc., etc.

➢ To be able to implement synchronization, we need some guarantees 
from the hardware.

➢ The hardware therefore commonly implements atomic instructions 
that can be used to implement synchronization primitives.

- Atomic instructions are guaranteed to be executed as a whole and 
cannot be interrupted.

- Hardware also guarantees that sequences of atomic instructions 
emitted by different cores will be serialized.

➢ For old single processor systems it suffices to turn off interrupts, 
which will disable pre-emption.

- Not always wanted and does not scale to multiprocessor systems.
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do { 

acquire lock 

critical section 

release lock 

remainder section 

} while (TRUE); 

Modern Solutions (2)
➢ Modern solutions that are 

implemented using hardware 
support are always centered 
around the concept of 
locking.

- Entering a critical section: 
acquire the lock.

- Leaving critical section: release 
the lock.

➢ Locking is implemented in 
different ways, depending on 
the support provided by the 
hardware.

Source: Silberschatz et al., Operating System Concepts, 9th Edition
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Locking with test-and-set
➢ test-and-set instruction sets 

value behind given pointer to 
TRUE and returns the 
original value.

- The pseudocode given is 
implemented and executed as a 
single, atomic instruction.

➢ To implement locking, the 
test-and-set instruction is 
used to manipulate a shared 
boolean variable.

➢ Example: BTS (bit test and 
set) instruction on x86, 
prefixed with lock.

bool test_and_set (boolean *target)

{

  bool rv = *target;

  *target = TRUE;

  return rv;

}

do {
  while (test_and_set(&lock)) 

     ; /* do nothing */ 

  /* critical section */ 

  lock = false; 

  /* remainder section */ 

} while (true);

Example taken from: Silberschatz et al., Operating System 
Concepts, 9th Edition
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Locking with compare-and-swap

➢ Returns original value behind 
pointer target, if this equals 
expected, value is overwritten with 
new_value.

➢ Slightly different from test-and-set.

➢ Not difficult to adapt our locking 
function.

int compare_and_swap(int *value,

    int expected, int new_value)

{ 

  int temp = *value; 

  if (*value == expected) 

    *value = new_value;

  return temp;

}

do {

  while (compare_and_swap(&lock, 0, 1) != 0) 

    ; /* do nothing */

 

  /* critical section */ 

  lock = 0; 

  /* remainder section */ 

} while (true);

Example taken from: Silberschatz et al., Operating System Concepts, 9th Edition
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Bounded Waiting
➢ We can also construct more 

complicated primitives using 
hardware support.

➢ Such as bounded waiting 
mutual exclusion shown on 
the right.

➢ Note that this code gives 
every process a turn, so 
complies with the bounded 
waiting criterion.

do {
   waiting[i] = true;
   key = true;
   while (waiting[i] && key) 

      key = test_and_set(&lock); 

   waiting[i] = false; 

   /* critical section */ 

   j = (i + 1) % n; 

   while ((j != i) && !waiting[j]) 

      j = (j + 1) % n; 

   if (j == i) 

      lock = false; 

   else 

      waiting[j] = false; 

   /* remainder section */ 

} while (true); 

Example taken from: Silberschatz et al., Operating System 
Concepts, 9th Edition
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User-space Locking
➢ There are a number of problems with the solutions that we 

have discussed:

- They are platform-dependent, as they rely on specific machine 
instructions.

- They are sometimes complicated and tricky to get right (depends on 
platform).

- The machine instructions may not always be accessible by user-space 
processes.

➢ To solve this OS kernels often implement locks that can be 
used by application programmers e.g. through system calls.

- Well-known is the mutex lock (MUTual EXclusion).

- And its further generalization, the semaphore.
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Mutex Locks
➢ Mutex locks consist of two calls: acquire() and 

release().

➢ The locks are implemented within the OS kernel, usually 
like the locking functions we have just seen.

- Note that this involves continuously running the loop until the 
original value is what we expected.

- This is called busy waiting, the program is not making progress 
(waiting), but is keeping the CPU busy spinning the loop.

- Mutex locks that are implemented this way are also often called 
spin locks.
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Mutex Locks (2)
➢ Implementation of calls (compare with e.g. test-and-set example):

acquire()
{
  while (!available) 
    ; /* busy wait */ 
  available = false; 
}

release()
{ 
  available = true; 
}

➢ Example usage:

do { 
  acquire();
  /* critical section */
  release();

  /* remainder section */
} while (true); 

Example taken from: Silberschatz et al., Operating 
System Concepts, 9th Edition
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Semaphores
➢ Synchronization primitive devised by Edsger Dijkstra.

➢ We have two atomic operations that may operate on an 
integer variable S:

- wait() and signal()

- Dijkstra originally wrote P and V, probably from “proberen” and 
“verhogen”.

wait(S)
{
  while (S <= 0)
    ; // busy wait
  S--;
}

signal(S)
{
    S++;
}

Example taken from: Silberschatz et al., Operating System Concepts, 9th Edition
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Semaphores (2)
➢ Important consideration for the implementation: only 

one process may execute wait() or signal() at the same 
time.

- These implementations must be placed in critical sections.

- Problem: the busy wait loop in wait() will be made part of a 
critical section and we don't want that.

- Time spent in critical sections must be as short as possible such 
that other processes also get a chance.

➢ This problem is solved by putting a process to sleep 
instead of busy waiting. Other processes can now make 
progress.
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Semaphores (3)
➢ When a process is put to 

sleep, it is put on a waiting 
queue (cf. waiting queues 
for I/O).

➢ Waking up means process 
is transferred from this 
waiting queue to the ready 
queue to await being 
scheduled again.

typedef struct{ 
  int value; 
  struct process *list; 
} semaphore; 

wait(semaphore *S)
{ 
   S->value--; 
   if (S->value < 0) {
      add this process to S->list; 
      block(); 
   } 
}

signal(semaphore *S)
{ 
   S->value++; 
   if (S->value <= 0) {
      remove a process P from S->list; 
      wakeup(P); 
   } 
} 

Example taken from: Silberschatz et al., Operating System 
Concepts, 9th Edition
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Semaphores (4)
➢ Two “kinds” of semaphores are distinguished:

- Counting semaphore: the integer variable may hold any value of a range 
of integers.

- Binary semaphore: the integer variable is either one or zero (cf. mutex).

➢ Example: two processes A and B.

- S1 in A must happen before S2 in B.

- Initialize a semaphore S to zero.

A:

   S1;

   signal(S);

B:

   wait(S);

   S2;

Example taken from: Silberschatz et al., Operating System Concepts, 9th Edition
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Deadlock and Starvation
➢ Getting concurrent code right is hard.

➢ Often occurring problem when you are not careful: 
deadlock.

- Deadlock: two or more processes are waiting indefinitely for an 
event that can only be caused by one of the waiting processes.

➢ Example: given two semaphores P and Q, initialized to 1.
A B

wait(S); wait(Q);

wait(Q); wait(S);

... ...

signal(S); signal(Q);

signal(Q); signal(S);

Example taken from: Silberschatz et al., Operating System Concepts, 9th Edition
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Deadlock and Starvation (2)
➢ In case of starvation, a process may never be removed 

from the waiting queue of a semaphore in which it is 
suspended.

- Compare scheduling: process may never be removed from ready 
queue, because higher priority processes are always picked first.

➢ Systems which implement priority scheduling can also be 
struck by the priority inversion problem.

- A high-priority process needs a lock held by a low-priority process.

- This can, for example, be solved using a priority-inheritance 
protocol.

Low-priority process may temporarily inherit priority of higher 
priority process in order to quickly complete the work and release 
the lock.
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Classic Synchronization Problems

➢ Several classic (textbook) synchronization problems 
exist that act as good illustrations of how to use 
synchronization primitives.

➢ Study these yourself using pen and paper: only way to 
get your head around it.

➢ Bounded buffer problem

- We have a buffer that can hold a total of n items maximum.

- We declare three semaphores: mutex (initialized 1), full 
(initialized 0), empty (initialized n).
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Bounded Buffer Solution
/* Producer process */
do { 
  ...
  /* produce item in next_produced */ 
  ... 
  wait(empty); 
  wait(mutex); 
  ...
  /* add next produced to buffer */ 
  ... 
  signal(mutex); 
  signal(full); 
} while (true);

/* Consumer process */
do { 
  wait(full); 
  wait(mutex); 
  ...
  /* remove item from buffer
     to next_consumed */ 
  ... 
  signal(mutex); 
  signal(empty); 
  ...
  /* consume item in next consumed */ 
  ...
} while (true);

Example taken from: Silberschatz et al., Operating System Concepts, 9th Edition
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Readers-Writers Problem
➢ Another often recurring problem is that of controlling 

access to shared data where:

- you want to allow readers to access the data concurrently,

- you want to grant writers exclusive access (so no reader and 
writer may access shared data at the same time).

- Where is this a problem? Consider for example database systems.

➢ The solution involves:

- Binary semaphore mutex (initialized 1).

- Binary semaphore rw_mutex (initialized 1).

- Counting semaphore read_count (initialized 0). 
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Readers-Writers Problem (2)

➢ Open question: give priority to readers 
or writers?

- Different variations exist.

- How to avoid starvation?

➢ Some kernels provide reader/writer 
locks.

- Linux RCU: Read-Copy Update

/* Writer process */
do {
  wait(rw_mutex); 
  ...
  /* Exclusive access:
     writing is performed */ 
  ... 
  signal(rw_mutex); 
} while (true);

/* Reader process */
do {
wait(mutex);
read_count++;
if (read_count == 1) 

  wait(rw_mutex); 

signal(mutex); 

...

/* Shared access:

   reading is performed */ 

... 

wait(mutex);

read_count--;

if (read_count == 0) 

  signal(rw_mutex); 

signal(mutex); 

} while (true);   

Example taken from: Silberschatz et al., Operating 
System Concepts, 9th Edition
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Dining Philosophers

➢ Philosophers think or eat.

➢ When a philosopher wants to eat: need to 
pick up 2 chopsticks. Release when done.

- May acquire one chopstick at a time, want to avoid 
deadlocks!!

➢ We have 5 philosophers and 5 chopsticks.

➢ Model using semaphores, bowl of rice is the 
shared data, we have an array of semaphores 
chopstick all initialized to 1.

➢ (There's also a variation that considers pasta 
and forks).

Source: Silberschatz et al., 
Operating System Concepts, 9th 
Edition
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Dining Philosophers (2)
➢ This solution may 

deadlock.

➢ Other solutions:

- Allow maximum of 4 
philosophers.

- Pick up both sticks within 
critical section.

// Code for philosopher “i”

do {

  wait (chopstick[i] );

  wait (chopStick[ (i + 1) % 5] );

  //  eat

  signal (chopstick[i] );

  signal (chopstick[ (i + 1) % 5] );

  //  think

} while (true);

Example taken from: Silberschatz et al., Operating System 
Concepts, 9th Edition
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High-level solutions
➢ Mistakes with semaphores are quickly made:

- signal/wait in wrong order,

- wrong pairing of signal/wait,

- accidental double wait,

- etc.

➢ We can ease the life of programmers by providing high-
level solutions.

- The high-level solutions use the lower-level primitives in their 
implementations.

- Or perhaps a compiler generates lower-level code that uses 
these primitives (like OpenMP does for threads).
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High-level solutions (2)
➢ Monitors

- Imagine a class with internal variables.

- The internal variables may only be accessed from methods 
within that class.

- Only one process may be inside the monitor at any time.

- May add condition variables, which have wait/signal methods. 
wait suspends the calling process, signal wakes up a blocked 
process.

- For example Java and C# provide implementations of monitors.
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Alternative Approaches
➢ Also OpenMP includes support for critical sections.

- You can mark a block of code as a critical section using a pragma.

- The compiler generates the necessary mutexes/semaphores to correctly 
implement the critical section.

➢ Another approach is transactional memory.

- Allows you to write blocks of code containing memory transactions that 
will be executed atomically.

- Compare with database transactions (!).

- Hardware & software implementations possible.

- Modern Intel CPUs actually have special instructions to help 
implement this (TSX: Transactional Synchronization Extensions).
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End of Chapter 6.



Universiteit Leiden. Bij ons leer je de wereld kennen

What about Chapter 7?
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Chapter 7
➢ In the introduction of Chapter 7 in the textbook is 

written:

“… operating systems typically do not provide 
deadlock-prevention facilities, and it remains the 
responsibility of programmers to ensure that they 
design deadlock-free programs.”

➢ So we will not discuss deadlock-prevention facilities in 
this class.


