
Universiteit Leiden. Bij ons leer je de wereld kennen

Operating System
Concepts

Ch. 5: Scheduling

Silberschatz, Galvin & Gagne

Universiteit Leiden. Bij ons leer je de wereld kennen

Scheduling
➢ In a multi-programmed system, multiple processes may

be loaded into memory at the same time.

➢ We need a procedure, or rather algorithm, to decide
what process is assigned to the CPU.

- This algorithm is the scheduling algorithm.

- Various algorithms exist which tune for different criteria.

➢ Remember an OS serves as resource allocator; the CPU
scheduler is the allocator for the CPU cycles resource.

Universiteit Leiden. Bij ons leer je de wereld kennen

Bursts
➢ The execution of a process can be

seen as a sequence of alternating
CPU and I/O bursts.

➢ In an I/O burst the process blocks
waiting on I/O, it cannot make
further progress until the I/O
operation is completed.

➢ With multi-programming the CPU
does not have to sit idle during
I/O, we can assign another process
to the CPU.

- CPU utilization is maximized. Source: Silberschatz et al., Operating System Concepts,
9th Edition

Universiteit Leiden. Bij ons leer je de wereld kennen

Process context switch
➢ Recall: the switch from one process to another is

referred to as a context switch.

Source: Silberschatz et al., Operating System Concepts, 9th Edition

Universiteit Leiden. Bij ons leer je de wereld kennen

CPU burst time histogram
➢ When a CPU to I/O burst transition (system call involving blocking

I/O) is encountered, we need to invoke the scheduler.

➢ The typical length of a CPU burst tells us how often scheduler
invocations need to take place.

Source: Silberschatz et al., Operating System Concepts, 9th Edition

Universiteit Leiden. Bij ons leer je de wereld kennen

The CPU scheduler
(short-term scheduler)
➢ Short bursts (< 8 ms) most frequent; we need a

scheduler that is invoked (very) often and makes quick
decisions.

- This is the task of the short-term scheduler.

- Typically a ready queue is maintained of processes that are
ready to run (and don't block on e.g. I/O).

- Any process from this queue may be assigned to the CPU.
Which is chosen exactly depends on the scheduling algorithm
that is in use.

Universiteit Leiden. Bij ons leer je de wereld kennen

The CPU scheduler (2)
➢ In the simple case, a scheduling decision is only made when:

- A process terminates itself (exit() system call).

- A process calls a blocking system call (transition running -> waiting),
relinquishing the CPU.

➢ If the scheduler is only invoked in these cases, the scheduler
is called non-preemptive.

➢ Non-preemptive systems are also known as cooperative
systems.

- The context switches that are triggered are voluntary.

- Note that a malicious process may choose to never terminate itself or
call a system call (infinite loop).

- Only works if everybody plays by the rules.

- Used in past systems, e.g. classic Mac OS (before Mac OS X).

Universiteit Leiden. Bij ons leer je de wereld kennen

The CPU scheduler (3)
➢ Now, it is clear there also is a category of schedulers

known as preemptive schedulers.

➢ These additionally invoke the scheduler in these cases:

- A process' state changes from waiting to ready, so no longer
blocks and is put back in the run queue.
• Note that this may cause the currently running process to be

interrupted and exchanged for another.

- A process' state changes from running to ready, so it could have
continued to run (no blockade) but its assignment of the CPU is
revoked.

➢ Note that these additions concern involuntary context
switches, or process preemptions.

Universiteit Leiden. Bij ons leer je de wereld kennen

The CPU scheduler (4)
➢ Our OS model of having a timer interrupt handler that

periodically invokes the scheduler is dependent on
preemptive scheduling.

- Recall we could terminate “infinite loop processes” this way as a kernel
always regain control of the system.

➢ Most modern OS kernels implement preemptive scheduling.

➢ This is not without problems however:

- What if a process is involuntarily interrupted while manipulating
shared data structures?

- What if a process is involuntarily interrupted while manipulating
(shared) kernel data structures from a system call?

- This, and similar, problems need a solution when we want to enable
preemptive scheduling.

Universiteit Leiden. Bij ons leer je de wereld kennen

The dispatcher
➢ The task of the CPU scheduler is clear: given a ready

queue, give us the next process to run.

➢ Now another routine is necessary which replaces the
currently running process with the next process to run.

- This is the task of the dispatcher.

- It handles, amongst others:

• State saving (register state)

• Switching context / address space

• Resuming next process at the right location and switch back to user
mode.

- The time required to perform this switch is referred to as the
dispatch latency (and is pure overhead).

Universiteit Leiden. Bij ons leer je de wereld kennen

Scheduling Algorithms
➢ We are now ready to see some scheduling algorithms.

➢ An important question first: what to optimize for?

➢ Common scheduling criteria:

- CPU utilization: maximize use of the CPU.

- Throughput: maximize tasks that complete per time unit (e.g.
requests or transactions per second).

- Turnaround time: minimize time it takes to complete a
process from start to finish.

- Wait time: minimize time that processes spend waiting in
queues.

- Response time: minimize time between request submission
(or device input) and first response of the system.

Universiteit Leiden. Bij ons leer je de wereld kennen

Scheduling Algorithms (2)
➢ We will now discuss a number of (simple) scheduling

algorithms.

- To keep things simple and manageable a single CPU burst (in
milliseconds) per process is considered.

- We optimize for average waiting time.

- We chart the schedules using a Gantt chart.

- The algorithms are non-preemptive unless otherwise noted.

Universiteit Leiden. Bij ons leer je de wereld kennen

FCFS: First-come First-Serve

➢ Given is that all processes are present in the ready queue at time 0
in the order: P1, P2, P3.

➢ This results in the following Gantt chart:

➢ Compute waiting times for each process: P1 = 0; P2 = 24; P3 = 27.

➢ This gives as average waiting time (0+24+27)/3 = 17

Process Burst time

P1 24

P2 3

P3 3

Example taken from: Silberschatz et al., Operating System Concepts, 9th Edition

Universiteit Leiden. Bij ons leer je de wereld kennen

FCFS: First-come First-Serve (2)

➢ Now, assume the processes are present in the ready queue at
time 0 in a different order: P2, P3, P1.

➢ The schedule changes and we obtain a different Gantt chart:

➢ New average waiting time: (0+3+6)/3=3

- Much better result.

➢ We see here that the achieved performance of the algorithm
depends on the order of the processes in the run queue.

- Convoy effect: short processes waiting behind a long process.

- For example consider a (long) CPU bound processes and many
(interactive) I/O bound processes.

Example taken from: Silberschatz et al., Operating System Concepts, 9th Edition

Universiteit Leiden. Bij ons leer je de wereld kennen

SJF: Shortest Job First

➢ Idea: select the process with the shortest CPU burst.

➢ All processes present in the ready queue at time 0.

➢ Average waiting time: (3+16+9+0)/4 = 7

Process Burst time

P1 6

P2 8

P3 7

P4 3

Example taken from: Silberschatz et al., Operating System Concepts, 9th Edition

Universiteit Leiden. Bij ons leer je de wereld kennen

SJF: Shortest Job First (2)
➢ The good news: SJF is proven optimal! It results in the

minimum average waiting time for any set of processes.

➢ Now the bad news: We usually don't know the length of
the CPU burst beforehand.

- Except in batch scheduling systems where you could ask the
user.

- Or if you design a system such that a prediction for the length of
the CPU burst must be given when entering the ready queue:
difficult!

Universiteit Leiden. Bij ons leer je de wereld kennen

SJF: Shortest Job First (3)
➢ A way out is to estimate the length and use these

predictions to select the (predicted) shortest job.

➢ For instance, this can be achieved by recording the
length of previous CPU bursts and using exponential
averaging.

➢ Alpha is commonly set to 0.5.

1 . t n=actual length of nth CPU burst
2 . τ n+1= predicted value for the next CPU burst
3 . α , 0≤α≤1
4 . Define: τn+1=α t n+(1−α) τ n .

Universiteit Leiden. Bij ons leer je de wereld kennen

SRTF: Shortest Remaining Time First

➢ SRTF is the preemptive version of SJF.
➢ We now also take the arrival times of processes into the ready

queue into account. When a process arrives in the ready queue the
scheduler is invoked.

➢ The following Gantt chart is obtained:

➢ Note the process preemption at time 1.
➢ Average waiting time: ((10-1)+(1-1)+(17-2)+5-3))/4 = 26/4 = 6.5

Process Arrival Time Burst time

P1 0 8

P2 1 4

P3 2 9

P4 3 5

Example taken from: Silberschatz et al., Operating System Concepts, 9th Edition

Universiteit Leiden. Bij ons leer je de wereld kennen

Priority Scheduling
➢ In fact, SJF and STRF are instances of a priority

scheduling algorithm.

➢ In a priority scheduling algorithm, a priority must be
computed for each process. The process with the highest
priority is scheduled first.

- The priority is often an integer number.

- For SJF the priority is the inverse of the predicted duration of
the next CPU burst.

➢ Priority scheduling algorithms suffer from starvation.
Low priority processes may never execute.

- A solution is to implement aging, in which the priority of a
process is gradually increased as it ages (spends more time
waiting).

Universiteit Leiden. Bij ons leer je de wereld kennen

Priority Scheduling (2)

➢ Average waiting time: (0+1+6+16+18)/5 = 8.2

Process Priority Burst time

P1 3 10

P2 1 1

P3 4 2

P4 5 1

P5 2 5

Example taken from: Silberschatz et al., Operating System Concepts, 9th Edition

Universiteit Leiden. Bij ons leer je de wereld kennen

RR: Round Robin
➢ A preemptive scheduling algorithm devised for

interactive systems is Round Robin scheduling.

➢ Idea: give each process a small time slice (or time
quantum). If the process still runs when the time
quantum expires, it is preempted and put at the end of
the ready queue.

- (Otherwise the process performed a blocking system call within
its time quantum causing it to be replaced).

➢ Time quantum length typically 10 – 100 milliseconds.

- 1o ms: compare with histogram of CPU bursts.

Universiteit Leiden. Bij ons leer je de wereld kennen

RR: Round Robin (2)

➢ Given n processes in the ready queue with time
quantum is q, then each process gets 1/n of the CPU
time in slices of (at most) q time units. Because
processes rotate, no process waits longer than (n-1)q
time units for its turn.

➢ How are the processes interrupted? We need to program
the timer interrupt for this. The timer interrupt handler
must call a function which checks whether the time
quantum of the currently running process has expired.

Universiteit Leiden. Bij ons leer je de wereld kennen

RR: Round Robin (3)

➢ We apply Round Robin scheduling with a time quantum of 4.
All processes are in the ready queue at time 0.

➢ Average waiting time: ((0+(10-4))+4+7)/3 = 5 2/3

➢ Higher average waiting time than SJF. This is typical and to
be expected. However, for RR response time is the
optimization objective.

Process Burst time

P1 24

P2 3

P3 3

Example taken from: Silberschatz et al., Operating System Concepts, 9th Edition

Universiteit Leiden. Bij ons leer je de wereld kennen

RR: Round Robin (4)
➢ Tuning the time quantum is important.

- Large quantum: many processes may run until their next voluntary
context switch, so the scheduler behaves like a FIFO.

- Small quantum: processes are always preempted and many more
context switches are required to get the work done. Recall that context
switches are pure overhead.

• Naturally, time quantum should be larger than the context switch
time.

Source: Silberschatz et al., Operating System Concepts, 9th Edition

Universiteit Leiden. Bij ons leer je de wereld kennen

➢ Continue with the slides provided by the textbook,
Chapter 6 (CPU Scheduling), starting at topic
“Multilevel Queue”:

http://codex.cs.yale.edu/avi/os-book/OS9/slide-dir/index.html

Universiteit Leiden. Bij ons leer je de wereld kennen

End of Chapter 5.

