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Scheduling
➢ In a multi-programmed system, multiple processes may 

be loaded into memory at the same time.

➢ We need a procedure, or rather algorithm, to decide 
what process is assigned to the CPU.

- This algorithm is the scheduling algorithm.

- Various algorithms exist which tune for different criteria.

➢ Remember an OS serves as resource allocator; the CPU 
scheduler is the allocator for the CPU cycles resource.
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Bursts
➢ The execution of a process can be 

seen as a sequence of alternating 
CPU and I/O bursts.

➢ In an I/O burst the process blocks 
waiting on I/O, it cannot make 
further progress until the I/O 
operation is completed.

➢ With multi-programming the CPU 
does not have to sit idle during 
I/O, we can assign another process 
to the CPU.

- CPU utilization is maximized. Source: Silberschatz et al., Operating System Concepts, 
9th Edition
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Process context switch
➢ Recall: the switch from one process to another is 

referred to as a context switch.

Source: Silberschatz et al., Operating System Concepts, 9th Edition
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CPU burst time histogram
➢ When a CPU to I/O burst transition (system call involving blocking 

I/O) is encountered, we need to invoke the scheduler.

➢ The typical length of a CPU burst tells us how often scheduler 
invocations need to take place.

Source: Silberschatz et al., Operating System Concepts, 9th Edition
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The CPU scheduler
(short-term scheduler)
➢ Short bursts (< 8 ms) most frequent; we need a 

scheduler that is invoked (very) often and makes quick 
decisions.

- This is the task of the short-term scheduler.

- Typically a ready queue is maintained of processes that are 
ready to run (and don't block on e.g. I/O).

- Any process from this queue may be assigned to the CPU. 
Which is chosen exactly depends on the scheduling algorithm 
that is in use.
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The CPU scheduler (2)
➢ In the simple case, a scheduling decision is only made when:

- A process terminates itself (exit() system call).

- A process calls a blocking system call (transition running -> waiting), 
relinquishing the CPU.

➢ If the scheduler is only invoked in these cases, the scheduler 
is called non-preemptive.

➢ Non-preemptive systems are also known as cooperative 
systems.

- The context switches that are triggered are voluntary.

- Note that a malicious process may choose to never terminate itself or 
call a system call (infinite loop).

- Only works if everybody plays by the rules.

- Used in past systems, e.g. classic Mac OS (before Mac OS X).
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The CPU scheduler (3)
➢ Now, it is clear there also is a category of schedulers 

known as preemptive schedulers.

➢ These additionally invoke the scheduler in these cases:

- A process' state changes from waiting to ready, so no longer 
blocks and is put back in the run queue.
• Note that this may cause the currently running process to be 

interrupted and exchanged for another.

- A process' state changes from running to ready, so it could have 
continued to run (no blockade) but its assignment of the CPU is 
revoked.

➢ Note that these additions concern involuntary context 
switches, or process preemptions.
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The CPU scheduler (4)
➢ Our OS model of having a timer interrupt handler that 

periodically invokes the scheduler is dependent on 
preemptive scheduling.

- Recall we could terminate “infinite loop processes” this way as a kernel 
always regain control of the system.

➢ Most modern OS kernels implement preemptive scheduling.

➢ This is not without problems however:

- What if a process is involuntarily interrupted while manipulating 
shared data structures?

- What if a process is involuntarily interrupted while manipulating 
(shared) kernel data structures from a system call?

- This, and similar, problems need a solution when we want to enable 
preemptive scheduling.
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The dispatcher
➢ The task of the CPU scheduler is clear: given a ready 

queue, give us the next process to run.

➢ Now another routine is necessary which replaces the 
currently running process with the next process to run.

- This is the task of the dispatcher.

- It handles, amongst others:

• State saving (register state)

• Switching context / address space

• Resuming next process at the right location and switch back to user 
mode.

- The time required to perform this switch is referred to as the 
dispatch latency (and is pure overhead).
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Scheduling Algorithms
➢ We are now ready to see some scheduling algorithms.

➢ An important question first: what to optimize for?

➢ Common scheduling criteria:

- CPU utilization: maximize use of the CPU.

- Throughput: maximize tasks that complete per time unit (e.g. 
requests or transactions per second).

- Turnaround time: minimize time it takes to complete a 
process from start to finish.

- Wait time: minimize time that processes spend waiting in 
queues.

- Response time: minimize time between request submission 
(or device input) and first response of the system.
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Scheduling Algorithms (2)
➢ We will now discuss a number of (simple) scheduling 

algorithms.

- To keep things simple and manageable a single CPU burst (in 
milliseconds) per process is considered.

- We optimize for average waiting time.

- We chart the schedules using a Gantt chart.

- The algorithms are non-preemptive unless otherwise noted.
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FCFS: First-come First-Serve

➢ Given is that all processes are present in the ready queue at time 0 
in the order: P1, P2, P3.

➢ This results in the following Gantt chart:

➢ Compute waiting times for each process: P1 = 0; P2 = 24; P3 = 27.

➢ This gives as average waiting time (0+24+27)/3 = 17

Process Burst time

P1 24

P2 3

P3 3

Example taken from: Silberschatz et al., Operating System Concepts, 9th Edition



Universiteit Leiden. Bij ons leer je de wereld kennen

FCFS: First-come First-Serve (2)

➢ Now, assume the processes are present in the ready queue at 
time 0 in a different order: P2, P3, P1.

➢ The schedule changes and we obtain a different Gantt chart:

➢ New average waiting time: (0+3+6)/3=3

- Much better result.

➢ We see here that the achieved performance of the algorithm 
depends on the order of the processes in the run queue.

- Convoy effect: short processes waiting behind a long process.

- For example consider a (long) CPU bound processes and many 
(interactive) I/O bound processes.

Example taken from: Silberschatz et al., Operating System Concepts, 9th Edition
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SJF: Shortest Job First

➢ Idea: select the process with the shortest CPU burst.

➢ All processes present in the ready queue at time 0.

➢ Average waiting time: (3+16+9+0)/4 = 7

Process Burst time

P1 6

P2 8

P3 7

P4 3

Example taken from: Silberschatz et al., Operating System Concepts, 9th Edition
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SJF: Shortest Job First (2)
➢ The good news: SJF is proven optimal! It results in the 

minimum average waiting time for any set of processes.

➢ Now the bad news: We usually don't know the length of 
the CPU burst beforehand.

- Except in batch scheduling systems where you could ask the 
user.

- Or if you design a system such that a prediction for the length of 
the CPU burst must be given when entering the ready queue: 
difficult!
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SJF: Shortest Job First (3)
➢ A way out is to estimate the length and use these 

predictions to select the (predicted) shortest job.

➢ For instance, this can be achieved by recording the 
length of previous CPU bursts and using exponential 
averaging.

➢ Alpha is commonly set to 0.5.

1 .  t n=actual  length of nth  CPU  burst
2 .  τ n+1= predicted value for the next CPU  burst
3 .  α , 0≤α≤1
4 .  Define: τn+1=α t n+(1−α ) τ n .
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SRTF: Shortest Remaining Time First

➢ SRTF is the preemptive version of SJF.
➢ We now also take the arrival times of processes into the ready 

queue into account. When a process arrives in the ready queue the 
scheduler is invoked.

➢ The following Gantt chart is obtained:

➢ Note the process preemption at time 1.
➢ Average waiting time: ((10-1)+(1-1)+(17-2)+5-3))/4 = 26/4 = 6.5

Process Arrival Time Burst time

P1 0 8

P2 1 4

P3 2 9

P4 3 5

Example taken from: Silberschatz et al., Operating System Concepts, 9th Edition
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Priority Scheduling
➢ In fact, SJF and STRF are instances of a priority 

scheduling algorithm.

➢ In a priority scheduling algorithm, a priority must be 
computed for each process. The process with the highest 
priority is scheduled first.

- The priority is often an integer number.

- For SJF the priority is the inverse of the predicted duration of 
the next CPU burst.

➢ Priority scheduling algorithms suffer from starvation. 
Low priority processes may never execute.

- A solution is to implement aging, in which the priority of a 
process is gradually increased as it ages (spends more time 
waiting).
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Priority Scheduling (2)

➢ Average waiting time: (0+1+6+16+18)/5 = 8.2

Process Priority Burst time

P1 3 10

P2 1 1

P3 4 2

P4 5 1

P5 2 5

Example taken from: Silberschatz et al., Operating System Concepts, 9th Edition
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RR: Round Robin
➢ A preemptive scheduling algorithm devised for 

interactive systems is Round Robin scheduling.

➢ Idea: give each process a small time slice (or time 
quantum). If the process still runs when the time 
quantum expires, it is preempted and put at the end of 
the ready queue.

- (Otherwise the process performed a blocking system call within 
its time quantum causing it to be replaced).

➢ Time quantum length typically 10 – 100 milliseconds.

- 1o ms: compare with histogram of CPU bursts.
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RR: Round Robin (2)

➢ Given n processes in the ready queue with time 
quantum is q, then each process gets 1/n of the CPU 
time in slices of (at most) q time units. Because 
processes rotate, no process waits longer than (n-1)q 
time units for its turn.

➢ How are the processes interrupted? We need to program 
the timer interrupt for this. The timer interrupt handler 
must call a function which checks whether the time 
quantum of the currently running process has expired.
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RR: Round Robin (3)

➢ We apply Round Robin scheduling with a time quantum of 4. 
All processes are in the ready queue at time 0.

➢ Average waiting time: ((0+(10-4))+4+7)/3 = 5 2/3

➢ Higher average waiting time than SJF. This is typical and to 
be expected. However, for RR response time is the 
optimization objective.

Process Burst time

P1 24

P2 3

P3 3

Example taken from: Silberschatz et al., Operating System Concepts, 9th Edition
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RR: Round Robin (4)
➢ Tuning the time quantum is important.

- Large quantum: many processes may run until their next voluntary 
context switch, so the scheduler behaves like a FIFO.

- Small quantum: processes are always preempted and many more 
context switches are required to get the work done. Recall that context 
switches are pure overhead.

• Naturally, time quantum should be larger than the context switch 
time.

Source: Silberschatz et al., Operating System Concepts, 9th Edition
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➢ Continue with the slides provided by the textbook, 
Chapter 6 (CPU Scheduling), starting at topic 
“Multilevel Queue”:

http://codex.cs.yale.edu/avi/os-book/OS9/slide-dir/index.html
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End of Chapter 5.


