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Threading (2)

> Many modern applications are multi-threaded.

- This means that a single process consists of more than one thread
(instruction stream).

> This is done to make it easier to program different tasks a
program wants to perform at the same time.

- Update GUI & perform I/O (do both in separate threads).

- Word processor: perform paragraph layout and check spelling at the
same time.

- Web server: handle multiple HTTP requests at the same time.
- ete. ..

> Why not use multiple processes?

- Thread creation is light weight compared to heavy weight process

creation. .

- Switching between threads is faster than switching between processes
and as a result communication is cheaper.
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Threading vs. event loops

> We can also write a single-threaded program that
appears to do several tasks at the same time.

- This could handle GUI updates & I/O without blocking the GUI.

- To do so, we have to program an event loop that continuously
monitors for events.

* When a GUI update is needed, the program performs this task.
* When new I/0 data is ready for us to read, we read this data.

* Important: the tasks must be completed in a short time and then
relinquish return to the event loop. Otherwise we will still see the
effects of GUI blocking.

* Within this model, hard to temporarily interrupt a task (in fact a
function) that is running. .

> So, it is possible, but we already notice that this is quite
tricky for the programmer.
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Process Architecture

> Single-thread vs. multi-thread process in a picture:
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Source: Silberschatz et al., Operating System Concepts, 9™ Edition
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Process Architecture (2)

> Note that a multi-threaded process consists of multiple
instruction streams.

- Multiple stacks, multiple program counters, multiple sets of
register to save.

- Code/data segments are shared.

- Open files are shared.

> These instruction streams share a single address space.

- Cheap communication: just read/write data in this single
address space.

- Switching between threads of the same process does not require .
a change of page table: the same address space remains active.
Therefore cheaper.
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Software Development

> Although using threads is easier compared to programming
delicate event loops, writing multi-threaded software for
multicore computers is still hard.

> What challenges do software developers face?

- Dividing activities: identifying activities that can be performed
independently, in parallel.

- Dealing with data dependencies: often computations are dependent on
one another, these dependencies must not be broken.

- Splitting the data & workload balancing: distribute the data over the
available cores.

- Testing and debugging: “A programmer had a problem. He thought to
himself, "I know, I'll solve it with threads!". has Now problems. two he” .
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Concurrency vs. Parallelism

> Important to distinguish these two different terms:

- Parallelism means a system can perform more than one task
at the same time, in parallel.

Source: Silberschatz et al., Operating System Concepts, 9™
Edition

- Concurrency means multiple tasks can be making progress,
but these tasks do not necessarily run at the same time.

Can be done on a single processor, equipped with a scheduler. .

Source: Silberschatz et al., Operating System Concepts, 9" Edition
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Types of Parallelism

> Two main types of parallelism are distinguished:

- Data parallelism, in which case a large data set is split and
distributed over threads. Each thread performs the same task
on different data.

Example: image filter, split image in N parts, have each thread
apply the same image filter to its assigned part.

- Task parallelism, in which case a collection of tasks is divided
among threads. Each thread performs a different task.

Example: transaction processing, many transactions are
divided over available threads, each thread executes a
different transaction.
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Many-to-one

> In this case, there's a single kernel-level
thread, but multiple user-level threads.

§<— user thread

> There's only one kernel scheduleable
entity, so this process can only be
assigned to one processor.

- Implication: only one user-level thread can run
at a time.

> When a user-level thread performs a
blocking system call, the entire process k ) <— kemnel thread

blocks (and its other threads cannot run). [ SR ——
System Concepts, 9™ Edition

> 0Old model (e.g. LinuxThreads, Java Green
Threads) and not commonly in use today.
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Many-to-one (3)

> Threads sometimes preferred over event-based
programming, allows more natural programming.

- (Though subject of debate in the past).

> Java Green Threads were used to simulate a multi-
threaded system.

- Through an alternative 1/O API, the problematic blocking I/0
calls can be hidden from the user by automatically using
asynchronous I/0 instead.

> Do note that pure many-to-one implementations have
for the most part been superseded, because with this
model no advantage can be taken of multi-core systems. [0
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One-to-one

> The idea is immediately clear: create one kernel-level thread
for every user-level thread.

> Multiple threads of a same process can be scheduled on
multiple processors at the same time.

> Potential overhead in case many threads are created within a
process, we need a kernel-level thread for each of these.

> Model used on Linux, Windows, Solaris 9+.

<«— user thread

Source: Silberschatz et al., Operating System Concepts, 9™ Edition
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Many-to-many

> Allow M user-level threads to
be mapped to N kernel-level
threads.

> These numbers can be fine
tuned, interplay between user-

level library and kernel
support.
> Allows many user-level
threads to be created without «— kemel thread
introducing too much e et al Operating System

overhead at the kernel level.
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Two-level Model

> A small extension of the many-to-many model, that
allows certain user-level thread to be bound to a kernel-
level thread.

- These user-level threads are then guaranteed to have a
corresponding kernel-level thread.

; ; <«— user thread

@ <«— Kkernel threac

Source: Silberschatz et al., Operating System Concepts, 9™
Edition
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Simple pthreads example

#include <pthread.h>
#include <stdio.h>

int sum; /* this data is shared by the thread(s) */
void *runner(void *param); /* threads call this function */

int main(int argc, char *argv([])

{

pthread t tid; /* the thread identifier */
pthread attr t attr; /* set of thread attributes */

if (arge !'= 2) {
fprintf (stderr,"usage: a.out <integer value>\n");
return -1;

if (atoi(argv[1]) < 0) {
fprintf (stderr,")d must be >= 0\n",atoi(argv[1]));
return -1;

}

Source: Silberschatz et al., Operating System Concepts, 9™ Edition

}

/* get the default attributes */
pthread_attr_init (&attr);

/* create the thread */
pthread_create(&tid,&attr,runner,argv(i]);
/* wait for the thread to exit */
pthread_join(tid,NULL);

printf ("sum = %d\n",sum);

/* The thread will begin control in this function */

{

Universit 1

void *runner(void *param)

int i, upper = atoi(param);

sum = 0;
for (i = 1; i <= upper; i++)
sum += 1;

pthread exit(0);



Supporting Thread Programming

> When using pthreads, we are explicitly programming
threads.

- Quite cumbersome to do.

> There are several libraries that already implement useful
components, such as thread-safe data structures.

- Think of Boost, Intel Thread Building Blocks (TBB),
java.util.concurrent, System.Threading in C#.

> Threads can also be managed by run-time libraries
and/or compilers.

- Programmers no longer have to explicitly program the threads.

- Implicit threading.
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Thread Pools

> Idea: we have several tasks that can run independently,
implemented in different functions.

> Could we just hand a function to execute and the necessary
arguments to a thread, which will then simply perform that
task in the background?

> Main idea behind thread pools: maintain a pool of N threads
that wait for work.

- As soon as work comes in, get a thread from the pool and assign work.

- We don't have to wait for a thread to be created, so we can handle the
request quicker.

- All threads busy? Put work that comes in on a queue.

- Could even (temporarily) increase the number of threads when that .
happens.

> Commonly implemented in libraries: e.g. Win32, GLib.
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OpenMP (2)

> Pragma (compiler #include <omp.h>
directive) creates as #include <stdio.h>
LDl 0R thre;ads as there int main(int argc, char *argv([])
are cores in the system. {
/* sequential code */
> The marked block runs
in parallel on all cores. ql{'ﬁPragma omp parallel

printf("I am a parallel region.");

}

/* sequential code */

return 0;

}

Source: Silberschatz et al., Operating System Concepts, 9™ Edition .
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OpenMP (3)

> OpenMP will devise a data distribution by itself and
adjust the loop bounds iterated by each core.

void simple(int n, float *a, float *b)

{

int i;

#pragma omp parallel for
for (i=1l; i<n; i++) /* i is private by default */
b[i] = (ali]l + al[i-11) / 2.0;
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Threading Issues

> When UNIX was designed, the concept of threading was
not thought of.

> Threads were thus introduced within the UNIX model at
a later point in time. This has caused some issues.

> For instance:

- We learned that fork() duplicates a process. In case of

threading, does it duplicate all threads or just the thread calling
fork()?

- What about exec()? Does it replace all threads?

Given that exec() replaces the program image (which is shared

among all threads), it will have to remove all threads and start a .
single new one.
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Threading Issues (4)

> What if we want to terminate a thread before it has
finished?

- We could just forcefully terminate it, but this might cause data
loss.

> Want to leave choice to programmer. Often two ways to
cancel threads are supported (thread cancellation):

- Asynchronous cancellation: just terminate thread outright.

- Deferred cancellation: thread to be cancelled periodically
checks if it was cancelled. If so, this thread has the chance to

properly clean things up (e.g., close files or network
connections).

- Both models are supported by for instance pthreads.
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