Operating System
Concepts
Ch. 4: Threads

= Universiteit Leiden
The Netherlands

Universiteit Leiden. Bij ons leer je de wereld kennen .

Universiteit Leiden. Bij ons leer je de wereld kennen

Threading (2)

> Many modern applications are multi-threaded.

- This means that a single process consists of more than one thread
(instruction stream).

> This is done to make it easier to program different tasks a
program wants to perform at the same time.

- Update GUI & perform I/O (do both in separate threads).

- Word processor: perform paragraph layout and check spelling at the
same time.

- Web server: handle multiple HTTP requests at the same time.
- ete. ..

> Why not use multiple processes?

- Thread creation is light weight compared to heavy weight process

creation. .

- Switching between threads is faster than switching between processes
and as a result communication is cheaper.

Universiteit Leiden. Bij ons leer je de wereld kennen

Threading vs. event loops

> We can also write a single-threaded program that
appears to do several tasks at the same time.

- This could handle GUI updates & I/O without blocking the GUI.

- To do so, we have to program an event loop that continuously
monitors for events.

* When a GUI update is needed, the program performs this task.
* When new I/0 data is ready for us to read, we read this data.

* Important: the tasks must be completed in a short time and then
relinquish return to the event loop. Otherwise we will still see the
effects of GUI blocking.

* Within this model, hard to temporarily interrupt a task (in fact a
function) that is running. .

> So, it is possible, but we already notice that this is quite
tricky for the programmer.

Universiteit Leiden. Bij ons leer je de wereld kennen

code

Process Architecture

> Single-thread vs. multi-thread process in a picture:

code

data

files

registers

registers

registers

registers

stack

stack

stack

thread — ;

single-threaded process multithreaded process

Source: Silberschatz et al., Operating System Concepts, 9™ Edition

Universiteit Leiden. Bij ons leer je de wereld kennen

Process Architecture (2)

> Note that a multi-threaded process consists of multiple
instruction streams.

- Multiple stacks, multiple program counters, multiple sets of
register to save.

- Code/data segments are shared.

- Open files are shared.

> These instruction streams share a single address space.

- Cheap communication: just read/write data in this single
address space.

- Switching between threads of the same process does not require .
a change of page table: the same address space remains active.
Therefore cheaper.

Universiteit Leiden. Bij ons leer je de wereld kennen

Software Development

> Although using threads is easier compared to programming
delicate event loops, writing multi-threaded software for
multicore computers is still hard.

> What challenges do software developers face?

- Dividing activities: identifying activities that can be performed
independently, in parallel.

- Dealing with data dependencies: often computations are dependent on
one another, these dependencies must not be broken.

- Splitting the data & workload balancing: distribute the data over the
available cores.

- Testing and debugging: “A programmer had a problem. He thought to
himself, "I know, I'll solve it with threads!". has Now problems. two he” .

Universiteit Leiden. Bij ons leer je de wereld kennen

Concurrency vs. Parallelism

> Important to distinguish these two different terms:

- Parallelism means a system can perform more than one task
at the same time, in parallel.

Source: Silberschatz et al., Operating System Concepts, 9™
Edition

- Concurrency means multiple tasks can be making progress,
but these tasks do not necessarily run at the same time.

Can be done on a single processor, equipped with a scheduler. .

Source: Silberschatz et al., Operating System Concepts, 9" Edition
Universiteit Leiden. B1j ons leer je

de wereld kennen

Types of Parallelism

> Two main types of parallelism are distinguished:

- Data parallelism, in which case a large data set is split and
distributed over threads. Each thread performs the same task
on different data.

Example: image filter, split image in N parts, have each thread
apply the same image filter to its assigned part.

- Task parallelism, in which case a collection of tasks is divided
among threads. Each thread performs a different task.

Example: transaction processing, many transactions are
divided over available threads, each thread executes a
different transaction.

Universiteit Leiden. Bij ons leer je de wereld kennen

Universiteit Leiden. Bij ons leer je de wereld kennen

Universiteit Leiden. Bij ons leer je de wereld kennen

Many-to-one

> In this case, there's a single kernel-level
thread, but multiple user-level threads.

§<— user thread

> There's only one kernel scheduleable
entity, so this process can only be
assigned to one processor.

- Implication: only one user-level thread can run
at a time.

> When a user-level thread performs a
blocking system call, the entire process k) <— kemnel thread

blocks (and its other threads cannot run). [SR ——
System Concepts, 9™ Edition

> 0Old model (e.g. LinuxThreads, Java Green
Threads) and not commonly in use today.

Universiteit Leiden. Bij ons leer je de wereld kennen

Universiteit Leiden. Bij ons leer je de wereld kennen

Many-to-one (3)

> Threads sometimes preferred over event-based
programming, allows more natural programming.

- (Though subject of debate in the past).

> Java Green Threads were used to simulate a multi-
threaded system.

- Through an alternative 1/O API, the problematic blocking I/0
calls can be hidden from the user by automatically using
asynchronous I/0 instead.

> Do note that pure many-to-one implementations have
for the most part been superseded, because with this
model no advantage can be taken of multi-core systems. [0

Universiteit Leiden. Bij ons leer je de wereld kennen

One-to-one

> The idea is immediately clear: create one kernel-level thread
for every user-level thread.

> Multiple threads of a same process can be scheduled on
multiple processors at the same time.

> Potential overhead in case many threads are created within a
process, we need a kernel-level thread for each of these.

> Model used on Linux, Windows, Solaris 9+.

<«— user thread

Source: Silberschatz et al., Operating System Concepts, 9™ Edition

Universiteit Leiden. Bij ons leer je de wereld kennen

Many-to-many

> Allow M user-level threads to
be mapped to N kernel-level
threads.

> These numbers can be fine
tuned, interplay between user-

level library and kernel
support.
> Allows many user-level
threads to be created without «— kemel thread
introducing too much e et al Operating System

overhead at the kernel level.

Universiteit Leiden. Bij ons leer je de wereld kennen

Two-level Model

> A small extension of the many-to-many model, that
allows certain user-level thread to be bound to a kernel-
level thread.

- These user-level threads are then guaranteed to have a
corresponding kernel-level thread.

; ; <«— user thread

@ <«— Kkernel threac

Source: Silberschatz et al., Operating System Concepts, 9™
Edition

Universiteit Leiden. Bij ons leer je de wereld kennen

Universiteit Leiden. Bij ons leer je de wereld kennen

Simple pthreads example

#include <pthread.h>
#include <stdio.h>

int sum; /* this data is shared by the thread(s) */
void *runner(void *param); /* threads call this function */

int main(int argc, char *argv([])

{

pthread t tid; /* the thread identifier */
pthread attr t attr; /* set of thread attributes */

if (arge !'= 2) {
fprintf (stderr,"usage: a.out <integer value>\n");
return -1;

if (atoi(argv[1]) < 0) {
fprintf (stderr,")d must be >= 0\n",atoi(argv[1]));
return -1;

}

Source: Silberschatz et al., Operating System Concepts, 9™ Edition

}

/* get the default attributes */
pthread_attr_init (&attr);

/* create the thread */
pthread_create(&tid,&attr,runner,argv(i]);
/* wait for the thread to exit */
pthread_join(tid,NULL);

printf ("sum = %d\n",sum);

/* The thread will begin control in this function */

{

Universit 1

void *runner(void *param)

int i, upper = atoi(param);

sum = 0;
for (i = 1; i <= upper; i++)
sum += 1;

pthread exit(0);

Supporting Thread Programming

> When using pthreads, we are explicitly programming
threads.

- Quite cumbersome to do.

> There are several libraries that already implement useful
components, such as thread-safe data structures.

- Think of Boost, Intel Thread Building Blocks (TBB),
java.util.concurrent, System.Threading in C#.

> Threads can also be managed by run-time libraries
and/or compilers.

- Programmers no longer have to explicitly program the threads.

- Implicit threading.

Universiteit Leiden. Bij ons leer je de wereld kennen

Thread Pools

> Idea: we have several tasks that can run independently,
implemented in different functions.

> Could we just hand a function to execute and the necessary
arguments to a thread, which will then simply perform that
task in the background?

> Main idea behind thread pools: maintain a pool of N threads
that wait for work.

- As soon as work comes in, get a thread from the pool and assign work.

- We don't have to wait for a thread to be created, so we can handle the
request quicker.

- All threads busy? Put work that comes in on a queue.

- Could even (temporarily) increase the number of threads when that .
happens.

> Commonly implemented in libraries: e.g. Win32, GLib.

Universiteit Leiden. Bij ons leer je de wereld kennen

Universiteit Leiden. Bij ons leer je de wereld kennen

OpenMP (2)

> Pragma (compiler #include <omp.h>
directive) creates as #include <stdio.h>
LDl 0R thre;ads as there int main(int argc, char *argv([])
are cores in the system. {
/* sequential code */
> The marked block runs
in parallel on all cores. ql{'ﬁPragma omp parallel

printf("I am a parallel region.");

}

/* sequential code */

return 0;

}

Source: Silberschatz et al., Operating System Concepts, 9™ Edition .

Universiteit Leiden. Bij ons leer je de wereld kennen

OpenMP (3)

> OpenMP will devise a data distribution by itself and
adjust the loop bounds iterated by each core.

void simple(int n, float *a, float *b)

{

int i;

#pragma omp parallel for
for (i=1l; i<n; i++) /* i is private by default */
b[i] = (ali]l + al[i-11) / 2.0;

Universiteit Leiden. Bij ons leer je de wereld kennen

Threading Issues

> When UNIX was designed, the concept of threading was
not thought of.

> Threads were thus introduced within the UNIX model at
a later point in time. This has caused some issues.

> For instance:

- We learned that fork() duplicates a process. In case of

threading, does it duplicate all threads or just the thread calling
fork()?

- What about exec()? Does it replace all threads?

Given that exec() replaces the program image (which is shared

among all threads), it will have to remove all threads and start a .
single new one.

Universiteit Leiden. Bij ons leer je de wereld kennen

Universiteit Leiden. Bij ons leer je de wereld kennen

Universiteit Leiden. Bij ons leer je de wereld kennen

Threading Issues (4)

> What if we want to terminate a thread before it has
finished?

- We could just forcefully terminate it, but this might cause data
loss.

> Want to leave choice to programmer. Often two ways to
cancel threads are supported (thread cancellation):

- Asynchronous cancellation: just terminate thread outright.

- Deferred cancellation: thread to be cancelled periodically
checks if it was cancelled. If so, this thread has the chance to

properly clean things up (e.g., close files or network
connections).

- Both models are supported by for instance pthreads.

Universiteit Leiden. Bij ons leer je de wereld kennen

Universiteit Leiden. Bij ons leer je de wereld kennen

Universiteit Leiden. Bij ons leer je de wereld kennen

