
Universiteit Leiden. Bij ons leer je de wereld kennen

Operating System
Concepts

Ch. 4: Threads

Silberschatz, Galvin & Gagne

Universiteit Leiden. Bij ons leer je de wereld kennen

Threading
➢ Traditionally, a process consists of a single instruction

stream

- We save only 1 set of registers, 1 program counter, 1 stack.

➢ We say that this process is single-threaded.

➢ When a process calls a blocking system call (for example
to wait on I/O), the whole process will block until that
call returns.

- Consider a GUI application that reads from disk or network
connection. UI might freeze temporarily!

Universiteit Leiden. Bij ons leer je de wereld kennen

Threading (2)
➢ Many modern applications are multi-threaded.

- This means that a single process consists of more than one thread
(instruction stream).

➢ This is done to make it easier to program different tasks a
program wants to perform at the same time.

- Update GUI & perform I/O (do both in separate threads).
- Word processor: perform paragraph layout and check spelling at the

same time.
- Web server: handle multiple HTTP requests at the same time.
- etc. ...

➢ Why not use multiple processes?

- Thread creation is light weight compared to heavy weight process
creation.

- Switching between threads is faster than switching between processes
and as a result communication is cheaper.

Universiteit Leiden. Bij ons leer je de wereld kennen

Threading vs. event loops
➢ We can also write a single-threaded program that

appears to do several tasks at the same time.

- This could handle GUI updates & I/O without blocking the GUI.

- To do so, we have to program an event loop that continuously
monitors for events.
• When a GUI update is needed, the program performs this task.

• When new I/O data is ready for us to read, we read this data.

• Important: the tasks must be completed in a short time and then
relinquish return to the event loop. Otherwise we will still see the
effects of GUI blocking.

• Within this model, hard to temporarily interrupt a task (in fact a
function) that is running.

➢ So, it is possible, but we already notice that this is quite
tricky for the programmer.

Universiteit Leiden. Bij ons leer je de wereld kennen

Process Architecture
➢ Single-thread vs. multi-thread process in a picture:

Source: Silberschatz et al., Operating System Concepts, 9th Edition

Universiteit Leiden. Bij ons leer je de wereld kennen

Process Architecture (2)
➢ Note that a multi-threaded process consists of multiple

instruction streams.

- Multiple stacks, multiple program counters, multiple sets of
register to save.

- Code/data segments are shared.

- Open files are shared.

➢ These instruction streams share a single address space.

- Cheap communication: just read/write data in this single
address space.

- Switching between threads of the same process does not require
a change of page table: the same address space remains active.
Therefore cheaper.

Universiteit Leiden. Bij ons leer je de wereld kennen

Software Development
➢ Although using threads is easier compared to programming

delicate event loops, writing multi-threaded software for
multicore computers is still hard.

➢ What challenges do software developers face?

- Dividing activities: identifying activities that can be performed
independently, in parallel.

- Dealing with data dependencies: often computations are dependent on
one another, these dependencies must not be broken.

- Splitting the data & workload balancing: distribute the data over the
available cores.

- Testing and debugging: “A programmer had a problem. He thought to
himself, "I know, I'll solve it with threads!". has Now problems. two he”

Universiteit Leiden. Bij ons leer je de wereld kennen

Concurrency vs. Parallelism
➢ Important to distinguish these two different terms:

- Parallelism means a system can perform more than one task
at the same time, in parallel.

- Concurrency means multiple tasks can be making progress,
but these tasks do not necessarily run at the same time.

Can be done on a single processor, equipped with a scheduler.

Source: Silberschatz et al., Operating System Concepts, 9th Edition

Source: Silberschatz et al., Operating System Concepts, 9th
Edition

Universiteit Leiden. Bij ons leer je de wereld kennen

Types of Parallelism
➢ Two main types of parallelism are distinguished:

- Data parallelism, in which case a large data set is split and
distributed over threads. Each thread performs the same task
on different data.

Example: image filter, split image in N parts, have each thread
apply the same image filter to its assigned part.

- Task parallelism, in which case a collection of tasks is divided
among threads. Each thread performs a different task.

Example: transaction processing, many transactions are
divided over available threads, each thread executes a
different transaction.

Universiteit Leiden. Bij ons leer je de wereld kennen

Implementing Threads
➢ In the early days, threads were fully implemented in

user-space by means of a user-space library.

- Examples: LinuxThreads, early Java threads.

➢ Later on kernel support was added. Kernels then
supported the notion of a thread.

- A kernel can now schedule individual threads.

- Since Linux 2.6: NPTL thread implementation.

Universiteit Leiden. Bij ons leer je de wereld kennen

Implementing Threads (2)
➢ It is not required that there is a one-on-one mapping

between user-level threads and kernel-level threads.

➢ In fact, different models exist.

- You can still choose to have more user-level threads than
kernel-level threads for your application.

- Let's discuss the different models.

Universiteit Leiden. Bij ons leer je de wereld kennen

Many-to-one
➢ In this case, there's a single kernel-level

thread, but multiple user-level threads.

➢ There's only one kernel scheduleable
entity, so this process can only be
assigned to one processor.

- Implication: only one user-level thread can run
at a time.

➢ When a user-level thread performs a
blocking system call, the entire process
blocks (and its other threads cannot run).

➢ Old model (e.g. LinuxThreads, Java Green
Threads) and not commonly in use today.

Source: Silberschatz et al., Operating
System Concepts, 9th Edition

Universiteit Leiden. Bij ons leer je de wereld kennen

Many-to-one (2)

➢ One can wonder whether this model ever had
advantages.

- Consider that in the past, kernels did not support threads.

- Additionally, multi-core/CPU systems were not widespread.

➢ On some systems, user-space threads switch faster than
kernel-space threads.

- Another argument: you can control the scheduling of threads
yourself.

➢ Blocking I/O problem can (mostly) be solved by non-
blocking I/O.

Universiteit Leiden. Bij ons leer je de wereld kennen

Many-to-one (3)

➢ Threads sometimes preferred over event-based
programming, allows more natural programming.

- (Though subject of debate in the past).

➢ Java Green Threads were used to simulate a multi-
threaded system.

- Through an alternative I/O API, the problematic blocking I/O
calls can be hidden from the user by automatically using
asynchronous I/O instead.

➢ Do note that pure many-to-one implementations have
for the most part been superseded, because with this
model no advantage can be taken of multi-core systems.

Universiteit Leiden. Bij ons leer je de wereld kennen

One-to-one
➢ The idea is immediately clear: create one kernel-level thread

for every user-level thread.

➢ Multiple threads of a same process can be scheduled on
multiple processors at the same time.

➢ Potential overhead in case many threads are created within a
process, we need a kernel-level thread for each of these.

➢ Model used on Linux, Windows, Solaris 9+.

Source: Silberschatz et al., Operating System Concepts, 9th Edition

Universiteit Leiden. Bij ons leer je de wereld kennen

Many-to-many
➢ Allow M user-level threads to

be mapped to N kernel-level
threads.

➢ These numbers can be fine
tuned, interplay between user-
level library and kernel
support.

➢ Allows many user-level
threads to be created without
introducing too much
overhead at the kernel level.

Source: Silberschatz et al., Operating System
Concepts, 9th Edition

Universiteit Leiden. Bij ons leer je de wereld kennen

Two-level Model
➢ A small extension of the many-to-many model, that

allows certain user-level thread to be bound to a kernel-
level thread.

- These user-level threads are then guaranteed to have a
corresponding kernel-level thread.

Source: Silberschatz et al., Operating System Concepts, 9th
Edition

Universiteit Leiden. Bij ons leer je de wereld kennen

Implementing Threads (3)
➢ Thread functionality is always provided to the

programmer in the form of a library.

- Doesn't matter if threads are implemented at the user level or
kernel level.

➢ These libraries expose a certain API.

➢ Different important threading APIs exist:

- Win32 threads

- POSIX pthreads (UNIX systems)

• POSIX specification of threading API. This can be implemented in
different ways, on different systems.

- Java threads

Universiteit Leiden. Bij ons leer je de wereld kennen

Simple pthreads example

4. 20 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9 th Edition

Pthreads Example (Cont.)

Source: Silberschatz et al., Operating System Concepts, 9th Edition

Universiteit Leiden. Bij ons leer je de wereld kennen

Supporting Thread Programming

➢ When using pthreads, we are explicitly programming
threads.

- Quite cumbersome to do.

➢ There are several libraries that already implement useful
components, such as thread-safe data structures.

- Think of Boost, Intel Thread Building Blocks (TBB),
java.util.concurrent, System.Threading in C#.

➢ Threads can also be managed by run-time libraries
and/or compilers.

- Programmers no longer have to explicitly program the threads.

- Implicit threading.

Universiteit Leiden. Bij ons leer je de wereld kennen

Thread Pools
➢ Idea: we have several tasks that can run independently,

implemented in different functions.

➢ Could we just hand a function to execute and the necessary
arguments to a thread, which will then simply perform that
task in the background?

➢ Main idea behind thread pools: maintain a pool of N threads
that wait for work.

- As soon as work comes in, get a thread from the pool and assign work.

- We don't have to wait for a thread to be created, so we can handle the
request quicker.

- All threads busy? Put work that comes in on a queue.

- Could even (temporarily) increase the number of threads when that
happens.

➢ Commonly implemented in libraries: e.g. Win32, GLib.

Universiteit Leiden. Bij ons leer je de wereld kennen

OpenMP
➢ OpenMP is a standard that specifies compiler support for

multi-processing.

- Implemented for C, C++, FORTRAN.

- Compiler directives & run-time API.

➢ The compiler that you use must support these directives. It
will process your code and automatically insert the multi-
processing code to create and manage threads.

➢ You still need to identify parallel regions and mark these with
the necessary directives yourself.

Universiteit Leiden. Bij ons leer je de wereld kennen

OpenMP (2)
➢ Pragma (compiler

directive) creates as
many threads as there
are cores in the system.

➢ The marked block runs
in parallel on all cores.

Source: Silberschatz et al., Operating System Concepts, 9th Edition

Universiteit Leiden. Bij ons leer je de wereld kennen

OpenMP (3)
➢ OpenMP will devise a data distribution by itself and

adjust the loop bounds iterated by each core.

Source: Example 1.1c from OpenMP Application Program Interface
Examples, Version 4.0.1

Universiteit Leiden. Bij ons leer je de wereld kennen

Threading Issues
➢ When UNIX was designed, the concept of threading was

not thought of.

➢ Threads were thus introduced within the UNIX model at
a later point in time. This has caused some issues.

➢ For instance:

- We learned that fork() duplicates a process. In case of
threading, does it duplicate all threads or just the thread calling
fork()?

- What about exec()? Does it replace all threads?

Given that exec() replaces the program image (which is shared
among all threads), it will have to remove all threads and start a
single new one.

Universiteit Leiden. Bij ons leer je de wereld kennen

Threading Issues (2)
➢ UNIX has the concept of signals that can be sent to processes.

➢ Within a process, a signal handler must handle signals that are
received.

- This can either be a default handler, or user-defined handler.

➢ Examples of UNIX signals:

- SIGSEGV – Segmentation violation
- SIGBUS – Bus Error
- SIGPIPE – Broken Pipe
- SIGFPE – Floating Point Exception
- SIGTERM – Terminate (default of kill command)
- SIGKILL – Non-ignorable kill
- SIGALRM – Alarm Clock
- See also “kill -l”

Universiteit Leiden. Bij ons leer je de wereld kennen

Threading Issues (3)
➢ A problem arises when a process has multiple threads.

- Which thread should receive/handle signals?

- Can different threads set different signal handlers?

- This was originally not thought of.

➢ Possible options:

- Deliver signal to all threads.

- Deliver signal to a single, designated thread.

- Try threads one after the other, until one handles the signal.

- Deliver signal to thread to which it applies (is this always clear?)

Universiteit Leiden. Bij ons leer je de wereld kennen

Threading Issues (4)
➢ What if we want to terminate a thread before it has

finished?

- We could just forcefully terminate it, but this might cause data
loss.

➢ Want to leave choice to programmer. Often two ways to
cancel threads are supported (thread cancellation):

- Asynchronous cancellation: just terminate thread outright.

- Deferred cancellation: thread to be cancelled periodically
checks if it was cancelled. If so, this thread has the chance to
properly clean things up (e.g., close files or network
connections).

- Both models are supported by for instance pthreads.

Universiteit Leiden. Bij ons leer je de wereld kennen

Threading Issues (5)
➢ We know about local and global variables.

➢ global variables reside in data or bss section and are
accessible by all threads.

➢ Now what if we have data that needs to be global only
within a specific thread?

- This can be stored in Thread-Local Storage (TLS).

- We end up with three scopes: global (full process), thread and
local (within a function call).

Universiteit Leiden. Bij ons leer je de wereld kennen

End of Chapter 4.

