
Universiteit Leiden. Bij ons leer je de wereld kennen

Operating System 
Concepts

Ch. 2: Operating System 
Structures

Silberschatz, Galvin & Gagne



Universiteit Leiden. Bij ons leer je de wereld kennen

Content

➢ This chapter goes into more detail on the structure of 
Operating Systems.

- Organization of the different components.

- Different User Interfaces

- Types of system calls and how system calls are invoked

- Ways of structuring Operating Systems



Universiteit Leiden. Bij ons leer je de wereld kennen

Services

➢ An operating system provides an environment in which 
programs can be executed.

➢ As part of this environment it provides several services 
to programs (and its users).

➢ The exact services different among operating systems. 
But several common ones can be identified.



Universiteit Leiden. Bij ons leer je de wereld kennen

Services (2)

This first set consists of services that are mainly helpful/convenient to 
the user:

➢ Provide a User Interface (UI)

- Typically a system program running in user-mode.

- Distinguish between Command Line (CLI), Graphical (GUI) or batch system.

➢ Services to allow program loading & execution.

➢ I/O operations: access (special) devices. Users cannot access I/O 
devices directly.

➢ File System Manipulation: read/write files and directories.

➢ Interprocess communication: e.g. shared memory or message 
passing.

➢ Error detection: detect and correct errors, such as disk I/O 
errors, network errors, printer errors, faults in user programs.



Universiteit Leiden. Bij ons leer je de wereld kennen

Services (3)

A second set concerns efficient operation of the system, in 
particular for multi-user systems:

➢ Resource allocation: allocation algorithms for different 
resources/devices, how to deal with conflicting requests? 
How to maximize use of the available resources?

➢ Accounting: keep track of CPU cycles, disk space, etc.

➢ Protection & Security: control access to all system 
resources, file system ACL, user authentication.



Universiteit Leiden. Bij ons leer je de wereld kennen

Services (4)

Source: Silberschatz et al., Operating System Concepts, 9th Edition



Universiteit Leiden. Bij ons leer je de wereld kennen

User Interfaces

➢ CLI: Command Line Interpreter

- A Command Interpreter, known as a shell, is provided.

- Users can enter commands that the system will execute.

• On UNIX, these commands often correspond with simple system 
programs installed on the system in /bin or /usr/bin.

• In this case: additional “commands” can be added by installing 
programs into the appropriate directories.

• Otherwise systems rely on commands built into the shell.

- Through system calls, the kernel is told of programs that should 
be executed.

- Many different shells exist and easy to write your own.



Universiteit Leiden. Bij ons leer je de wereld kennen

User Interfaces (2)



Universiteit Leiden. Bij ons leer je de wereld kennen

User Interfaces (3)

➢ Graphical User Interfaces typically based on “Desktop” 
metaphor.

- Mouse is used to manipulate objects (icons) on the screen, laid 
out on a desktop.

- Objects can represent files, programs, directories, links, etc.

- Pioneered at Xerox PARC in the '70s. Steve Jobs came to visit. 
Macintosh user interface was based on this idea, released in 
'80s. Did not go unnoticed by Microsoft who developed and 
released Windows.

- Modern macOS: Open Source XNU kernel with closed-source 
User Interface (formerly Aqua) on top.

- For Linux many Desktop Environments exist: GNOME, KDE, 
Xfce, Mate, Enlightenment, TWM, FVWM, ...



Universiteit Leiden. Bij ons leer je de wereld kennen

Remote access

➢ Consider that remote access is possible both text-based 
and graphically.

- ssh: “secure shell”, log in on a remote system to get access to a 
CLI running on that remote system.

- RDP protocol: get a “remote desktop” on a remote Windows 
system. Microsoft Remote Desktop Client.



Universiteit Leiden. Bij ons leer je de wereld kennen

User Interfaces (4)
➢ Touchscreen interfaces are a further 

development of classic Graphical 
User Interfaces.

- Instead of a mouse, a touchscreen is used 
for input.

- Interactions with the system are different 
as a result (gestures).

- Physical keyboard typically not present, 
on-screen keyboard is used.

- More emphasis on appearance of system: 
icons, animations, design, etc.

- New paradigms: augmented reality (AR), 
Face ID.

Source: Silberschatz et al., Operating 
System Concepts, 9th Edition



Universiteit Leiden. Bij ons leer je de wereld kennen

System Calls
➢ The system call interface forms the main proramming 

interface to the services provided by the Operating System 
kernel.

- Barrier between user- and kernel-space.

➢ System calls are invoked using traps.

- The trap mechanism differs per hardware platform.

- Therefore, system calls are wrapped in, for instance, C-functions that 
are provided by the C library.

- The function signatures of these system call functions in the library 
constitute the API (Application Programming Interface) of the OS.

➢ Common System Call APIs:

- POSIX, Win32, Java VM (JVM).



Universiteit Leiden. Bij ons leer je de wereld kennen

System Calls (2)
➢ To get an idea of the granularity of system calls, consider the 

following example that copies a source file to a destination 
file:

Source: Silberschatz et al., Operating System Concepts, 9th Edition



Universiteit Leiden. Bij ons leer je de wereld kennen

System Calls (3)
➢ The system call API is thoroughly documented. On UNIX 

systems also available as “man pages”.

Source: Silberschatz et al., 
Operating System Concepts, 
9th Edition



Universiteit Leiden. Bij ons leer je de wereld kennen

Implementing System Calls

➢ To implement system calls, an interface needs to be 
defined that specifies how system calls are invoked in 
the kernel:

- A trap mechanism is needed to trigger a mode-switch and 
handing over control to the kernel.

- The requested call must be communicated. This is typically 
done by numbering system calls and passing a number.
• This number is used to subscript an array of function pointers in 

the kernel (after checking this number is within bounds :) ).

- Arguments need to be passed to the system call function.

- The return value of the system call should be communicated 
after completion.



Universiteit Leiden. Bij ons leer je de wereld kennen

Implementing System Calls (2)

➢ Argument passing can be done in several ways:

- Through CPU registers

- By placing these on the stack and popping when the system call 
returns.

- By passing a pointer to a block of memory (or structure) 
containing the necessary parameters.

- Or a combination thereof: for instance passing the first 4 
parameters through registers and if the call has more 
parameters passing the remainder using the stack.



Universiteit Leiden. Bij ons leer je de wereld kennen

Implementing System Calls (3)

➢ Example when parameters are passed using a pointer to 
a block/table/structure:

Source: Silberschatz et al., Operating System Concepts, 9th Edition



Universiteit Leiden. Bij ons leer je de wereld kennen

Implementing System Calls (3)

➢ This kernel interface to invoke system calls differs per 
hardware platform and OS implementation.

➢ Having everybody program against this interface 
directly is cumbersome for the programmers and 
requires rewrites for different OS platforms.

➢ Therefore, these details are typically hidden behind a 
system call API.

- Programmers program against this API.

- This API is implemented by a system library, such as the C 
library for POSIX.

- To run the same code on a different platform, only a recompile 
needed against the different system library (which exposes the 
same API).



Universiteit Leiden. Bij ons leer je de wereld kennen

Implementing System Calls (4)
Examples: syscall function from uclibc-ng:



Universiteit Leiden. Bij ons leer je de wereld kennen

Implementing System Calls (4)
Examples: syscall function from uclibc-ng:

x86_64

i386

ARM



Universiteit Leiden. Bij ons leer je de wereld kennen

Implementing System Calls (5)

➢ Overview in a figure:

Source: Silberschatz et al., Operating System Concepts, 9th Edition



Universiteit Leiden. Bij ons leer je de wereld kennen

Examples of System Calls

➢ We already saw an overview of the different components 
that are present in an operating system.

➢ We can distinguish system calls based on by which 
component they are implemented.

➢ Process Management

- Create / terminate process

- Load executable in memory

- Suspend / resume

- Send signals

- Interprocess Communication (IPC) / Synchronization



Universiteit Leiden. Bij ons leer je de wereld kennen

Examples of System Calls (2)

➢ Memory management

- Enlarge heap/stack within process

- Allocate memory (anonymous mappings)

- Map file into memory area

➢ File management

- Open, close, read/write files

- Create, remove, read directory

- Change file/directory attributes

➢ Device management

- Open devices, send special commands (e.g. ioctl).



Universiteit Leiden. Bij ons leer je de wereld kennen

Examples of System Calls (3)

➢ System information

- Get / set time of day, system up time

- Request system reboot / shutdown

- Read kernel log buffer (dmesg)

➢ Communication

- Between local processes, e.g. pipes.

- Network communication (socket I/O)



Universiteit Leiden. Bij ons leer je de wereld kennen

Windows vs. UNIX system calls

Same concept, different API

Source: Silberschatz et al., Operating System Concepts, 9th Edition



Universiteit Leiden. Bij ons leer je de wereld kennen

Library calls vs. system calls
printf is a C library function, that calls a system call in its 
implementation.

Source: Silberschatz et al., Operating System Concepts, 9th Edition



Universiteit Leiden. Bij ons leer je de wereld kennen

System Programs
➢ System programs vs. Application programs

- A kernel is typically supported by a set of system programs.

- A bare kernel is often not too useful.

- Again: the exact boundary between system and application programs is 
not always clear.

➢ Some typical examples:

- Tools for file system management: ls, mv, rm mkdir, touch, df, du
• In several cases these tools are simple wrappers around the corresponding 

system call (e.g. mkdir).

- Tools to acquire system information: ps, uptime, listing devices

- Programs for system initialization and management (init, launchd, 
systemd), system settings & configuration.

- Required background services (or subsystems, daemons) such as 
system logging, monitoring hotplug devices (e.g. USB).



Universiteit Leiden. Bij ons leer je de wereld kennen

System Boot
➢ System boot often relies on system programs.

➢ What happens on power on?

- The CPU starts executing instructions from a pre-defined address

- At this location some firmware is typically present, stored in a ROM or 
EEPROM.

- Low-level initialization is performed and a boot loader is loaded from a specific 
location on secondary storage.

- Depending on the system sometimes a more versatile second-stage boot loader 
is loaded. GRUB is the de-facto standard for x86 Linux systems.

- The boot loader loads the selected kernel from secondary storage into memory 
and jumps to it.

- Kernel performs necessary system initialization.

- Once done, it starts an initial user-space program. This is usually a system 
program that performs further initialization of the system and launches other 
services.

- The system is now running and waits for commands.



Universiteit Leiden. Bij ons leer je de wereld kennen

System Operation

➢ The kernel and many background services generate log files

- Log of access to a service (access granted / denied)

- Log of errors, from file not found to hard disk I/O errors

- Etc...

➢ Sometimes software exhibits problems

- When user processes crash, they can leave a core dump. The current state of 
the process is saved to a file which can later be loaded into a debugger.

- When the kernel crashes, some systems support the creation of a crash dump.

➢ Typically tools are provided to analyze the performance of the 
system

- Profiling of user applications

- Monitoring I/O devices or collecting kernel trace points.



Universiteit Leiden. Bij ons leer je de wereld kennen

Operating System Implementation

➢ So we want to write an OS, what programming language do 
we use?

- Often a low-level language, because we need to interface with hardware 
and devices.

- Some assembly required, depending on architecture.
• Past: everything would need to be written in assembly.

- An OS can also be written in a subset of C++, it is low-level enough.

- System programs: any language from which system calls can be 
invoked. Typically C, C++, Perl, Python.

➢ Important for choice of language: the more is written in a 
higher level language, the easier it is to port the OS to another 
hardware platform / architecture.

- 100% assembly code required a 100% rewrite.



Universiteit Leiden. Bij ons leer je de wereld kennen

Operating System Implementation (2)

➢ Another important decision is how to structure the 
implementation.

➢ In the past this was not of much importance.

➢ Todays complex systems required a clear structure to be 
followed.

- Systems otherwise hard to maintain / debug.

- Hard to decouple responsibilities.

- Hard to extend in the future.

➢ We now review a number of such structures.



Universiteit Leiden. Bij ons leer je de wereld kennen

DOS: Simple structure

➢ An early OS, designed for personal 
computers (PCs) without much 
available resources.

➢ Minimal kernel in memory, 
extended with drivers and extension 
routines.

- Extension routines installed 
themselves in the background; TSR: 
Terminate and Stay Resident.

- Programming interface with 
software interrupts.

- Ralf Brown Interrupt List.

➢ No real multitasking. Could not take 
advantage of modern architectures.

Source: Silberschatz et al., Operating 
System Concepts, 9th Edition



Universiteit Leiden. Bij ons leer je de wereld kennen

DOS: Simple structure (2)
➢ COMMAND.COM: main 

command interpreter.

➢ Only a single program could run at 
a time. On program startup, 
COMMAND.COM was for a large 
part unloaded.

➢ Needed to be reloaded from disk 
on program exit. Screeching floppy 
sound when exiting a game (for 
example).

➢ No process isolation or memory 
protection, there was a single 
memory space that everybody 
could access.

Source: Silberschatz et al., Operating System 
Concepts, 9th Edition



Universiteit Leiden. Bij ons leer je de wereld kennen

Monolithic kernels
➢ Most UNIX systems (but certainly not all) are based on a 

monolithic kernel.

- A single binary image that contains all kernel functionality. This is 
always present in memory.

- Runs in a single address space. Different components within this image 
are not isolated from each other.

- Much clearer system call interface compared to DOS.

- With good programming practices, the source code for this single 
binary image can be well structured, with clear interfaces between 
different components.
• It is then up to the programmers to not violate these interfaces ... The 

system does not protect against this.

➢ A UNIX kernel relies heavily on system programs to control 
the system and make the system convenient to use.



Universiteit Leiden. Bij ons leer je de wereld kennen

Monolithic kernels (2)

➢ Example of UNIX system structure:

Source: Silberschatz et al., Operating System Concepts, 9th Edition



Universiteit Leiden. Bij ons leer je de wereld kennen

Monolithic kernels (3)
➢ Example memory layout on the 

right.

➢ Multi-tasking system.

➢ A shell is an ordinary user 
process run on behalf of the 
users.

➢ System calls present to create 
new processes (fork) and load 
new executable images (execv).

- Used by the shell to start 
programs requested by the user.

Source: Silberschatz et al., 
Operating System Concepts, 9th 
Edition



Universiteit Leiden. Bij ons leer je de wereld kennen

Monolithic kernels (4)

➢ Such a single binary image does not seem extensible.

➢ How to add new drivers, file system implementations, 
schedulers, etc?

- Recompile the entire kernel and reboot.

- Cumbersome. Therefore many modern monolithic kernels 
support loadable kernel modules.

➢ Kernel modules ...

- ... are written against interfaces exposed by the kernel

- ... can be loaded and unloaded at run-time (without reboots). In 
fact, the single binary image is “extended” to contain this 
module.



Universiteit Leiden. Bij ons leer je de wereld kennen

Layered approach

➢ The monolithic approach that we have just seen can also 
be strictly layered.

- In some cases requiring a trap instruction to call functions 
across layers.

➢ Each layer is constructed based on the layer below it.

➢ First system built in this way: THE system, TH 
Eindhoven, 1968.

Source: Operating Systems: Design and implementation, 2nd Edition. Tanenbaum and Woodhull. Sect. 1.5.2



Universiteit Leiden. Bij ons leer je de wereld kennen

Layered approach (2)

➢ Example layer structure:

➢ Finally linked into a single object, so only a design aid!

Source: Operating Systems: Design and implementation, 2nd Edition. Tanenbaum and Woodhull. Sect. 1.5.2

Layer Function

5 The Operator

4 User programs

3 I/O management

2 Operator-process communication

1 Memory management

0 Processor allocation and scheduling



Universiteit Leiden. Bij ons leer je de wereld kennen

Layered approach (3)

➢ In MULTICS concentric rings 
were used instead of layers.

➢ Inner rings were more privileged 
& protected

➢ Only accessible using a trap 
instruction, so protection 
enforced by hardware.

Source: Operating Systems: Design and implementation, 2nd Edition. Tanenbaum and Woodhull. Sect. 1.5.2

Source: Silberschatz et al., Operating 
System Concepts, 9th Edition



Universiteit Leiden. Bij ons leer je de wereld kennen

Micro kernels
➢ The main idea behind a micro kernel is to make the kernel as 

small as possible and move as much components as possible 
to user-space.

- So only these parts that really must run in kernel-space are present in 
kernel space.

➢ The micro kernel supports for instance:

- Communication between the various components, often through 
message passing.

- Setting up CPU registers required for enforcing protection & isolation.
- Performing context switches.
- Receiving interrupts and forwarding these to the responsible 

component.
➢ Components that would be implemented in user space 

include these for process management, memory 
management, file management and of course device drivers.



Universiteit Leiden. Bij ons leer je de wereld kennen

Micro kernels (2)

➢ What this looks like schematically:

Source: Silberschatz et al., Operating System Concepts, 9th Edition



Universiteit Leiden. Bij ons leer je de wereld kennen

Micro kernels (3)
➢ Advantages:

- Easier to extend, the micro kernel does typically not need modification 
and a user-space module can be written and started.

- More reliable, a crash in a user-space kernel component does not bring 
down the entire system.
• Compare with monolithic kernel that runs in a single address space.

- Easier to port to other architectures, since this only has to be done for 
the micro kernel and device drivers.

➢ Disadvantages:

- Performance: overhead due to message passing between different 
components.

- Overhead due to context switches between different components to 
service a system call.



Universiteit Leiden. Bij ons leer je de wereld kennen

Micro kernels (4)

➢ Examples of systems based on the micro kernel design:

- Minix

- macOS, its XNU kernel is based on Mach (from CMU).

- L4

- QNX

- Windows NT in its early days (next slide)



Universiteit Leiden. Bij ons leer je de wereld kennen

Hybrid Systems

➢ Systems do not always strictly adhere to a single model 
as just discussed.

- For instance, due to changing requirements during the 
development process, to address performance or security 
concerns.

➢ Example: Windows NT was originally designed as a pure 
micro kernel.

- However, performance shortfalls caused MicroSoft to move 
many of the subsystem services from user-space to kernel-
space.

➢ Linux, Solaris, FreeBSD are all monolithic kernels, but 
can also be considered modular because they support 
loadable kernel modules.



Universiteit Leiden. Bij ons leer je de wereld kennen

Full System Structures

➢ Modern Operating Systems thus consist of:

- An OS kernel with system call interface.

- A system library around this system call interface.

- Various support libraries for the system, for instance to provide 
graphical user interfaces (GUIs).

- System programs.

- Sometimes a graphical shell.

➢ To conclude the chapter, let's have a quick look at some 
examples of full system structures.



Universiteit Leiden. Bij ons leer je de wereld kennen

Windows NT architecture



Universiteit Leiden. Bij ons leer je de wereld kennen

macOS Architecture



Universiteit Leiden. Bij ons leer je de wereld kennen

iOS architecture

Source: https://www.slideshare.net/vutlam9083/session-1-introduction-to-i-
os-7-and-sdk



Universiteit Leiden. Bij ons leer je de wereld kennen

Android Architecture

Source: Manifest Security (https://manifestsecurity.com/android-application-
security-part-2/)



Universiteit Leiden. Bij ons leer je de wereld kennen

End of Chapter 2.


