A Method to extend Existing Document Clustering Procedures by including Relational Information

Tijn Witsenburg

Hendrik Blockeel

1 Leiden Institute of Advanced Computer Science, Universiteit Leiden
2 Department of Computer Science, Katholieke Universiteit Leuven

Problem Setting
Consider data that consist of both content and relational information. Can existing clustering procedures that use content be improved by inserting relational information?

for instance scientific papers with citations or common authors

Problem Setting
Consider data that consist of both content and relational information. Can existing clustering procedures that use content be improved by inserting relational information?

for instance scientific papers with citations or common authors

Common approach in Clustering
1. Translation of data to numeric values.
2. Use values to calculate distances / similarities.
3. Use these to divide data items into clusters.

Basic Idea of our Method
Before dividing the data items into clusters, the distance / similarity matrix is altered to include the relational information.

Altering the Distance/Similarity Matrix
First a symmetric adjacancy matrix A is created. Then A is combined with the distance / similarity matrix M in a way that is derived from matrix multiplication.

A new matrix M' is created by using the equation:

$M' = M \times A + A \times M$

This will give the sum as described to the right. When we do not wish to use the sum but the average value, and have N nodes, any element m'_{ij} of M' can be calculated using:

$m'_{ij} = \frac{1}{2} \cdot \frac{\sum_{x=0}^{N} m_{ix} \cdot a_{xj}}{\sum_{x=0}^{N} a_{xj}} + \frac{\sum_{x=0}^{N} a_{ix} \cdot m_{xj}}{\sum_{x=0}^{N} a_{ix}}$

Meaning of element m'_{ij} in $M \times A$

Every element m'_{ij} from $M' = M \times A$ can be seen as the sum of the distances/similarities between i and all nodes that have a relation with j.

Preliminary Results
This method has been tested on sub sets of a single database using a simple, greedy clustering procedure. First results look promising, but further research needs to be done.

Questions:
- Could this method be used on other databases?
- Will this method work for other clustering procedures?
- How can other information be included as well?
- Can this principle be used on other research fields?
- Can anyone help me finding other good databases?