Program correctness

Model checking LTL

Marcello Bonsangue
Context

- Model checking CTL was relatively easy because the truth of formulas depends on the current state (CTL) and not on an execution path (LTL) and not on the tree of all executions (CTL*)

- Next we concentrate on model checking LTL
LTL: a recap

Syntax

\[\phi ::= \top | p | \neg \phi | \phi \lor \psi | X\phi | \phi U \psi \]

All other connectives can be written in the above syntax
LTL formulas as languages (I)

- \(\phi = \text{GF}p \) (infinitely often \(p \))

- The execution \(s_1 \rightarrow s_2 \rightarrow s_3 \rightarrow s_4 \ldots \) satisfies \(\phi \) if it contains infinitely many \(s_{n_1}, s_{n_2}, \ldots \) at which \(p \) holds. In between there can be an arbitrary but finite number of state at which \(\neg p \) holds.

As a language \((\neg p)^*p)^\omega \)

\(\omega \)-regular expressions
- * = an arbitrary but finite number of repetitions
- \(\omega \) = an infinite number of repetitions
LTL formulas as languages(II)

- $\phi = \text{FGp}$ (Eventually always p)

- The execution $s_1 \rightarrow s_2 \rightarrow s_3 \rightarrow s_4 \ldots$ satisfies ϕ if from a certain state onwards at all states p holds.

- As ω-regular expression $(p + \neg p)^* . p^{\omega}$
Automata on finite words: a recap

- A **non-deterministic finite automaton** is a special kind of transition systems for recognizing languages on finite words.

- **NF-automaton** \(A = < \Sigma, S, \rightarrow, I, F > \)
 - \(\Sigma \) finite alphabet
 - \(S \) finite set of states
 - \(\rightarrow \subseteq S \times \Sigma \times S \) transition relation
 - \(I \subseteq S \) initial states
 - \(F \subseteq S \) accepting states

- The language of an automaton \(A \) is
 \[L(A) = \{ a_1 a_2 \ldots a_n \in \Sigma^* \mid \exists s_1 \xrightarrow{a_1} s_2 \xrightarrow{a_2} \ldots \xrightarrow{a_n} s_n \in F \text{ with } s_1 \in I \} \]
Properties of finite languages

- **Theorem**: \(L(A_1 \times A_2) = L(A_1) \cap L(A_2) \)

 \(A_1 \times A_2 = <\Sigma, S_1 \times S_2, \rightarrow, I_1 \times I_2, F_1 \times F_2> \) where

 \(<s, t> \xrightarrow{a} <s', t'> \) iff \(s \xrightarrow{1} s' \) and \(t \xrightarrow{2} t' \)

- **Theorem**: \(L(A) = \emptyset \) is decidable

 It is enough to find a path from an initial state in \(I \) to a final state in \(F \).
Automata on infinite words: Buchi

- A Buchi automaton is a special kind of transition systems for recognizing languages on infinite words.

- **Buchi automaton** $A = \langle \Sigma, S, \rightarrow, I, F \rangle$
 - Σ: finite alphabet
 - S: finite set of states
 - $\rightarrow \subseteq S \times \Sigma \times S$: transition relation
 - $I \subseteq S$: initial states
 - $F \subseteq S$: accepting states
Buchi automata

An infinite execution of a Buchi automaton A

$$s_1 \xrightarrow{a_1} s_2 \xrightarrow{a_2} s_3 \xrightarrow{a_3} s_4 \ldots$$

is accepted by A if

- $s_1 \in I$
- there exists infinitely many $i > 0$ such that $s_i \in F$

- The language of a Buchi automaton A is $L_\omega(A) = \{a_1a_2\ldots \in \Sigma^\omega \mid \exists s_1 \xrightarrow{a_1}s_2 \xrightarrow{a_2}\ldots \text{ accepted by } A\}$
Example

- abcbbbbbb... rejected
- abcbbbbbb... accepted
- abcbbbb... accepted
- abcbbbbbb... rejected
Properties of infinite languages

- **Theorem:** $L_\omega(A_1 \otimes A_2) = L_\omega(A_1) \cap L_\omega(A_2)$

 $A_1 \otimes A_2 = \langle \Sigma, S_1 \times S_2 \times \{1, 2\}, \rightarrow, I_1 \times I_2 \times \{1\}, F_1 \times S_2 \times \{1\} \rangle$

 where $<s, t, i> \xrightarrow{a} <s', t', j> \text{ iff }$

 - $s \xrightarrow{a_1} s'$ and $t \xrightarrow{a_2} t'$ and $i = j$ unless
 - $i = 1$ and $s \in F_1$ in which case $j = 2$, or
 - $i = 2$ and $t \in F_2$ in which case $j = 1$.

- **Theorem:** $L_\omega(A) = \emptyset$ is decidable

 It is enough to find a path from an initial state $s \in I$ to a final state $t \in F$ such that t has a path to t itself.
Transition systems and Buchi automata

Any transition systems $M = \langle S, \rightarrow_M, s_0 \rangle$ with a labelling function $\ell : S \rightarrow 2^{\text{Prop}}$ can be seen as a Buchi automata $A_M = \langle \Sigma, S, \rightarrow, I, F \rangle$ where

- $\Sigma = 2^{\text{Prop}}$ assignment of truth values to propositions (i.e. valuations)
- S same states
- $s \xrightarrow{a} t$ iff $s \rightarrow_M t$ and $a = \ell(s)$ transition relation
- $I = \{s_0\}$ same initial state
- $F = S$ every state is final
Example

The system: $M = \neg p \land \neg q \land \neg p \land \neg q \land p \land \neg q \land p \land q$ becomes the Buchi automaton
LTL and Buchi automata

- An LTL formula denotes a set of infinite traces which satisfy that formula.

- A Buchi automaton accepts a set of infinite traces.

- **Theorem:** Given an LTL formula ϕ, we can build a Buchi automaton

$$A_\phi = <\Sigma,S,\rightarrow, I,F>$$

where $\Sigma = 2^{\text{Prop}}$ consists of the subsets of (possibly negated) atomic propositions (i.e. valuations), which accepts only and all the executions satisfying the formula ϕ.
Example (1)

\[\phi = F p \quad \text{eventually } p \]

\[A_\phi = \]

Diagram with states and transitions labeled with propositions and logical symbols.
Example (2)

\[\phi = p \cup q \quad p \text{ until } q \]

\[A_\phi = \]

\[
\begin{array}{c}
p, q \\
p \\
q \\
\end{array}
\]
LTL and Buchi automata

- Not every Buchi automaton is an LTL formula:

```
  p  
  v  p

“p holds on every odd step”
```
Model checking LTL: the idea

Let ϕ be an LTL formula and M,s be a transition system specifying the behavior of a system

- A_ϕ corresponds to all allowable behavior of the system
- A_M corresponds to all possible behavior of the system (all infinite paths of M that are potentially interesting)

To see whether a system satisfies a specification we need to check if every path of A_M is in A_ϕ

$$L_\omega(A_M) \subseteq L_\omega(A_\phi)$$
Model checking LTL

- To check set inclusion note that

\[B \subseteq A \iff B \cap \overline{A} = \emptyset \]

- Further, \(L_\omega(A_\phi) = L_\omega(A_{\neg\phi}) \) thus

Every possible path is allowable

is equivalent to say that

there is no path that is possible and not allowable

that is \(M,s \models \phi \) if and only if \(L_\omega(A_M) \cap L_\omega(A_{\neg\phi}) = \emptyset \)
The method

- Problem: $M, s \models \phi$?

1. **Construct** a Buchi automaton $A_{\neg \phi}$ representing the **negation** of the desired LTL specification ϕ
2. **Construct** the automaton A_M representing the system behavior
3. **Construct** the automaton $A_M \otimes A_{\neg \phi}$
4. Check if $L_\omega(A_M \otimes A_{\neg \phi}) = \emptyset$
5. If yes then $M, s \models \phi$
Example (1)

- Specification: $\phi = G(p \Rightarrow XFq)$

 Any occurrence of p must be followed (later) by an occurrence of q

- $\neg\phi = F(p \land XG\neg q)$

 there exist an occurrence of p after which q will never be encountered again

- $A_{\neg\phi} = \dots$
Example (2)

- The system: $M = \langle p, q \rangle$

and its Buchi automaton A_M
Example: (3)

- The product $A_{\neg \phi} \otimes A_M$
Example: (4)

$L(A_\neg \phi \otimes A_M) = \emptyset$?

There is a path starting from $<s_0t_01>$ that passes infinitely often through the final states.
Example: (5)

- Since $L(A_\neg \phi \otimes A_M)$ is not empty

 $$M, s \not\models G(p \Rightarrow XFq)$$

 The counterexample is given by the path
 $$t_0 t_1 t_2 t_3 t_0 t_1 t_2 t_0 t_1 t_2 t_0 \ldots$$
From LTL to Buchi automata

- General approach:
 - Rewrite formula in normal form
 - Translate formula into generalized Buchi automata
 - Turn generalized Buchi automata into ordinary Buchi automata
Normal form

- LTL formulas with the until operator U that may contains also the next operators X

- Every formula ϕ can be converted into an equivalent formula ψ in normal form expressing an infinite behavior using equivalences such as:
 - $T = T U T$
 - $p = p \land X T$
 - $F\phi = T U \phi$ \hspace{1cm} $G\phi = \bot R \phi$
 - $\phi_1 R\phi_2 = \neg(\neg \phi_1 U \neg \phi_2)$
Additional simplifications

- Use extra equivalences to reduce size of the formula. For example:
 - $\neg\neg\phi = \phi$
 - $X\phi_1 \lor X\phi_2 = X(\phi_1 \lor \phi_2)$
 - $X\phi_1 \land X\phi_2 = X(\phi_1 \land \phi_2)$
 - $X\phi_1 U X\phi_2 = X(\phi_1 U \phi_2)$
Example:

- $G(Fp \Rightarrow q) = G(\neg Fp \lor q)$

 $= \bot \Rightarrow (\neg Fp \lor q)$

 $= \neg (\neg \bot \lor \neg (\neg (T \lor p) \lor q))$

- $p \land \neg q = (p \land \neg q) \land T$

 $= (p \land \neg q) \land XT$

 $= (p \land \neg q) \land XGT$

 $= (p \land \neg q) \land X(T \lor T)$
Generalized Buchi Automata

- They differ from (normal) Buchi automata only in the acceptance condition, which is a ‘set of acceptance sets’, i.e. $F \subseteq 2^S$

- The language of a generalized Buchi automaton $A = \langle \Sigma, S, \rightarrow, I, F \rangle$ is

 \[L(A) = \bigcap \{ L(A_F) \mid F \in F \text{ and } A_F = \langle \Sigma, S, \rightarrow, I, F \rangle \} \]

 that is, a path has to visit for each set of final states $F \in F$ infinitely many times states from F.
Example

- A generalized Buchi automaton:

```
A path of c’s with either eventually one a or eventually one b is accepted
```
Generalized Buchi Automata

- A generalised Buchi automaton $A = < \Sigma, S, \rightarrow, I, \mathcal{F} >$ can be translated back into an ordinary Buchi automata by taking the intersection of the automata $A_F = < \Sigma, S, \rightarrow, I, F >$ for each $F \in \mathcal{F}$.

- If $\mathcal{F} = \emptyset$ then every infinite path is accepted.

- The ordinary Buchi automata of $< \Sigma, S, \rightarrow, I, \emptyset >$ is $< \Sigma, S, \rightarrow, I, S >$
Example (cont’d)

- The translation of the previous automaton into an ordinary Buchi automaton is
Closure of a formula

- Given an LTL formula ϕ define its closure $\text{Cl}(\phi)$ to be the set of subformulas ψ of ϕ and of their complement.

 - $\phi \in \text{Cl}(\phi)$
 - $\psi \in \text{Cl}(\phi)$ implies $\neg\psi \in \text{Cl}(\phi)$
 - $\psi_1 \lor \psi_2 \in \text{Cl}(\phi)$ implies $\psi_1, \psi_2 \in \text{Cl}(\phi)$
 - $X\psi \in \text{Cl}(\phi)$ implies $\psi \in \text{Cl}(\phi)$
 - $\psi_1 U \psi_2 \in \text{Cl}(\phi)$ implies $\psi_1, \psi_2 \in \text{Cl}(\phi)$
Constructing the automata A_ϕ: states

- The **states** $\text{Sub}(\phi)$ of the automata are the maximal subsets S of $\text{Cl}(\phi)$ that have no propositional inconsistency:

1. For all $\psi \in \text{Cl}(\phi)$, $\psi \in S$ iff $\neg \psi \notin S$
2. If $T \in \text{Cl}(\phi)$ then $T \in S$
3. $\psi_1 \lor \psi_2 \in S$ iff $\psi_1 \in S$ or $\psi_2 \in S$, whenever $\psi_1 \lor \psi_2 \in \text{Cl}(\phi)$
4. $\neg (\psi_1 \lor \psi_2) \in S$ iff $\neg \psi_1 \in S$ and $\neg \psi_2 \in S$, whenever $\neg (\psi_1 \lor \psi_2) \in \text{Cl}(\phi)$
5. If $\psi_1 \cup \psi_2 \in S$ then $\psi_1 \in S$ or $\psi_2 \in S$
6. If $\neg (\psi_1 \cup \psi_2) \in S$ then $\neg \psi_2 \in S$

Intuition: $\psi \in S$ implies that ψ holds in S

- The **initial states** are those states containing ϕ
Example

- $\text{Cl}(p \lor q) = \{ p, q, \neg p, \neg q, p \lor q, \neg (p \lor q) \}$

- $\text{Sub}(p \lor q) = \{ \{ p, q, p \lor q \},
 \{ p, \neg q, p \lor q \},
 \{ p, \neg q, \neg (p \lor q) \},
 \{ \neg p, q, p \lor q \},
 \{ \neg p, \neg q, \neg (p \lor q) \} \}$
Constructing the automata: transitions

Define the transition relation by setting $s \xrightarrow{a} s'$ iff

1. $X \psi \in s$ implies $\psi \in s'$
2. $\neg X \psi \in s$ implies $\neg \psi \in s'$
3. $\psi_1 \cup \psi_2 \in s$ and $\psi_2 \notin s$ implies $\psi_1 \cup \psi_2 \in s'$
4. $\neg (\psi_1 \cup \psi_2) \in s$ and $\psi_1 \in s$ implies $\neg (\psi_1 \cup \psi_2) \in s'$
5. $a = \text{set of all atomic propositions that hold in } s$

N.B.: Conditions 3. and 4. are there because

$$\psi_1 \cup \psi_2 \equiv \psi_2 \lor (\psi_1 \land X(\psi_1 \cup \psi_2))$$
$$\psi_1 \mathcal{R} \psi_2 \equiv \psi_2 \land (\psi_1 \lor X(\psi_1 \mathcal{R} \psi_2))$$
Constructing the automata: acceptance

- For each $\chi_i U \psi_i \in \text{Cl}(\phi)$ define the set of accepting states F_i by
 - $s \in F_i$ iff $\neg(\chi_i U \psi_i) \in s$ or $\psi_i \in s$
 - The above means that we only accept executions for which infinitely many time $\neg(\chi_i U \psi_i) \lor \psi_i$ holds

- Intuition:
 For each $\chi_i U \psi_i \in \text{Cl}(\phi)$ we have to guarantee that eventually ψ_i holds.
 1. Suppose we accept an execution for which only finitely many time $\neg(\chi_i U \psi_i) \lor \psi_i$ holds.
 2. Then we can find a suffix such that $\neg(\chi_i U \psi_i) \lor \psi_i$ will never hold, that is $(\chi_i U \psi_i) \land \neg \psi_i$ will always hold.
 3. Thus we have an execution for which our goal is not guaranteed
Complexity

- $A_{\neg \phi}$ has size $O(2^{\lVert \phi \rVert})$ in the worst case

- The product $A \otimes B$ has size $O(|A| \times |B|)$

- We can determine if there is no acceptable path in $A \otimes B$ in $O(|A \otimes B|)$ time

- Thus, model checking $M, s \models \phi$ can be done in $O(|M| \times 2^{\lVert \phi \rVert})$ time
Example: $p \cup q$

\[\text{Cl}(p \cup q) = \{ p, \neg p, q, \neg q, p \cup q, \neg(p \cup q) \} \]
Example: \(p \cup q \)

- The previous automata is equivalent to

\[p, \neg q \]
\[p, q \]
\[\neg p, q \]
\[\neg p, \neg q \]
Example II

- Buchi automaton for atomic proposition p
 - $p = p \land X(T \cup T) = \phi$
 - $Cl(\phi) = \{ p, \neg p, T, \neg T, TUT, \neg(T \cup T), X(TUT), \neg X(TUT), \phi, \neg \phi \}$
 - $Sub(\phi) = \{1,2,3\}$ with
 - 1 = \{p,T,TUT, X(TUT), \phi \}
 - 2 = \{\neg p, T,TUT, X(TUT), \neg \phi \}
 - 3 = \{p, T,TUT, \neg X(TUT), \neg \phi \}$
Example II

- Buchi automaton for atomic proposition p