Program correctness
Linear Time Temporal Logic

Marcello Bonsangue
Formal Verification

Verification techniques comprise

- a modelling framework M
 to describe a system

- a specification language ϕ
 to describe the properties to be verified

- a verification method $M \models \phi$, $\Gamma \vdash \phi$
 to establish whether a model satisfies a property
Motivations

- For an elevator system, consider the requirements:
 - any request must ultimately be satisfied
 - the elevator never traverses a floor for which a request is pending without satisfying it

- Both concern the **dynamic behavior** of the system. They can be formalized using a time-dependent notation, like

\[z(t) = \frac{1}{2}gt^2 \]

for the free-falling elevator
Example

In first order logic, with

- \(E(t) \) = elevator position at time \(t \)
- \(P(n,t) \) = pending request at floor \(n \) at time \(t \)
- \(S(n,t) \) = servicing of floor \(n \) at time \(t \)

Any request must ultimately be satisfied

\[
\forall t \ \forall n \ (P(n,t) \Rightarrow \exists t' > t : S(n,t'))
\]

The elevator never traverse a floor for which a request is pending without satisfying it

\[
\forall t \forall t' > t \forall n \ (P(n,t) \land E(t') \neq n \land \exists t < t'' < t' : E(t'') = n) \Rightarrow \exists t < t'' < t' : S(n,t'')
\]
Temporal Logic

- First order logic is too cumbersome for these specifications

- Temporal logic is a logic tailored for describing properties involving time
 - the time parameter t disappears
 - temporal operators mimic linguistic constructs
 - always, until, eventually
 - the truth of a proposition depend on the state on which the system is
LTL: the language

- **Atomic propositions** \(p_1, p_2, \ldots, q, \ldots \)
 - to make statements about states of the system
 - elementary descriptions which in a given state of the system have a well-defined truth value:
 - the printer is busy
 - nice weather
 - open
 - \(x + 2 = y \)

- Their choice depend on the system considered
LTL: the language

- Boolean combinators
 - true \(\top \)
 - false \(\bot \)
 - negation \(\neg \)
 - conjunction \(\land \)
 - disjunction \(\lor \)
 - implication \(\Rightarrow \)

Note: read \(p \Rightarrow q \) as “if \(p \) then \(q \)” rather than “\(p \) implies \(q \)”.

Try \((1 = 2) \Rightarrow \text{Sint_Klas_exists} \)
LTL: the language

- **Temporal combinators** allows to speak about the sequencing of states along a computation (rather than about states individually)

- **neXt**

 - $X\phi$ = *in the next state ϕ holds*

 - Examples: XXerror and XXXok

```
0 1 2 2
<table>
<thead>
<tr>
<th>warm, ok</th>
<th>ok</th>
<th>error</th>
<th>error</th>
</tr>
</thead>
</table>

0 1 2 0
| warm, ok | ok | error | warm, ok |
```


LTL: Temporal combinators

- **Future**
 - $F\phi = \text{in some future state } \phi \text{ holds}$ (at least once and without saying in which state)
 - For example, $\text{warm } \Rightarrow F\text{ok}$ holds if we are in a “warm” state then we will be in an “ok” state.

![Diagram](attachment:image.png)
LTL: Temporal combinators

- **Globally**
 - $G\phi = \text{in all future states } \phi \text{ always holds}$
 - It is the dual of F: $G\phi = \neg F \neg \phi$

- For example $G(warm \Rightarrow Fok)$ holds if at any time when we are in a “warm” state we will later be in an “ok” state.

- $G(warm \Rightarrow X\neg \text{warm})? G(ok \Rightarrow X\text{warm})?$

![Diagram showing states and transitions]

- States: 0 (warm, ok), 1 (ok), 2 (error)
- Transitions: 0 to 0, 0 to 1, 1 to 2, 2 to 1, 2 to 2
LTL: Temporal combinators

- **Until**
 \[\square \phi_1 U \phi_2 = \phi_2 \] will hold in some future state, and in all intermediate states \(\phi_1 \) will hold.

- **Weak until**
 \[\square \phi_1 W \phi_2 = \phi_1 \] holds in all future states until \(\phi_2 \) holds.
 \[\square \] it may be the case \(\phi_2 \) will never hold.
LTL: Temporal combinators

- **Release**

 - $\phi_1 R \phi_2 = \phi_2$ holds in all future states up to (and including) a state when ϕ_1 holds (if ever).

 - It is the dual of U: $\phi_1 R \phi_2 = \neg(\neg \phi_1 U \neg \phi_2)$
LTL - Priorities

- Unary connectives bind most tightly
 - \neg, X,F,G
- Next come U, R and W
- Finally come \land, \lor and \Rightarrow

$Fp \Rightarrow Gr \lor \neg q Up$

Diagram:

```
  F
  p

  G
  r

  U
  p

  \lor

  \neg

  q
```
LTL models: Transition Systems

- **Transition system**: \(<S, \to, L>\)
 - \(S\): set of states
 - \(L: S \to \mathcal{P}(\text{Atoms})\): labelling function
 - \(\to \subseteq S \times S\): transition relation
 - Every state \(s\) has some successor state \(s'\) with \(s \to s'\)

- A system evolves from one state to another under the action of a transition

- We label a state with propositions that hold in that state
Computation paths

- **Path**: an infinite sequence π of states such that each consecutive pair is connected by a transition

 \[0 \rightarrow 1 \rightarrow 2 \rightarrow 0 \rightarrow \ldots \]

- For $i \geq 1$, we write π^i for the suffix of a path π starting at i.
Semantics (I)

Let $M = <S, \rightarrow, L>$ be a transition system, and $\pi = s_1 \rightarrow s_2 \rightarrow \ldots$ a path of M.

- $\pi \models \top$
 always
- $\pi \models p$
 iff $p \in l(s_1)$
- $\pi \models \neg \phi$
 iff $\pi \not\models \phi$
- $\pi \models \phi_1 \land \phi_2$
 iff $\pi \models \phi_1$ and $\pi \models \phi_2$
Semantics (II)

- $\pi \models X\phi$ iff $\pi^2 \models \phi$
- $\pi \models F\phi$ iff there is $1 \leq i$ such that $\pi^i \models \phi$
- $\pi \models G\phi$ iff for all $1 \leq i$, $\pi^i \models \phi$
- $\pi \models \phi_1 U \phi_2$ iff there is $1 \leq i$ such that $\pi^i \models \phi_2$
 and for all $j < i$, $\pi^j \models \phi_1$
- $\pi \models \phi_1 W \phi_2$ iff either $\pi \models \phi_1 U \phi_2$ or for all $1 \leq i$, $\pi^i \models \phi_2$
- $\pi \models \phi_1 R \phi_2$ iff either there is $1 \leq i$ such that $\pi^i \models \phi_1$
 and for all $j \leq i$, $\pi^j \models \phi_2$
 or for all $1 \leq k$, $\pi^k \models \phi_2$
System properties

- \(M, s \models \phi \text{ iff } \pi \models \phi \) for every path \(\pi \) of \(M \) starting from the state \(s \)

- \(M, 0 \models \text{okWerror} \)

- \(M, 0 \not\models \text{okUerror} \) (Why?)