1. **[1 point]** For each of the following four pairs of CTL formulas say if they are equivalent or find a model of one of the pair which is not a model of the other:
 a) $AF(\phi \lor \psi)$ and $AF\phi \lor AF\psi$
 b) $\neg AF(\phi \lor \psi)$ and $EF(\neg \phi \land \neg \psi)$
 c) $true$ and $AG\phi \rightarrow EF\phi$
 d) $true$ and $EG\phi \rightarrow AF\phi$.

2. **[1,5 points]** Use the labelling algorithm to give the set of all states of the following transition system satisfying the CTL formula $AGAF(p \lor q)$:

 ![Diagram of a transition system](image)

3. **[1,5 points]** Prove the equivalence between the following three pairs of LTL formulas by explicitly referring to their formal semantics:
 a) $\neg X\phi$ and $X\neg\phi$
 b) $\neg F\phi$ and $G\neg\phi$
 c) $G\neg\phi$ and $\neg(true U \phi)$.

4. **[1,5 points]** Let C be the command $while \ x \neq 0 \ do \ x := x+1 \ od$.
 a) Is the partial correctness assertion $\{false\} C \{true\}$ valid? Justify your answer.
 b) For which preconditions ϕ is the partial correctness assertion $\{\phi\} C \{true\}$ valid?
 c) For which preconditions ϕ is the total correctness assertion $\{\phi\} C \{true\}$ valid?

5. **[2 points]** Exhibit a proof tree for the partial correctness of the following Hoare triple:

 $\{y \geq 0\} \ if \ x>y \ then \ x:=y \ else \ if \ x<0 \ then \ x:=0 \ fi \ fi \ \{0 \leq x \leq y\}$

6. **[2,5 points]** Consider the following Hoare triple for a command computing the greatest common divisor $gcd(m,n)$ of two positive integers m and n:

 $\{ x \geq 1 \land y \geq 1 \land x = x_0 \land y = y_0 \}$
 while $x \neq y$ do
 if $(x < y)$ then
 $y := y - x$;
 else
 $x := x - y$;
 fi
 od
 $\{ x = gcd(x_0,y_0) \}$

 Give a proof outline for total correctness. Clearly identify the invariant and the variant.
 Remember that $gcd(m,n) = gcd(m,m-n)$ for positive integers m and n with $n < m$.

The final score is given by the sum of the points obtained.