
Object Connectivity in a

Concurrent Calculus of Classes

— Extended Abstract —

September 26, 2003

Erika Ábrahám1,2, Marcello M. Bonsangue3, Frank S. de Boer4, and Martin
Steffen1

1 Christian-Albrechts-University Kiel, Germany
2 University Freiburg, Germany

3 University Leiden, The Netherlands
4 CWI Amsterdam, The Netherlands

Abstract. The concurrent ν-calculus has been investigated as a core
calculus for imperative, object-oriented languages with multithreading
and heap-allocated objects. From an abstract point of view, the combi-
nation of this form of concurrency with objects corresponds to features
known from the popular language Java. One distinctive feature, however,
of the concurrent object calculus is that it is object-based, whereas the
mainstream of object-oriented languages is class-based.

This work extends the concurrent ν-calculus by introducing classes and
exploring some of the semantical consequences. The external behavior of
a component, given as a set of threads and objects, can be described in
a linear-time setting as the set of traces of interactions with the environ-
ment. Considering classes as part of the component makes instantiation
a possible interaction between component and environment. A striking
consequence of this new interaction is that we need to take into account
connectivity information, i.e., the way objects may have knowledge of
each other, in order to get a precise characterization of possible traces.
We formulate an operational semantics that incoporates the connectiv-
ity information into the scoping mechanism of the ν-calculus. Since in-
stantiation itself is to be considered as non-observable, we formulate a
semantics where objects are instantiated only when they are accessed for
the first time (“lazy instantiation”).

1 Introduction

The concurrent ν-calculus has been proposed as core calculus for imperative,
object-oriented languages with multithreading and heap-allocated objects. In
the context of concurrent, object-based programs and starting from may-testing
as a very simple notion of observation, Jeffrey and Rathke [4] provide a fully
abstract trace semantics for the language. Their result roughly says that, given
a component as a set of objects and threads, the fully abstract semantics consists

2 Introduction

of the set of traces at the boundary of the component, where the traces record
incoming and outgoing calls and returns. At this level, the result is as one would
expect, since intuitively in the chosen setting, the only possible way to observe
something about a set of objects and threads is by exchanging messages. It should
be equally clear, however, that for the language featuring multithreading, object
references with aliasing, and creation of new objects and threads, the details of
defining the semantics and proving the full abstraction result are far from trivial.

The result in [4] is developed within the concurrent ν-calculus [3], an ex-
tension of the sequential ν-calculus [6] which stands in the tradition of various
object calculi [1] and also of the π-calculus [5, 7]. One distinctive feature of the
ν-calculus is that it is object-based, which in particular means that there are
no classes as templates for new objects. This is in contrast to the mainstream
of object-oriented languages where the code is organized in classes. This report
addresses therefore the following question:

What changes when switching from an object-based to a class-based
setting?

Considering the observable behavior of a component, we have to take into
account that in addition to objects, which are the passive entities containing
the instance state and the methods, and threads, which are the active entities,
classes come into play. Classes serve as a blueprint for their instances and can be
conceptually understood as particular objects supporting just a method which
allows to generate instances.

Important in our context is that now the division between the program frag-
ment under observation and its environment also separates classes: There are
classes internal to the component and those belonging to the environment. As a
consequence, not only calls and returns are exchanged at the interface between
component and environment, but instantiation requests, as well. This possibility
of cross-border instantiation is absent in the object-based setting: Objects are
created by directly providing the code of their implementation, not referring to
the name of a class, which means that the component creates only component-
objects and dually the environment only environment objects. To understand
the bearing of this change on the semantics, we must realize that the interesting
part of the problem is not so much to just cover the possible behavior at the
interface —there is little doubt that sequences of calls, returns, and instantia-
tions with enough information at the labels would do— but to characterize it
exactly, i.e., to exclude impossible environment interaction. As an obvious exam-
ple, a trace with two consecutive calls from the same thread without outgoing
communication in between cannot be part of the component behavior.

Let’ s concentrate on the issue of instantiation across the demarcation line
between component and its environment, and imagine that the component cre-
ates an instance of an environment class. The first question is: does this yield a
component object or an environment object? As the code of the object is pro-
vided by the external class which is in the hand of the observer, the interaction
between the component and the newly created object can lead to observable ef-

Introduction 3

fects and must thus be traced. In other words, instances of environment classes
belong to the environment, and those of internal classes to the component.

Whereas in the above situation, the object is instantiated to be part of the
environment, the reference to it is kept at the creator, for the time being. So
in case, an object of the program, say o1 instantiates two objects o2 and o3 of
the environment, the situation informally looks as shown in Figure 1, where the
dotted bubbles indicate the scope of o2 respectively o3.

o1

o2

o3

c2 c3

program environment

Fig. 1. Instances of external classes

In this situation it is impossible, that
there be an incoming call from the envi-
ronment carrying both names o2 and o3,
as the only entity aware of both references
is o1. Unless the component gives away
the reference to the environment, o2 and
o3 are completely separated.

Thus, in order to exclude impossible
combinations of object reference in the
communication labels, the component has
to keep track which objects of the envi-
ronment are connected. The component
has, of course, by no means full informa-

tion about the complete system; after all it can at most trace what happens
at the interface, and the objects of the environment can exchange information
“behind the component’s back”. Therefore, the component must conservatively
over-approximate the potential knowledge of objects in the environment, i.e., it
must make worst-case assumptions concerning the proliferation of knowledge,
which means it must assume that

1. once a name is out, it is never forgotten, and
2. if there is a possibility that a name is leaked from one environment object

to another, this will happen.

Sets of environment objects which can possibly be in contact with each other
form therefore equivalence classes of names —we call them cliques— and the
formulation of the semantics must include a representation of them. New cliques
can be created, as new objects can be instantiated without contact to others, and
furthermore cliques can merge, if the component leaks the identity of a member
of one clique to a member of another.

This extended abstract investigates a class-based variant of the concurrent
ν-calculus, formalizing the ideas sketched above about cliques of objects. Instan-
tiation itself, even across the environment-program boundary, is unobservable,
since the calculus does not have constructor methods. In the semantics, an exter-
nally instantiated object is created only at the point, when it is actually accessed
the for the first time, which we call “lazy instantiation”. For want of space, we
concentrate here on the intuition and, in the formal part, the operational se-
mantics describing the external behavior of a component. For deeper coverage
we refer to the technical report [2]; the derivation rules for typing and for the
operational semantics are included also in the appendix for reference.

4 A concurrent class calculus

2 A concurrent class calculus

In this section, we present the calculus used in our development. As we concen-
trate on the semantical issues of connectivity of objects and the interface behav-
ior of a component, we gloss over the exact syntax, ignore typing issues and also
omit structural equivalence rules, as they are rather standard. As mentioned, the
reader will find details in the appendix and the accompanying technical report.

The calculus is a syntactic extension of the concurrent object calculus or
concurrent ν-calculus from [3, 4]. The basic change is the introduction of classes,

where a class is a named collection of methods. In contrast to object references,
class names are literals introduced when defining the class; they may be hid-
den using the ν-binder but unlike object names, the scopes for class names are
static. Object names, on the other hand, are first-order citizens of the calculus in
that they can be stored in variables, passed to other objects as method parame-
ters, making the scoping dynamic, and especially they can be created freshly by
instantiating a class.

A program is given by a collection of classes. A class c[(O)] carries a name c

and defines the implementation of its methods, and analogously for objects. A
method ς(n:T).λ(x1:T1, . . . , xn:Tk).t provides the definition of the method body
abstracted over the formal parameters of the method and the ς-bound “self”
parameter [1]. Besides named objects and classes, the dynamic configuration of
a program can contain as active entities named threads n〈t〉, which, like objects,
can be dynamically created. Unlike objects, threads are not instantiated by some
statically named entity (a “thread class”), but directly created by providing the
code. A thread, whose exact syntax is of no particular interest here, basically is
either a value (especially a reference to another named entity) or a sequence of
expressions, notably method calls (written o.l(~v)) and creation of new objects
and new threads (new c and new〈t〉 where c is a class name and t a thread).
We will generally use n and its syntactic variants as name for threads (or just
in general for names), o for objects, and c for classes. Furthermore we will use
f specifically for instance variables or fields, we use f = v for field variable
declaration, field access is written as x.f , and field update as x := v.5

Concerning the operational semantics of the calculus, the basic steps are
given in two levels: internal steps whose effect is completely confined within a
configuration, and those with external effect. Interested mainly in the external
behavior we elide the definition of the internal steps (but see Appendix A.3).

The external behavior of a component is given in terms of labeled transi-
tions describing the communication at the interface of an open program. For the
completeness of the semantics, it is crucial ultimately to consider only commu-
nication traces realizable by an actual program context which, together with the
component, yields a well-typed closed program.

5 In the class-based setting we don’t use general method update as supported by the
object-based ν-calculus.

A concurrent class calculus 5

The concentration on actually realizable traces has various aspects, e.g., the
transmitted values needs to adhere to the static typing assumptions, only pub-
licly known objects can be called from the outside, and the like. Being concerned
in the dynamic relationship among objects, we omit also these aspects here. Be-
sides that, this part is rather standard and also quite similar to the one in [4].

2.1 Connectivity contexts and cliques

The informal discussion in the introduction argued that in the presence of in-
ternal and external classes and cross-border instantiation, the component must
keep track of which identities it gives away to which objects in order to exclude
impossible as described for instance in connection with Figure 1. The external
semantics is formalized as labeled transitions between judgments of the from

∆; E∆ ` C : Θ; EΘ , (1)

where ∆; E∆ are the assumptions about the environment of the component C

and Θ; EΘ the commitments. The assumptions consists of a part ∆ concerning
the existence (plus static typing information) of named entities in the environ-
ment. For the book-keeping of which objects of the environment have been told
which identities, a well-typed component must take into account the relation

of object names from the assumption context ∆ amongst each other, and the
knowledge of objects from ∆ about those exported by the component, i.e., those
from Θ. 6 In analogy to the name contexts ∆ and Θ, E∆ expresses assumptions
about the environment, and EΘ commitments of the component.

E∆ ⊆ ∆× (∆ + Θ) . (2)

and dually EΘ ⊆ Θ × (Θ + ∆). We will write o1 ↪→ o2 (“o1 may know o2”)
for pairs from these relations. The component has by no means full information
about the complete system; after all it can at most trace what happens at the
interface, and the objects of the environment can exchange information “behind
the component’s back”. Thus it must conservatively overapproximate the po-
tential knowledge of objects in the environment, i.e., it must make worst-case

assumptions concerning the proliferation of knowledge by assuming:

1. once a name is out, it is never forgotten, and
2. if there is a possibility that a name is leaked from one environment object

to another, this will happen.

More technically, the worst case assumptions about the actual situation are
represented as the reflexive, transitive, and symmetric closure of the ↪→-pairs of

6 Besides the relationships amongst objects, we need to keep one piece of information
concerning the “connectivity” of threads. To exclude situations where a known thread
leaves the component into one clique of objects but later returns to the component
coming from a different clique without connection to the first, we remember for each
thread that has left the component the object from ∆ it has left into.

6 A concurrent class calculus

objects from ∆ the component maintains. Given ∆, Θ, and E∆, we write � for
this closure, i.e.,

� , (↪→↓∆ ∪ ←↩↓∆)∗ ⊆ ∆×∆ . (3)

Note that we close the part of ↪→ concerning only environment objects from ∆,
but not wrt. objects at the interface, i.e., the part of ↪→ ⊆ ∆×Θ. We will also
need the union of � ∪�; ↪→ ⊆ ∆× (∆ + Θ), for which we will also write �↪→.
As judgment, we use ∆; E∆ ` v1 � v2 : Θ respectively ∆; E∆ ` v1 �↪→ v2 : Θ.
For Θ, EΘ, and ∆, the definitions are applied dually.

The relation� is an equivalence relation on the objects from ∆ and partitions
them in equivalence classes. As a manner of speaking, we call a set of object
names from ∆ (or dually from Θ) such as for all objects o1 and o2 from that
set, ∆; E∆ ` o1 � o2 : Θ, a clique, and if we speak of the clique of an object we
mean the whole equivalence class.

2.2 External steps

As mentioned before, the external semantics is given by transitions between
∆; E∆ ` C : Θ; EΘ judgments. Table 1 for the exchange of free names and in
Table 2 dealing with bound names. Beside internal steps a component exchanges
information with the environment by transitions; the core labels γ are of the form
n〈[o]call o.l(~v)〉 and n〈return(v)〉; names may occur bound in a label ν(n:T).γ,
and sending and receiving labels are written as γ? and γ!.

The component exchanges information with the environment via calls and
returns. Using a lazy instantiation scheme for cross-border object creation, there
are no separate external labels for new -steps. In the extended abstract, we omit
the static typing premises in the operational rules as they are straightforward and
we concentrate in the discussion on the novel aspects, namely the connectivity
information. The external steps are given in Tables 1 and 2.

As for the relationship of communicated values, incoming and outgoing com-
munication play dual roles: EΘ overapproximates the actual connectivity of the
component, while the assumption context E∆ is consulted to exclude impossible
combinations of incoming values. For incoming communication (cf. rule CallI2

and RetI)7 we require that the sender be acquainted with the transmitted ar-
guments. In case of a call, the caller o1 must additionally be acquainted with
the callee o2 and furthermore the calling thread must originate from a clique of
objects in connection with the one to which the thread had left the component
the last time: ∆; E∆ ` n � [o1] : Θ.8 To assure these connectivity conditions,
the identity of the callee has been remembered as part of the block-syntax when
the call was issued. It is worth mentioning that in rule RetI the proviso that the
callee o2 knows indirectly the caller o1, i.e., ∆; E∆ ` o2 �↪→ o1 : Θ is not needed.
Neither is it necessary to require in analogy to the situation for the incoming call

7 We omit rule CallI1 which deals with a thread that entering for the first time. The
rule is identical to CallI2 as far as the treatment of E∆ and EΘ is concerned.

8 Since the caller o1 is in the domain of ∆, we can write n� [o1] instead of n�↪→ [o1].

A concurrent class calculus 7

E∆ ` [o1] �↪→ ~v : Θ E∆ ` [o1] �↪→ o2 : Θ E∆ ` n � [o1] : Θ

É∆ = E∆ \n ÉΘ = EΘ + (o2 ↪→ ~v, n ↪→ o2)
CallI2

∆; E∆ ` C ‖ n〈let x′:T ′ = [o2] blocks for o′
2 in t〉 : Θ; EΘ

n〈[o1]call o2.l(~v)〉?
−−−−−−−−−−−−−→

∆; É∆ ` C ‖ n〈let x:T = o2.l(~v) in return[o1] x; let x′:T ′ = [o2] blocks for o′
2 in t〉 : Θ; ÉΘ

É∆ = E∆ + ([o1] ↪→ v, n ↪→ [o1]) ÉΘ = EΘ \n
RetO

∆; E∆ ` C ‖ n〈let x:T = return[o1] v in t〉 : Θ; EΘ

n〈return(v)〉!
−−−−−−−−→ ∆; É∆ ` C ‖ n〈t〉 : Θ; ÉΘ

o2 ∈ ∆ É∆ = E∆ + (o2 ↪→ ~v, n ↪→ o2) ÉΘ = EΘ \n
CallO

∆; E∆ ` C ‖ n〈let x:T = [o1] o2.l(~v) in t〉 : Θ; EΘ

n〈[o1]call o2.l(~v)〉!
−−−−−−−−−−−−−→

∆; É∆;` C ‖ n〈let x:T = [o1] blocks for o2 in t〉 : Θ; EΘ

; ∆, Θ ` v : T ∆; E∆ ` o2 �↪→ v : Θ ∆; E∆ ` n ↪→ o2 : Θ

É∆ = E∆ \n ÉΘ = EΘ + (o1 ↪→ v, n ↪→ [o1])
RetI

∆; E∆ ` C ‖ n〈let x:T = [o1] blocks for o2 in t〉 : Θ; EΘ

n〈return(v)〉?
−−−−−−−−−→

∆; É∆ ` C ‖ n〈t[v/x]〉 : Θ; ÉΘ

Table 1. External steps (free core labels)

that the thread is acquainted with the callee. If fact, both requirements will be
automatically assured for traces where calls and return occur in correct manner.
A commonality for incoming communication from a thread n is that the (only)
pair n ↪→ o for some object reference o is removed from E∆, for which we write
E∆ \n. While E∆ imposes restrictions for incoming communication, the com-
mitment context EΘ is updated when receiving new information. For instance
in CallI2, the commitment ÉΘ after reception marks that now the callee o2 is
acquainted with the received arguments and furthermore that the thread n is
visiting (for the time being) the callee o2. For outgoing communication, the E∆

and EΘ play dual roles. Note further that EΘ is not mentioned (except for the
connectivity of the thread identity n).

2.3 Scoping, lazy instantiation, and guessing of connectivity

Next we discuss the exchange of new names by means of scope extrusion and
intrusion and related to that instantiation across the component boundary (cf.
Table 2). Besides bound names in the form ν(n:T), the labels contain also con-

nectivity information which is exchanged. This means the labels are of the form
ν(n:T, EΘ).γ! of outgoing and ν(n:T, E∆).γ? for incoming communication.

As expected, the ν-binder influences only names occurring freely in the label
(cf. rule Comm). In case of a bound input with label ν(n:T, Ẽ∆).γ? in rule BIn,
the name’s scope is extruded into the component. The treatment of the knowl-
edge base E∆ merits a closer look. As specified in Ẽ∆ ⊆ ∆′ + (∆′ × Θ), a new

8 A concurrent class calculus

n /∈ fn(a) ∆; E∆ ` C : Θ, n:T
a
−→ ∆́; É∆ ` Ć : Θ́, n:T ; ÉΘ

Comm

∆; E∆ ` ν(n:T).C : Θ
a
−→ ∆′; E′

∆ ` ν(n:T).C′ : Θ́; ÉΘ \n

n ∈ fn(γ) ∆′ = ∆, n:T E′

∆ = E∆ + Ẽ∆ ∆; E∆ ` ∆′; E′

∆ ↓∆×(∆+Θ): Θ

∆′; E′

∆ ` C : Θ
γ?
−→ ∆́; É∆ ` Ć : Θ́; ÉΘ

BIn

∆; E∆ ` C : Θ
ν(n:T ;Ẽ∆).γ?
−−−−−−−−−→ ∆́; É∆ ` Ć : Θ́; ÉΘ

n ∈ fn(γ) ∆; E∆ 6` T : [(. . .)]

∆; E∆ ` (C \n) : Θ, n:T ; EΘ + EΘ(C, n)
γ!
−→ ∆́; É∆ ` Ć : Θ́; ÉΘ

BOut

∆; E∆ ` ν(n:T).C : Θ; EΘ

ν(n:T ;E�↪→
Θ

(C,n)).γ!
−−−−−−−−−−−−−−→ ∆́; É∆ ` Ć : Θ́; ÉΘ

o ∈ fn(γ) Θ ` c : [(. . .)] C(c) = [(O)]

Θ′ = Θ, o:c E′

∆ = E∆ + Ẽ∆ ∆; E∆ ` ∆; E′

∆ ↓∆×(∆+Θ): Θ

∆; E′

∆ ` C ‖ o[O] : Θ′; EΘ
γ?
−→ ∆́; É∆ ` Ć : Θ́; ÉΘ

BInnew

∆; E∆ ` C : Θ
ν(o:c;Ẽ∆).γ?
−−−−−−−−→ ∆́; É∆ ` Ć : Θ́; ÉΘ

o ∈ fn(γ) ∆ ` c : [(. . .)]

∆, o:c; E∆ ` C : Θ; EΘ + E�↪→
Θ (C, n)

γ!
−→ ∆́; É∆ ` Ć : Θ́; ÉΘ

BOutnew

∆; E∆ ` ν(o : c).C : Θ; EΘ

ν(o:c;E�↪→
Θ

(C,n)).γ!
−−−−−−−−−−−−−→ ∆́; É∆ ` Ć : Θ́; ÉΘ

Table 2. External steps (scoping)

name of an object is related to some other objects. Now the gist is to under-
stand that while the rule guesses which acquaintances the new object has, it is
not completely free to do so! Since E∆ is maintained as a worst-case assumption
about the connectivity of the known external objects, learning about of a fresh
object must not contradict this assumption. Intuitively, by creating new objects,
which are initially unknown to the component, the environment cannot contact
objects it could not contact otherwise. This restriction is captured in the proviso

∆; E∆ ` ∆́; É∆ ↓∆×(∆+Θ): Θ , (4)

where ∆′ = ∆, n:T in the rule, which requires that the addition of connectivity
of the new identity n added to ∆ may not lead to new derivable equations for
the objects previously known. The requirement, ∆; E∆ ` E′

∆ ↓∆×(∆+Θ): Θ thus
stands for the implication: If ∆′; E′

∆ ` o1 �↪→ o2 : Θ, then ∆; E∆ ` o1 �↪→
o2 : Θ, for all o1 from ∆ and o2 from ∆, Θ. In other words, E′

∆ is a conservative

extension of E∆ wrt. the old objects. More colloquially, incoming communication
brings “no news about old objects” as we assume the worst already.

The rule BOut for bound output is similar, except that here we can consult
the component C and especially the “↪→”-parts of it to determine the connectiv-
ity part of the label: We add the all names from Θ′×(Θ′+∆) where Θ′ = Θ, n:T
which according to C are acquainted with n. The set of acquainted objects are

Conclusion 9

those in the reflexive, transitive, and symmetric closure in the sense of Equa-
tion 3 from. We write E�↪→(C, n) for that set of names. With the scope opened,
we remove from C all ↪→-pairs mentioning n.

Object creation across component boundary is not immediately visible. In-
stead, new objects are actually created only when first communicated to or used
by the other side. We call the mechanism lazy instantiation. If the component
creates an instance of an external class c ∈ ∆, a new reference o3 is generated lo-
cally. Additionally it is remembered in a separate “parallel component” o1 ↪→ o3

that the creator o1 may now know o3. The -step itself is not externally visible:

c ∈ ∆
NewOlazy

∆; E∆ ` n〈let x:c = [o1] new c in t〉 : Θ; EΘ

∆; E∆ ` ν(o3:c).o1 ↪→ o3 ‖ n〈let x:c = o3 in t〉 : Θ; EΘ

If now the accesses the provisionally created object, it is an external step
where the new object is mentioned in the label (cf. rule BOutnew). In contrast
to ordinary scope extrusion in BOut, the one for lazy instantiation extends the
assumption context ∆. Since furthermore the object is unknown in the environ-
ment, the assumption context E∆ is used unchanged in the premise of the rule
before the output step. The rule BInnew works symmetric, where the component
incorporates the component class instance upon request from the environment.

3 Conclusion

In this report we presented, inspired by the work of [4], an operational semantics
of a class-based, object-oriented calculus with multithreading. The seemingly
innocent step from an object-based setting as in [4] to a framework with classes
requires quite some extension in the operational semantics to characterize the
possible behavior of a component. In particular it is necessary to keep track of
the potential connectivity of objects of the environment to exclude impossible
communication labels.

It is therefore instructive, to review the differences in this conclusion, espe-
cially to try to understand how the calculus of [4] can be understood as a special
case of the framework explored here.

The fundamental dichotomy underlying the observational definition of equiv-
alence is the one between the inside and the outside: program or component vs.
environment or observer. This leads to the crucial difference between object-
based languages, instantiating from objects, and class-based language, instan-
tiating from classes: In the class-based setting, instantiation may cross the de-

marcation line between component and environment, while in the object-based
setting, this is not possible: the program only instantiates program objects, and
the environment only objects belonging to the environment. All other compli-
cations, expounded here at some great length, follow from this difference. The

10 Conclusion

most visible complication is that it is necessary to represent the dynamic object
structure into the semantics, or rather an approximation of the connectivity of
the environment objects. Another way to see it is, that in the setting of [4], there
is only one clique in the environment, i.e., in the worst case, which is the relevant
one, all environment objects are connected with each other. Since the component
cannot create environment objects (or vice versa), never new isolated cliques are
created. The object-based case can therefore be understood by invariantly (and
trivially) taking E∆ = ∆ × (∆ + Θ), while in our setting, E∆ may be more
specific.

We see this study of the semantics as a step towards a full-abstraction result
for the class-based calculus. Other future work is to extend the language and
the semantics in a number of ways. One inherent feature of the calculus is that
objects are input enabled. This disallows to model directly synchronized methods

as in Java. Another generalization is to consider cloning of objects, i.e., to create
a replica of an object In a certain way, instantiation of a class is just like cloning
with the restriction that only objects in their initial state can be obtained by
instantiation, while cloning can be applied to an object in mid-life. The ability to
create an object in a state different from the initial one makes new observations
possible, most notably the branching structured gets exposed. One therefore has
to generalize the linear-time framework of traces to a branching-time view. More
challenging is to take seriously the notion of classes in that they are not only
considered as generator of new objects by instantiation, but also as template
for new classes, i.e., to consider inheritance and subtyping. This makes new
“observations” on classes possible, namely by subclassing.

References

1. M. Abadi and L. Cardelli. A Theory of Objects. Monographs in Computer Science.
Springer, 1996.

2. E. Ábrahám, M. M. Bonsangue, F. S. de Boer, and M. Steffen. A structural oper-
ational semantics for a concurrent class calculus. Technical Report 0307, Institut
für Informatik und Praktische Mathematik, Christian-Albrechts-Universität zu Kiel,
Aug. 2003.

3. A. D. Gordon and P. D. Hankin. A concurrent object calculus: Reduction and typing.
In U. Nestmann and B. C. Pierce, editors, Proceedings of HLCL ’98, volume 16.3
of Electronic Notes in Theoretical Computer Science. Elsevier Science Publishers,
1998.

4. A. Jeffrey and J. Rathke. A fully abstract may testing semantics for concurrent
objects. In Proceedings of LICS ’02. IEEE, Computer Society Press, July 2002.

5. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, part I/II.
Information and Computation, 100:1–77, Sept. 1992.

6. A. M. Pitts and D. B. Stark. Observable properties of higher-order functions that
dynamically create local names, or: What’s new. In A. M. Borzyszkowski and
S. Soko lowski, editors, Proceedings of MFCS ’93, volume 711 of Lecture Notes in

Computer Science, pages 122–141. Springer-Verlag, Sept. 1993.
7. D. Sangiorgi and D. Walker. The π-calculus: a Theory of Mobile Processes. Cam-

bridge University Press, 2001.

Appendix 11

A Appendix

The appendix contains further material, especially the formalization of the type
system and the operational semantics for internal component behavior. Further
material and discussions can be found in the technical report [2].

A.1 Syntax

Table 3 and 4 give the definitions of the types and the abstract syntax. For the
types [(l1:U1, . . . , lk:Uk)] is the type of a class, whose instances support methods
labeled l1 to lk of the indicated types, and [l1:U1, . . . , Uk] the type of correspond-
ing instances.

T ::= B | none | thread | [l:U, . . . , l:U] | n | [(l:U, . . . , l:U)]
U ::= T × . . . × T → T

Table 3. Types

C ::= 0 | C ‖ C | ν(n:T).C | n[(O)] | n[O] | n〈t〉 program
O ::= l = m, . . . , l = m object
m ::= ς(n:T).λ(x:T, . . . , x:T).t method
t ::= v | stop | let x:T = e in t thread
e ::= t | if v = v then e else e expr.

| v.l(v, . . . , v) | n.l ⇐ m | currentthread

| new n | new 〈t〉
v ::= x | n values

Table 4. Abstract syntax

A.2 Type system

The type system or static semantics presented next characterizes the well-typed
programs. The derivation rules are given in Table 5 and 6.

A.3 Internal steps

For the component-internal steps from Table 7 we distinguish, as in [4], confluent
 -step and competing τ -steps, i.e., steps that may lead to race conditions. Both
kind of steps are invisible to the outside.

12 Appendix

T-Empty

∆ ` 0 : ()

∆, Θ2 ` C1 : Θ1 ∆, Θ1 ` C2 : Θ2
T-Par

∆ ` C1 ‖ C2 : Θ1, Θ2

∆ ` C : Θ, n:T
T-Nu

∆ ` ν(n:T).C : Θ

; ∆, c:T ` [(O)] : T
T-NClass

∆ ` c[(O)] : (c:T)

; ∆, o:c ` [O] : [T] ; ∆ ` c : [(T)]
T-NObj

∆ ` o[O] : (o:c)

; ∆, n: thread ` t : none
T-NThread

∆ ` n〈t〉 : (n: thread)

Table 5. Static semantics (components)

A.4 External steps

In contrast to the abridged presentation in Section 2.2 we include here the full
rules for external steps. In particular, the static typing premises are listed. The
full rules are shown in Table 9.

Appendix 13

Γ ; ∆ ` m1:T1 . . . Γ ; ∆ ` mk:Tk T = [(l1:T1, . . . , lk:Tk)]
T-Class

Γ ; ∆ ` [(l1 = m1, . . . , lk = mk)] : T

Γ ; ∆ ` m1:T1 . . . Γ ; ∆ ` mk:Tk T = [l1:T1, . . . , lk:Tk]
T-Obj

Γ ; ∆ ` [l1 = m1, . . . , lk = mk] : T

Γ, x1:T1, . . . , xk:Tk; ∆, n:c ` t : T ′ Γ ; ∆ ` c : T T = [(. . . , l:T1 × . . . × Tk → T ′, . . .)]
T-Meth

Γ ; ∆ ` ς(n:c).λ(x1:T1, . . . , xk:Tk).t : T.l

Γ ; ∆ ` v : c Γ ; ∆ ` c : [(. . . , l:T1 × . . . × Tk → T, . . .)] Γ ; ∆ ` v1 : T1 . . . Γ ; ∆ ` vk : Tk

T-Call

Γ ; ∆ ` v.l(v1, . . . , vk) : T

Γ ; ∆ ` v : c Γ ; ∆ ` c : T Γ ; ∆ ` v′ : T.f
T-FUpdate

Γ ; ∆ ` v.f := v′ : c

Γ ; ∆ ` c : [(T)]
T-NewC

Γ ; ∆ ` new c : c

Γ ; ∆ ` t : T
T-NewT

Γ ; ∆ ` new〈t〉 : thread

T-CurrT

Γ ; ∆ ` currentthread : thread

Γ ; ∆ ` e : T1 Γ, x:T1; ∆ ` t : T2

T-Let

Γ ; ∆ ` let x:T1 = e in t : T2

Γ ; ∆ ` v1 : T1 Γ ; ∆ ` v2 : T1 Γ ; ∆ ` e1 : T2 Γ ; ∆ ` e2 : T2

T-Cond

Γ ; ∆ ` if v1 = v2 then e1 else e2 : T2

T-Stop

Γ ; ∆ ` stop : T

Γ (x) = T
T-Var

Γ ; ∆ ` x : T

∆(n) = T
T-Name

Γ ; ∆ ` n : T

T-Block

Γ ; ∆ ` block : T

Γ ; ∆ ` v : T
T-Return

Γ ; ∆ ` return[o1] v : T ′

Table 6. Static semantics (2)

14 Appendix

n〈let x:T = v in t〉 n〈t[v/x]〉 Red

n〈let x2:T2 = (let x1:T1 = e1 in e) in t〉 n〈let x1:T1 = e1 in (let x2:T2 = e in t)〉 Let

n〈let x:T = (if v = v then e1 else e2) in t〉 n〈let x:T = e1 in t〉 Cond1

n〈let x:T = (if v1 = v2 then e1 else e2) in t〉 n〈let x:T = e2 in t〉 Cond2

n〈let x:T = currentthread in t〉 n〈let x:T = n in t〉 CurrentThread

c[(O)] ‖ n〈let x:c = [o1] new c in t〉

c[(O)] ‖ ν(o:c).(o1 ↪→ o ‖ o[O] ‖ n〈let x:c = o in t〉)
NewOi

n〈let x: thread = new〈t〉 in t1〉 ν(n2:T).(n〈let x:T = n2 in t1〉 ‖ n2〈t〉) NewT

n〈let x:T = stop in t〉 n〈stop〉 Stop

o[O] ‖ n〈let x:T = o.l(~v) in t〉
τ
−→ o[O] ‖ n〈let x:T = O.l(o)(~v) in t〉 Calli

o[O] ‖ n〈let x:T = o.f := v in t〉
τ
−→ o[O.f := v] ‖ n〈let x:T = o in t〉 FUpdate

Table 7. Internal steps

γ ::= n〈[o]call o.l(~v)〉 | n〈return(v)〉 | ν(n:T).γ basic labels
a ::= γ? | γ! receive and send labels

Table 8. Labels

Appendix 15

; ∆ ` o1 : [. . .] ; ∆, Θ ` o2.l(~v) : T o2 ∈ Θ ∆ ` n : thread n /∈ dom(Θ)

∆; E∆ ` [o1] �↪→ ~v : Θ ∆; E∆ ` [o1] �↪→ o2 : Θ ∆; E∆ ` n � [o1] : Θ

É∆ = E∆ \n Θ́ = Θ, n: thread ÉΘ = EΘ + (o2 ↪→ ~v, n ↪→ o2)
CallI1

∆; E∆ ` C : Θ; EΘ

n〈[o1]call o2.l(~v)〉?
−−−−−−−−−−−−−→

∆; É∆ ` C ‖ n〈let x:T = o2.l(~v) in return[o1] x〉 : Θ́; ÉΘ

; ∆ ` o1 : [. . .] ; ∆, Θ ` o2.l(~v) : T o2 ∈ Θ ∆ ` n : thread

E∆ ` [o1] �↪→ ~v : Θ E∆ ` [o1] �↪→ o2 : Θ E∆ ` n � [o1] : Θ

É∆ = E∆ \n ÉΘ = EΘ + (o2 ↪→ ~v, n ↪→ o2)
CallI2

∆; E∆ ` C ‖ n〈let x′:T ′ = [o2] blocks for o′
2 in t〉 : Θ; EΘ

n〈[o1]call o2.l(~v)〉?
−−−−−−−−−−−−−→

∆; É∆ ` C ‖ n〈let x:T = o2.l(~v) in return[o1] x; let x′:T ′ = [o2] blocks for o′
2 in t〉 : Θ; ÉΘ

É∆ = E∆ + ([o1] ↪→ v, n ↪→ [o1]) ÉΘ = EΘ \n
RetO

∆; E∆ ` C ‖ n〈let x:T = return[o1] v in t〉 : Θ; EΘ

n〈return(v)〉!
−−−−−−−−→ ∆; É∆ ` C ‖ n〈t〉 : Θ; ÉΘ

o2 ∈ ∆ É∆ = E∆ + (o2 ↪→ ~v, n ↪→ o2) ÉΘ = EΘ \n
CallO

∆; E∆ ` C ‖ n〈let x:T = [o1] o2.l(~v) in t〉 : Θ; EΘ

n〈[o1]call o2.l(~v)〉!
−−−−−−−−−−−−−→

∆; É∆;` C ‖ n〈let x:T = [o1] blocks for o2 in t〉 : Θ; EΘ

; ∆, Θ ` v : T ∆; E∆ ` o2 �↪→ v : Θ ∆; E∆ ` n ↪→ o2 : Θ

É∆ = E∆ \n ÉΘ = EΘ + (o1 ↪→ v, n ↪→ [o1])
RetI

∆; E∆ ` C ‖ n〈let x:T = [o1] blocks for o2 in t〉 : Θ; EΘ

n〈return(v)〉?
−−−−−−−−−→

∆; É∆ ` C ‖ n〈t[v/x]〉 : Θ; ÉΘ

Table 9. External steps

16 Appendix

n /∈ fn(a) ∆; E∆ ` C : Θ, n:T
a
−→ ∆́; É∆ ` Ć : Θ́, n:T ; ÉΘ

Comm

∆; E∆ ` ν(n:T).C : Θ
a
−→ ∆′; E′

∆ ` ν(n:T).C′ : Θ́; ÉΘ \n

n ∈ fn(γ) ∆′ = ∆, n:T E′

∆ = E∆ + Ẽ∆ ∆; E∆ ` ∆′; E′

∆ ↓∆×(∆+Θ): Θ

∆′; E′

∆ ` C : Θ
γ?
−→ ∆́; É∆ ` Ć : Θ́; ÉΘ

BIn

∆; E∆ ` C : Θ
ν(n:T ;Ẽ∆).γ?
−−−−−−−−−→ ∆́; É∆ ` Ć : Θ́; ÉΘ

n ∈ fn(γ) ∆; E∆ 6` T : [(. . .)]

∆; E∆ ` (C \n) : Θ, n:T ; EΘ + EΘ(C, n)
γ!
−→ ∆́; É∆ ` Ć : Θ́; ÉΘ

BOut

∆; E∆ ` ν(n:T).C : Θ; EΘ

ν(n:T ;E�↪→
Θ

(C,n)).γ!
−−−−−−−−−−−−−−→ ∆́; É∆ ` Ć : Θ́; ÉΘ

o ∈ fn(γ) Θ ` c : [(. . .)] C(c) = [(O)]

Θ′ = Θ, o:c E′

∆ = E∆ + Ẽ∆ ∆; E∆ ` ∆; E′

∆ ↓∆×(∆+Θ): Θ

∆; E′

∆ ` C ‖ o[O] : Θ′; EΘ
γ?
−→ ∆́; É∆ ` Ć : Θ́; ÉΘ

BInnew

∆; E∆ ` C : Θ
ν(o:c;Ẽ∆).γ?
−−−−−−−−→ ∆́; É∆ ` Ć : Θ́; ÉΘ

o ∈ fn(γ) ∆ ` c : [(. . .)]

∆, o:c; E∆ ` C : Θ; EΘ + E�↪→
Θ (C, n)

γ!
−→ ∆́; É∆ ` Ć : Θ́; ÉΘ

BOutnew

∆; E∆ ` ν(o : c).C : Θ; EΘ

ν(o:c;E�↪→
Θ

(C,n)).γ!
−−−−−−−−−−−−−→ ∆́; É∆ ` Ć : Θ́; ÉΘ

Table 10. External steps (scoping)

