
A Fully Abstract Semantics for UML Components

F.S. de Boer1,2, M.M. Bonsangue2,�, M. Steffen3, and E. Ábrahám3

1 CWI, Amsterdam, The Netherlands
frb@cwi.nl

2 LIACS, Leiden University, The Netherlands
marcello@liacs.nl

3 Christian-Albrechts-University, Kiel, Germany
{ms, eab}@informatik.uni-kiel.de

Abstract. We present a fully abstract semantics for components. This semantics
is formalized in terms of a notion of trace for components, providing a descrip-
tion of the component externally observable behavior inspired by UML sequence
diagrams. Such a description abstracts from the actual implementation given by
UML state-machines. Our full abstraction result is based on a may testing se-
mantics which involves a composition of components in terms of cross-border
dynamic class instantiation through component interfaces.

1 Introduction

The Unified Modelling Language (UML)[18] is widely adopted as the de facto industry
standard for modelling object-oriented software systems. It consists of several graphical
notations providing different views of the system being modelled. There are two basic
types of diagrams: behavior diagrams and structure diagrams. These diagrams include
sequence diagrams, state machines, class diagrams and component diagrams.

We use UML for investigating features such as state encapsulation, and name-
passing in synchronous communication in combination with dynamic class instantia-
tion. Basically, in UML a component is a set of classes with explicit contextual depen-
dencies. Some instances of classes of a component are called ports. Components can
communicate only through their ports. Most importantly, a port of a component can
also instantiate new ports of another component. The explicit context dependencies of
a component guarantee that ports have enough structural information about the envi-
ronment. However the behavior of such an external environment is not under control
of the component itself. In other words, a component is an open program, with imple-
mentation code containing calls to operations and constructors of interfaces that are not
bound to any particular behavior specification.

From the point of view of a component, the ports of other components belong to the
environment, and are internally known only as typed identifiers. Although the behavior
of the environment is not fixed at priori, it has to obey to certain laws. For example,
because the state of a port is encapsulated, external ports cannot always communicate

� The research of Dr. Bonsangue has been made possible by a fellowship of the Royal Nether-
lands Academy of Arts and Sciences.

F.S. de Boer et al. (Eds.): FMCO 2004, LNCS 3657, pp. 49–69, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

50 F.S. de Boer et al.

with each other. To illustrate this, consider a port of a component i that creates two
new ports e1 and e2 of some component in the environment. The ports e1 and e2 are
both external, but unable to communicate with each other unless the internal object i
let one of them know the identity of the other. The above situation is characteristic of
a framework with dynamic scope: new clusters of objects that know each other can be
created as new external instances appear, and old clusters may merge as a consequence
of a communication.

1.1 Contribution of This Paper

In this paper we select a subset of UML notations suitable as basis for modelling
component-based systems. Inspired by UML sequence diagrams, we give a denota-
tional semantics to UML components in terms of traces of their externally observable
events. A trace describes a sequence of interactions between the ports of a set of compo-
nents. Here a port is an instance of a class of a component realizing one of its interface,
and an interaction is a synchronization on an operation declared on one of the interface
of a component.

We define an observational equivalence for components based on may testing, and
show that ordinary traces are, in general, not fully abstract: two components can be ob-
servationally equivalent but their associated set of traces be different. Our main result is
the characterization of trace abstractions that takes into account the clustering structure
of objects dictated by their dynamic scope. These traces are full abstract with respect to
may testing observational equivalence.

1.2 Related Work

There is an increasing interest to give a rigorous foundation to UML for addressing,
e.g., the needs for modelling safety critical applications. Some approaches are based
on translating UML subsets into existing formalisms, like the π-calculus [19], other
have proposed new meta-modelling language calculi as foundation for the semantics of
UML, e.g. [11]. In this paper we present a variant of the UML subset considered by
Damm et al. and formalized as a transition system [12]. The most significant departures
from this work are that we do not consider asynchronous inter-object communications
and do not distinguish among active, reactive and passive objects.

There are several full abstraction results for may-testing semantics for calculi of pro-
cesses interacting in dynamically changing communication topology [6,14]. The UML
description of classes by state-machines combines mechanisms for dynamic process
creation similarly to object calculi [1,10,20,16] with synchronization mechanisms as in
process calculi [9,6,14].

The closest work to our is Jeffrey and Rathke [16] fully abstract semantics of con-
current objects. While our components are open, programs in [16] are closed, in the
sense we explained above, since their creation of a new object involves the specifica-
tion of the behavior of the newly created object. Consequently, in their setting, the en-
vironment can be basically viewed as a static and a priori given group of objects. This
contrasts with our setting, where the program itself creates dynamically its own envi-
ronment and imposes constraints on the communication topology of its environment.

A Fully Abstract Semantics for UML Components 51

Different from previous full abstraction results, the construction of a distinguishing
context in the full abstraction proof requires a novel technique for the definition of a
generic behavior capturing all instances of an external class. This we consider as one of
the main technical contribution of our paper, that helps in a better understanding of the
role of static class variables in class-based object-oriented languages like Java.

2 UML Classes, State-Machines and Components

Next we describe the subset of UML we use in this paper. We use UML as an inspiration
source, and have no pretence of fully formalizing the numerous concepts used in the
UML diagrams. UML is an object-oriented modelling technique based on the concept
of class. A class is a named description of a set of objects. Its signature consists of a
finite set of attributes and a finite set of operations (one of them declared as constructor).
Attributes and operations are typed either by basic types (like integers and Boolean) or
by the identifier of a class or of an interface. An interface is a named description of a
set of operations. Differently from a class signature, an interface does not declare any
attribute. We say that an interface is realized by a class (that for simplicity we assume
carrying the same name) if the set of operations of the interface is included in that of
the class realizing it.

An object is an instance of a class. There are different kinds of inter-object com-
munications in UML. We consider only communication via synchronous operations
restricting to operations with two parameter only: one for passing the identity of the
caller of the operation, and another for passing a value (that we will often assume to
be the identity of another object). The execution of a synchronous operation involves a
synchronization on the execution of an operation call by the sender and a corresponding
trigger by the receiver. Such a synchronization results in an assignment of the value of
the actual parameters of the operation call to the instance variables of the receiver that
appear as formal parameters of the operation.

In contrast to a synchronous operation, a primitive operation is an operation acting
directly on the instance variables of the objects, without any synchronization. Therefore
the meaning of a primitive operation is defined in terms of a state transformation.

2.1 Abstract State-Machines

In UML the behavior of an object is describe generically by means of an abstract state-
machine associated to the class of which it is an instance. A state-machine is a kind
of structured transition system that records the dependencies between the states of an
object and its reaction to messages. More formally, a state machine associated to a class
c consists of transitions of the form

l1
[g]t/a−−−→−−−→c l2

where l1 is the entry location and l2 is the exit location of the transition. Transitions
may be guarded by a boolean guard g and labelled by a trigger t and an action a. The
evaluation of the boolean guard g is assumed to be side-effect free.

52 F.S. de Boer et al.

A trigger t is of the form
op(x , y)

where op is the name of an operation (possibly the constructor) declared in the class c,
while x , y are attributes of c used to store the identity of the caller and the value it pass
when calling the operation.

An action a is either a primitive operation, a constructor call or a synchronous oper-
ation call. A constructor call is of the form c.new(self , x), where new is the constructor
of the class (or interface) c, and the attribute self store the identity of t the caller object.
The attribute x is typed by c and it will store the identity of the newly created object. A
synchronous operation call is of the form

x .op(self , y)

where op is an operation declared in the class (or interface) typing the attribute x , that
stores the identity of the callee of the operation. The attribute y is also declared in c
and stores the value to be passed to the callee. We have not considered the more usual
synchronous operations that return by means of a rendez-vous mechanism because we
can encode this mechanism by means of an appropriate operation call and a respective
trigger.

2.2 Components

In this paper we consider a component C as a part of a system consisting of a set of
classes B and a set of interfaces I = P ∪ R. Each class in B is associated with state-
machine. The operations of the interfaces in I are typed only by other interfaces in the
same set I . Interfaces in I can be either provided or required. Each provided interface
p ∈ P is realized by a class in B , and hence with the same name of p. A required
interface r ∈ R is an interface with a name different from that of any other class in B .
It can be used by classes in B for typing their attributes. This way a component declares
its dependencies on another components with interfaces in R as provided interfaces.

A class realizing a provided interface or depending on one or more required in-
terfaces is called a role, and its instances are called ports [5]. An internal class is a
class of a component that is not a role. Attributes of an internal class are typed only by
primitive types or by classes within the same component, whereas attributes of a role
may be typed also by the required interfaces. This means that a component is an open
system, with its ports as the only points of interactions with environment: ports may be
triggered by other ports in the environment, and call operations declared in the required
interfaces, including the declared constructors. However, a class realizing a required
interface is external, i.e., it belong to a different component. Encapsulation of the com-
ponent internal implementation is ensured because instances of internal classes may
synchronize only on operations of other objects within the same component, thus pre-
venting a tight coupling between the component internal structure and the component
environment.

Components can be composed by connecting the required interfaces of a constituent
component with the provided interfaces (that for simplicity we assume to have the same
name) that belongs to other constituent components. For simplicity we define interface

A Fully Abstract Semantics for UML Components 53

connection as set inclusion of operations. More formally, let C1 = 〈B1,P1 ∪ R1〉 and
C2 = 〈B2,P2 ∪ R2〉 be two components. Their composition C1 ⊕ C2 is defined as the
component C = 〈B , I 〉 with B = B1 ∪ B2 (that are assumed to be disjoint) and with
I = P∪R obtained by taking P = P1∪P2 and R = (R1\P2)∪(R2\P1). For example,
if one component provides all interfaces required by another one, then the component
resulting from their composition has no required interfaces, and remains open to the
environment only via its provided interfaces.

The above notion of component is inspired by that of UML as introduced in [18],
but it differs in a number of crucial points. In particular, for simplicity we do not allow
hierarchical composition of components (and hence we do not need delegation connec-
tors), and, contrary to UML 2.0 we do not consider components as unit of instantiation
but rather we consider a component as a static unit of abstraction with a dynamically
growing number of ports.

2.3 Operational Semantics

Next we define the operational semantics of a component in terms of the abstract state
machines associated with each of its constituent classes.

Let Class be a set of class (and interface) identifiers, with typical element c, and
assume given, for each class name c, an infinite set Obj (c) of names for the instances
of the class c. We denote by Obj the union of Obj (c) for all c ∈ Class . Further, let Att
be a set of attributes (including loc and self) and Val be a set of values (including the
undefined value nil).

A object diagram σ of a component C = 〈B , I 〉 is a partial function in Obj ⇀
(Att → Val) assigning values to attributes of the existing instances of classes in B .
The domain of an object diagram σ is denoted by dom(σ), and the value σ(o)(x) of
the instance variable x of the object o is denoted by σ(o.x). For all o ∈ dom(σ) we
require that σ(o.self) = o and that o ∈ Obj (c) for some class c in B .

Control information of each object o in an object-diagram is given by σ(o.loc),
assuming for each class that the attribute loc is used only to refer to the current location
of the state machine of the class of which o is an instance. An object diagram is called
initial if the only attributes different from nil are self and loc.

The operational semantics of a component C = 〈B ,P ∪ R〉 is defined in terms
of a transition relation −→ between object diagrams labelled by externally observable
communication events of the form

e.op(i , v) and i .op(e, v) , (1)

where e ∈ Obj (r), for some required interface r ∈ R, is the identity of an external port,
and i ∈ Obj (p), for some provided interface p ∈ P , is the identity of an internal port
of C. The idea is that i is an instance of the class of C realizing the interface p, whereas e
is an instance of the class r realizing the interface r in another component. We will use
this convention throughout this paper. The event e.op(i , v) denotes the synchronization
of the port e with the port i on the operation op provided by e. Similarly, i .op(e, v)
denotes the synchronization of the port i with the port e on an operation op provided
by i . In both cases the synchronization involves the transmission of the value v .

54 F.S. de Boer et al.

We label the transition relation −→ also with creation events of the form

new(o, u)

indicating the synchronization on the constructor new of the class c between the object
creator o and the new instance u of c. As usual, a transition labelled by τ denotes an
internal activity, such as the execution of a primitive operation or an intra-component
synchronization.

The flow of control of each object is described according to the transitions of the
state machine associated to the class of which it is an instance. For each transition

l1
[g]t/a−−−→−−−→ l2

of an abstract state machine we assume a unique intermediate location l1,2 to model
the interleaving point between the guard and trigger on the one hand, and the action on
the other hand. Further, we assume for each boolean guard g an evaluation function g
such that g(σ, o) denotes the boolean result of the evaluation of g by the object o in
the object diagram σ; note that guard evaluation is free of side effects, i.e., it does not
affect the object diagram itself. Similarly, we assume for each primitive operation a, a
state transformer function a such that a(σ, o) denotes the object diagram that results
from the application of a in the initial diagram σ by the object o. We consider only
state transformations that change only instance variables of the object executing it. We
do not allow, for example, that an object can assign values to instance variables of other
objects within the same component.

The transition relation −→ associated to a component C = 〈B ,P ∪ R〉 is defined
by distinguishing the following cases:

Internal Synchronization: Let o and u be instances of the classes c, d ∈ B , respec-
tively, both inside the component C. Assume the object o is in a location σ(o.loc) = l1
while the object u is in the intermediate location σ(u.loc) = l3,4, where σ(u.x) = o
and σ(u.y) = v . If the guard g(σ[o.x/u, o.y/v], o) evaluates to true then the syn-
chronization of the objects o and u on the operation op is described by the following
rule

l1
[g]op(x ,y)/−−−−−−−−−→−−−−−−−−→c l2 l3

−/x .op(self ,y)−−−−−−−−−→−−−−−−−−−→d l4
σ

τ−→ σ′ ,

where σ′ is the resulting object diagram with σ′(o.x) = u and σ(o.y) = v . The flow
of control of the objects o and u is described by their associated state machines and
their new locations are σ′(o.loc) = l1,2, σ′(u.loc) = l4, respectively. Note that the
evaluation of the guard is in parallel with the execution of the trigger, meaning that
the guard g is evaluated in a state that take into account the new values of the actual
parameters of the trigger.

Class Instantiation: Let o be an instance of a class c ∈ B . Assume o is in the inter-
mediate location σ(o.loc) = l2,3 ready to execute a call to the constructor new of the
class d ∈ B , with d in the same component of c. If the guard g(σ[u.x/o], u) evaluates
to true then class instantiation is specified by the following rule

A Fully Abstract Semantics for UML Components 55

l0
[g]new(x ,y)/−−−−−−−−−−→−−−−−−−−−→d l1 l2

−/d.new(self ,x)−−−−−−−−−−→−−−−−−−−−−→c l3

σ
new(o,u)−−−−−→σ′

,

where l0 is the initial location of the state machine associated with the class d , and the
domain of σ′ extends that of σ with the name u ∈ Obj (d) \ dom(σ) of the newly
created object. The resulting object diagram σ′ maps the new name u to the instance
variables o.x , u.y and u.self , while the caller o is assigned to the variable u.x . The
locations of the two objects o and u are updated to l1,2 and l4, respectively. Finally, all
other instance variables of u are set to the undefined value nil .

Primitive Operation: Let o be an object of a class c ∈ B of the component C with
σ(o.loc) = l1,2, and let op be a primitive operation. Then

l1
−/op−−−→−−−→c l2

σ
τ−→ σ′ ,

where σ′ = op(σ, o)[l2/o.loc]. The execution of a primitive operation op generates a
’silent’ transition transforming the object diagram σ according to the associated func-
tion op(σ, o) and updating the location loc of the object o to l2.

Synchronous Operation Call: Let i be a port instance of a role c ∈ B of the component
C, and let r ∈ R be a required interface of C declaring the synchronous operation op.
Assume that in the object diagram σ the port i is in an intermediate location σ(i .loc) =
l1,2 where it can call a synchronous operation op of the external port σ(i .x) = e. Then

l1
−/x .op(self ,y)−−−−−−−−−→−−−−−−−−−→c l2

σ
e.op(i,v)−−−−−→σ′

,

where σ(i .y) = v and σ′ is as σ, but for the location loc of i that is assigned to l2. Note
that because x typed by a required interface r ∈ R, there is no class in B with that
name. Therefore e is an object not in dom(σ).

Constructor Call: A port i instance of a role c ∈ B of the component C can create a
new port e ∈ Obj (r) of another component via a call of the constructor new declared
in a required interface r ∈ R of C. This is described by the rule

l1
−/r .new(self ,x)−−−−−−−−−−→−−−−−−−−−−→c l2

σ
new(i,e)−−−−−→σ′

,

where σ(i .loc) = l1,2, σ′(i .loc) = l2 and σ′(i .x) = e, for some e ∈ Obj (r). Note that
e �∈ dom(σ), because r ∈ R is a required interface of C.

Evaluation of a Guard and a Trigger: Let i be a port instance of a role c ∈ B of the
component C, and assume that op is a synchronous operation declared by the provided
interface c ∈ P . If in the object diagram σ the port i is in a location σ(i .loc) = l1,
and the guard g(σ[i .x/e], i) evaluates to true, then its trigger op can be executed as

56 F.S. de Boer et al.

consequence of the reception of the message op(e, v) sent by an external port e. This
inter-component synchronization is described by the rule

l1
[g]op(x ,y)/−−−−−−−−−→−−−−−−−−→c l2

σ
i.op(e,v)−−−−−→σ′

,

where σ′(i .loc) = l1,2, and σ′(i .x) = e and σ′(i .y) = v for some value v and object
e ∈ Obj (d) with d �∈ B .

Port Instantiation: A new instance i of a role c ∈ B of a component C can be created
by an external port e via a call to the constructor new declared in the provided interface
c ∈ P . If the guard g(σ[i .x/e], i) evaluates to true, this is described by the rule

l0
[g]new(x ,y)/−−−−−−−−−−→−−−−−−−−−→c l1

σ
new(e,i)−−−−−→σ′

,

where e ∈ Obj (d) with d �∈ B and i ∈ Obj (c) \ dom(σ) is the identity of the newly
created port. Here l0 is the initial location of the state machine associated to c, and σ′

extends σ by assigning i .loc to l0,1, i .self and i .y to i , and i .x to e (all other instance
variables of i are mapped to the undefined value nil).

Definition 1. An execution ξ of a component C is a finite sequence

σ0
�1−→σ1 · · ·σn−1

�n−→σn

of labelled transitions starting from an initial object diagram σ0.

From an execution sequence we can extract information about the order of creation
among the objects of the component. In fact, given an execution ξ of a component
C = 〈B , I 〉, we define the creation relation <ξ as the least binary transitive relation on
Obj such that

o <ξ u if new(o, u) appears as a label in ξ,

with new the constructor of the class of which u is an instance. Note that in general, the
above creation relation will form a forest rather than a tree, because an execution does
not record the creation of external ports by other external ports.

3 Testing Semantics

In this section we define a may testing semantics for components. To define the notion of
testing semantics, let ISuccess be a distinguished interface consisting of the constructor
new and one distinguished operation, success , with a parameter of type ISucess . We
say that a component C succeeds, denoted by C↓↓, if and only if we may observe only a
single call to the success operation by one of its port. More formally, C↓↓ if and only if
there exists an execution ξ of C such that

〈e.success(i , e)〉

A Fully Abstract Semantics for UML Components 57

appears as the only communication event in ξ, where e is an external port and i an
internal one. This implies that a component may succeed only if ISuccess is one of its
required interface.

Definition 2. Two components C1 and C2 with the same provided and required inter-
faces (not including ISuccess) are may-equivalent, denoted by C1 	 C2, if

(C ⊕ C1)↓↓ if and only if (C ⊕ C2)↓↓

for any other component C.

This is a natural adaptation to components of the original definition of may testing
semantics for concurrent processes [15]. Note that we allow only the tester component
C to require the interface ISuccess and hence to call the success operation by one of
its port.

4 Trace Semantics

In the rest of this paper we look for another characterization of the may-equivalence be-
tween components that avoids a universal quantification on the tester components. Our
starting point are UML message sequence charts. They provide a visual representation
of the interactions among of a set of objects in terms of the messages they exchange.
Since component interfaces are intended to shield the details of a component imple-
mentation from the environment, a sensible semantics for components should abstract
from synchronization among objects within the component.

For a given component C, finite sequences of externally observable communication
events thus specify the interactions between instances of internal classes realizing the
provided interfaces and instances of external classes realizing the required interfaces.
Such sequences abstract both from the interactions between instances of classes in-
ternal to the components and the interactions between instances of classes external to
the component. However, these sequences can be ambiguous or describe information
that cannot be implemented by any component. Consider for example the following
sequence

e.op1(i , e) · e ′.op2(i , e ′) · i .op3(e ′′, e ′′) ,

where e, e ′, and e ′′ are assumed to be three distinct external ports. The first two events
indicate that both e and e ′ are known to the internal port i , for example because they
have been both created by i . In order to justify the last event which involves a call of
the operation op3 of i by e ′′, there are three possible scenarios:

1. e ′′ has created i ;
2. e ′′ has received its knowledge of i from e; and
3. e ′′ has received this knowledge from e ′.

These different scenarios are due to three valid assumptions on object creation outside
the component, namely e ′′ can be an ancestor of i ,e can be an ancestor of e ′′, or e ′ can
be an ancestor of e ′′.

This implicit non-determinism in a sequence of observable events thus allows dif-
ferent incompatible behaviors of the external objects. To resolve this non-determinism
we associate to each sequence t of observable events a creation tree.

58 F.S. de Boer et al.

Definition 3. A trace t is a finite sequence of communication events of the form
o.op(u, v) together with binary relation ≺t on Obj (called the tree of creation) such
that for each name u (but one, the root of the tree) occurring in the sequence there is a
unique different name o in the same sequence with o ≺t u .

In the sequel, we denote by t�o the sub-trace of t with events involving the object
o as either the caller or the callee of a synchronous operation. The associated tree of
creation is restricted to the names appearing in the restricted sequence (but the root).
Moreover, given a component C = 〈B , I 〉, we denote by ∂C(t) the result of removing
from the trace t all its events that are not externally observable, that is, those commu-
nication events involving instances of classes in B as caller or callee of a synchronous
operation.

Definition 4. We define a trace of a component C to be trace t consisting of a finite
sequence of observable events induced by an execution ξ of C together with a creation
tree ≺t such that for each ports o, u appearing in t , if o <ξ u then o ≺t u .

It should be observed that the creation tree of a trace of a component C is in fact an
abstraction from the actual information on object creation since the latter may involve
instances of classes that are strictly internal (or external) to C, i.e., instances of classes
that do not realize any provided (or required, respectively) interface. Consequently,
the relation ≺t is more adequately described as the ancestor relation between ports
appearing in t that are indirectly related because of a creation chain passing through
internal objects that do not appear in t .

In general, a trace of a component may still contain impossible events. For example,
consider the following execution of a component C

σ0
new(i,e)−−−−−→σ1

new(i,e′)−−−−−→σ2
e.op1(i,i)−−−−−→σ3

i.op2(e,e′)−−−−−−→σ4

inducing the trace t
e.op1(i , i) · i .op2(e, e ′)

with i ≺t e and i ≺t e ′. The root of the creation tree of t is the internal port i with both
the external ports e and e ′ as children. However, the last communication appearing in
t is not possible because the port e cannot possibly know the port e ′. To exclude this
case, we introduce the following notion of knowledge.

Definition 5. Given a trace t , we define the set κ(t , o) of objects that an object o may
knows by induction on t :

κ(ε, o) ={o} ∪ {o′|o ≺t o′}

κ(t · o′.op(o′′, v), o)=

⎧
⎨

⎩

κ(t , o) ∪ {o′′, v} o = o′ and v ∈ Obj
κ(t , o) ∪ {o′′} o = o′ and v �∈ Obj
κ(t , o) otherwise

Intuitively, an object o knows itself, all objects it created, and those objects it re-
ceived via some triggered operation. The above definition does not depend on a trace

A Fully Abstract Semantics for UML Components 59

to be generated by an execution of a component. Note however, that given a trace t of
a component C if an external port e ′ ∈ κ(t , e) then the external port e ′ may also have
knowledge of the external port e because an implementation of e and e ′ may involve
the communication of the identity of e to e ′. More generally, we can argue in a simi-
lar manner that if e ′ ∈ κ(t , e) then the external objects e and e ′ may have the same
knowledge.

Definition 6. Given a trace t and a component C, we define a cluster of external ports
possibly having the same knowledge as an equivalence class of the equivalence relation
	t , where 	t is the least equivalence relation such that

e 	t e ′ if e ′ ∈ κ(t , e) .

Because objects in a cluster may share their knowledge, we define their shared
knowledge κ∗(t , e), also called cluster knowledge, as

κ∗(t , e) =
⋃

{κ(t , e ′) | e 	t e ′} .

We defined clusters only for external ports, because the flow of information of the inter-
nal ports is controlled by their respective implementation. For example if i knows e and
another external port e ′ then this in itself does not imply that e may have knowledge
of e ′. This knowledge can only be obtained by a chain of communications originating
from i .

A trace is called executable if external ports communicate only names known by
some ports in the same cluster. Formally, we have the following definition.

Definition 7. Given a component C, a trace t is executable if for every prefix t ′ ·
i .op(e, v) of t we have that both i and v (if it is an object) are in κ∗(t ′, e). We de-
fine T (C) to be the set of all executable traces of the component C.

Observe that executable traces are insensitive to the order in which ports are instan-
tiated. Also, because the creation tree of a trace refers only to names that appears in the
sequence of observable events (but possibly one, the root), executable traces concerns
only with objects that do play a role in an inter-components communication (and not
those objects that are created but never used in a communication).

The trace semantics defined above is compositional with respect to component
composition.

Theorem 1. For any two components C = C1 ⊕ C2 we have

T (C) = ∂C(T (C1) ∩ T (C2)) .

The proof of this compositionality result involves a fairly straightforward general-
ization of the compositional trace semantics for CSP (see [9]) to our setting.

The next theorem shows the correctness of the above compositional trace semantics
with respect to the above may equivalence.

Theorem 2. For any components C1 and C2 with the same provided and required inter-
faces (not including ISucess), if T (C1) = T (C2) then C1 	 C2.

The proof of this theorem follows from the compositionality result in Theorem 1 in
a fairly standard manner. In the next section we investigate the converse of the above
Theorem: are executable traces fully abstract with respect to may equivalence?

60 F.S. de Boer et al.

4.1 Trace Definability

In order to show that executable traces can be implemented we introduce the notion
of extended traces, that is, traces augmented with events for synchronization between
external ports, so that they can be justified in terms of what external ports may know.

Definition 8. An extended trace t of an executable trace t ′ of a component C is a trace
with the same creation tree of t ′ and that extends the sequence of events of t ′ with
additional external communication events of the form e.op(e ′, v) (where op may denote
a possible operation of an implementation of e i.e., an operation that is not specified by
the required interface to which e belongs).

In an extended trace the events themselves can be justified directly in terms of
the exact knowledge of the ports (i.e. the objects created or received via a triggered
operation).

Definition 9. An abstract implementation of an executable trace is an extended trace t
of an executable trace of a component C such that for every prefix t ′ · o.op(e, v) of t
both objects o and v are in κ(t ′, e).

The following lemma can be proved in a straightforward manner by implementing
a protocol for broadcasting new knowledge to all external ports within a cluster.

Lemma 1. Every executable trace of a component C has an abstract implementation.

We arrived at the following definability result.

Theorem 3. For every executable trace t ∈ T (C) of a componentC there exists another
component C′ with as provided interfaces those required by C and such t is also an
executable trace of C′.

The sketch of the proof of the above theorem is as follows. Because t is an exe-
cutable trace it has an abstract implementation by Theorem 1. Further, we can reduce
the latter trace to a sequence s by prefixing it with creation events of the form new(o, u)
for each pair of names o and u with o ≺t u , and new the constructor associated to the
class of which u is an instance. This way, viewing the creation events above as a bind-
ing operator in the second argument, all names occurring in the sequence s are bound
but for the root of the tree of creation.

Next, for every external port e in the new sequence s we define an implementation
S (e, s) corresponding with the subsequence s of creation and communication events
of s involving e. This implementation uses the object names occurring in s as in-
stance variables of the object e. Basically, it is constructed by transforming every event
o.op(e, v) into a corresponding operation call o.op(self , v), every event e.op(o, v)
into a corresponding trigger op(o, v), every creation event new(e, o) into a corre-
sponding constructor call c.new(self , o), with new the constructor of the class c, for
o ∈ Obj (c), and, finally, the every creation new(o, e) into the trigger new(o, self).

As last step, for every required interface r of the component C, we define the UML
state-machine specifying the generic behavior of the class realizing the provided in-
terface r of C′ as the non-deterministic choice of the implementations S (e, t), where
e ranges over all instances of r appearing in t . By construction we have that t is an
executable trace of C′.

A Fully Abstract Semantics for UML Components 61

5 Trace Abstractions

In this section we show that the reverse implication of Theorem 2 does not hold. There-
fore executable traces are not fully abstract: there exist may-equivalent components
with different sets of executable traces. Moreover, we define trace abstractions for ob-
taining a fully abstract semantics. We proceed by presenting three typical examples for
which full abstraction fails and illustrate the need for respective abstractions on traces.

As a first example, consider a component C with two required interfaces, r1 and r2,
both declaring a constructor new . Further, r1 declares an operation op1 with a parameter
of type r1, while r2 declares an operation op2 with a parameter of type r1. Let c be a
role of the component depending on r1 and r2. The transitions of its associated state
machine are as follows:

l0
/r1.new(self ,x)−−−−−−−−−→−−−−−−−−−→ l1

/r2.new(self ,y)−−−−−−−−−→−−−−−−−−−→ l2
/x .op1(self ,x)−−−−−−−−→−−−−−−−−→ l3

/y.op2(self ,y)−−−−−−−−→−−−−−−−−→ l4

Here x is an attribute of type r1 and y is an attribute of type r2. Observe that the
transition of the above state machine are not guarded and there is no trigger. This state
machine generates traces of the form

e1.op1(i , e1) · e2.op2(i , e2)

with i ≺ e1 and i ≺ e2, i ∈ Obj (c), e1 ∈ Obj (r1) and e2 ∈ Obj (r2). Consider now a
similar component C′ different from C in the state machine associated to the class c:

l0
/r1.new(self ,x)−−−−−−−−−→−−−−−−−−−→ l1

/r2.new(self ,y)−−−−−−−−−→−−−−−−−−−→ l2

〈 /x .op1(self ,x)−−−−−−−−→−−−−−−−−→ l3a
/y.op2(self ,y)−−−−−−−−→−−−−−−−−→ l4a

/y.op2(self ,y)−−−−−−−−→−−−−−−−−→ l3b
/x .op1(self ,x)−−−−−−−−→−−−−−−−−→ l4b

This state machine generates the same traces as the previous one and additionally
also traces of the form

e2.op2(i , e2) · e1.op1(i , e1)

with i ≺ e1 and i ≺ e2, that differ with the previous ones only with respect to the
order of the synchronization on the operations op1 and op2. However there is no com-
ponent that can distinguish these two kinds of traces because the external instances
e1 and e2 cannot know each other and therefore cannot communicate or synchronize.
In other words, the order between these observable events cannot be imposed by the
environment because they belong to different clusters.

In general, the order between observable events involving external ports belong-
ing to different clusters cannot be observed in the may-testing semantics. We can ab-
stract from this information by the following closure condition on the traces of a given
component.

Definition 10. Given a component C, a set T of executable traces is closed with re-
spect to the order between events which actively involve external objects belonging to
different clusters, if

t · r .op(s , v) · r ′.op′(s ′, v ′) · t ′ ∈ T

62 F.S. de Boer et al.

such that
e ′ �∈ κ∗(t · r .op(s , v), e),

for e ∈ {r , s} and e ′ ∈ {r ′, s ′}, implies

t · r ′.op′(s ′, v ′) · r .op(s , v) · t ′ ∈ T .

This means that we can only swap events which belong to different clusters of the
corresponding prefix of the trace, a phenomena typical of asynchronous processes [6].
In our case, however, this captures the dynamic evolution of clusters, which grow
monotonically.

As a second example we consider the following two different state machines as-
sociated to a role c (with constructor newc) of a component depending on a required
interface r . This interface declares the constructor newr and an operation op with a
parameter typed by r itself. The first state machine creates an unbounded number of ex-
ternal instances of the required interface r by iteratively calling the constructor method
newr and synchronizes with each of them on the operation op:

l0
newc(x ,self)/−−−−−−−−→−−−−−−−−→ l1

/r .newr (self ,y)−−−−−−−−−→−−−−−−−−−→ l2
/y.op(self ,x)−−−−−−−−→−−−−−−−−→ l1 .

Observe that the iteration is expressed by the fact that, after the call of the operation
op, the state machine return in the location l1. The second state machine implements
the above iteration via recursion: it recursively generates an unbounded number of port
of c. Each of these ports creates an external instance of the required interface r and
synchronize with it via the operation op:

l0
newc(x ,self)/r .newr (self ,y)−−−−−−−−−−−−−−−−−→−−−−−−−−−−−−−−−−−→ l1

/y.op(self ,y)−−−−−−−−→−−−−−−−−→ l2
/c.newc(self,z)−−−−−−−−−−−→−−−−−−−−−−−→ l3 .

In term of traces, the component with the first state machine associated to c produces
traces of the form

e1.op(i0 , e1) · e2.op(i0, e2) · · · ek .op(i0, ek) ,

with e ≺ i0 and i0 ≺ en for n = 1, · · · , k . On the other hand, the component with the
second state machine associated to c produces traces of the form

e1.op(i0, e1) · e2.op(i1, e2) · · · ek .op(ik−1, ek) ,

with e ≺ i0, in−1 ≺ in and in−1 ≺ en for n = 1, · · · , k . Basically the two kinds
of traces differ on the identities of the internal ports that create new instances of the
required interface r . This difference cannot be observed by another component because
each of the external ports en ’s form a different cluster, and objects in different clusters
cannot share (and compare) their knowledge.

We can abstract from this difference by, roughly, a cluster-wise renaming of internal
instances. Formally, given a component C we define a relation t 	α t ′ between the
executable traces t and t ′ if t ′ results from t by substituting (also in the creation tree)
an internal instance i for every occurrence of an other internal instance j , with the
same provided interface, in every event which actively involves an external object of

A Fully Abstract Semantics for UML Components 63

a cluster of t . To preserve the dynamic cluster structure of the internal instances, we
additionally require that i does not appear in those events which actively involve an
object of the cluster. For example, the first trace above can be obtained by the second
one by substituting i0 for in−1, with n = 2, · · · , k .

Definition 11. Given a component C, a set T of executable traces is closed with respect
to cluster-wise renaming of internal instances,if

t ∈ T and t 	α t ′ implies t ′ ∈ T

Finally, we abstract from some information about object creation in a trace t that
is too specific, because, after all, the only relevant information concerns the dynamic
cluster structure of the trace. Consider the following two traces of a component with a
provided interface containing the operation opp and a required interface containing the
operation opr :

e.opp(i , i) · i .opr (e ′, e ′) · i .opr (e ′′, e ′′)

one time with creation tree i ≺ e ≺ e ′ ≺ e ′′, and another time with creation tree i ≺ e,
e ≺ e ′ and e ≺ e ′′. They are two different traces that, however, generate the same
cluster structure. In general, the object creator of an instance can be replaced by any
other object already existing within the same cluster.

Given a component, we therefore introduce an equivalence relation t ∼= t ′ on exe-
cutable traces that holds if the traces t and t ′ specify the same sequence of events with
the same dynamic cluster structure, i.e., t and t ′ have for every prefix the same cluster
structure. Formally, a prefix t ′′ of a trace t consists of a prefix of its sequence of events
together with a creation tree obtained by restricting that of t to the objects appearing in
t ′′. So, we define t1 ∼= t2 if for every two prefixes t ′1 of t1 and t ′2 of t2 with the same
sequence of observable events σ, we have o 	t′1 u if and only if o 	t′2 u , for every two
objects o, u appearing in σ.

Definition 12. Given a component C, a set T of executable traces is closed with respect
to to object creation if

t ∈ B and t ∼= t ′ implies t ′ ∈ B

We have arrived at the following definition of the fully abstract trace semantics Ta

for components.

Definition 13. Given a component C we define the set Ta (C) of its abstract traces as
the smallest set of executable traces containing T (C) and being closed with respect
the order between events that actively involve external objects belonging to different
clusters, and, the cluster-wise renaming of internal instances.

Correctness is straightforward because the above closure conditions do not affect
may-equivalence.

Theorem 4. For any components C1 and C2, Ta(C1) = Ta (C2) implies C1 	 C2.

64 F.S. de Boer et al.

6 Full Abstraction

In this section we sketch a proof of full abstraction for the above semantics of compo-
nents. Full abstraction is expressed by the following theorem.

Theorem 5. May equivalent components have the same set of abstract traces.

In the following we give a sketch of the proof that proceeds by contraposition. Sup-
pose C1 and C2 are two may-equivalent components with different sets of abstract traces.
Without loss of generality, let t ∈ Ta(C1)\Ta(C2). Since abstract traces are executable,
by Theorem 1 there exists an abstract implementation t ′ of t .

This means that t ′ contains some protocol for broadcasting new knowledge so that
the actual knowledge of external objects coincides with their possible knowledge (de-
tails are straightforward and omitted here).

Next we reduce the trace t ′ to a sequence σ by prefixing it with creation events
of the form new(o, u) for each pair of names o and u with o ≺t′ u , and new the
constructor associated to the class of which u is an instance.

We can enrich the sequence σ with additional communication events modelling a
protocol for fixing the order of execution among those events of the sequence involving
external instances that belong to the same cluster. This protocol can be described using
the mechanism of passing a baton between the external instances of the same cluster as
in a relay team. Basically we insert between two synchronization events s1.op1(r1, v2)
and s2.op2(r2, v2) involving two external ports e1 and e2 in the same cluster as sender
or receiver of the operations, an external event e2.baton(e1, e1). Consequently, the ex-
ecution of events of instances that belong to the same cluster is sequentialized.

Finally, in order to obtain an observable difference in the may testing semantics, we
assume that each cluster of external objects in σ will create an instance o of the provided
interface ICluster and call after its last event the operation cluster of o indicating the
successful termination of the cluster. As a consequence, there will be as many instances
of the class ICluster as actual clusters in the sequence σ. When the last instance is
created, an instance of the required interface ISuccess is created and its operation succ
is called.

On the basis of the above sequence σ, we can construct a distinguishing compo-
nents C with as provided interface those required by C2 plus the interface ICluster
and as required interfaces those provided by C2 plus the interface ISuccess . The two
interfaces ISuccess and ICluster will be used to indicate the successful termination of
all the clusters of external objects of σ. In the state machines associated to the classes
realizing the provided interfaces of C we will use a pseudo-code to describe guards and
primitive operations, in particular we will use test for equalities, assignments composed
by standard operators like sequential composition ; and if-then-else.

Implementing Abstract Behaviors: First we discuss how to express in pseudo code the
abstract behavior of an external instance e in σ. Let σ�e denote the projection of σ onto
all the events actively involving the external instance e (as sender, receiver, or creator).
Let R(σ) = {o1, . . . , ok} be the name space of all the (internal and external) object
identities appearing in σ. For notational convenience, we use these object references

A Fully Abstract Semantics for UML Components 65

also as instance variables in the pseudo code. In order to check for the local consistency
of the object references stored in the variables of an external instance we introduce for
each object reference o a unique fresh variable o′ which will be used to store the actual
reference received when the object reference o is expected. Let o .= o′ abbreviate the
following pseudo code for for a guard checking the local consistency.

if o′ = nil
then fail
else if o �= nil

then if o �= o′ then fail fi
else for l = 1, . . . , k do

if o′ = ol then fail fi
od

fi
fi

Here fail is to denote the failure of the evaluation of the guard. This guard first
checks whether o′ is defined (if o′ is undefined the statement aborts because the object
reference o is expected). If so, we have two possibilities: either the variable o is already
initialized, in which case we simply check whether o equals o′, or o is not yet initial-
ized, e.g., not yet received, in which case we check whether o′ is different from all the
other stored object references.

We can now define a concrete state machine SM (σ�e) describing the abstract be-
havior of e in σ. For technical convenience we use prefixes of σ�e as locations (with ε
as initial location and σ�e as final one) and specify the transitions of the state machine
by induction on the length of σ�e :

σ′�e /o.op(self ,v)−−−−−−−−→−−−−−−−−→ (σ′ · o.op(e, v))�e

σ′�e /c.new(self ,o)−−−−−−−−−→−−−−−−−−−→ (σ′ · new(e, o))�e

σ′�e [o
.
=o′ and v

.
=v ′]op(o,v)/−−−−−−−−−−−−−−−−→−−−−−−−−−−−−−−−−→ (σ′ · e.op(o, v))�e

The state machine SM (σ�e) is thus obtained by a straightforward transformation
of the events of σ�e into corresponding actions. The third clause describes the call of a
constructor method new which involves the storage of the newly cerated instance in the
variable o, with o ∈ Obj (c). In case of reception of an operation the guards additionally
involves a check that the received object references do agree with the corresponding
stored ones. Note that thus SM (σ �e) checks only the local consistency of the name
space of e. However the encoded protocol for broadcasting new knowledge to all the
(external) objects belonging to one cluster will ensure also the global consistency of
the name space of the cluster, i.e., any two external objects e and e ′ belonging to the
same cluster assign the same value to any (private) instance variable o ∈ R(σ). Note
however that we cannot ensure that this value is actually the expected object reference
o itself!

66 F.S. de Boer et al.

Implementing the Required Interfaces: For every required interface r of the given com-
ponent C1 we can define its implementation as a non-deterministic choice between the
state machines SM (σ�e), where e is an instance of r appearing in σ. However, for a full
abstraction result, we also need a mechanism which allows such an instance to select
its own ’predestined’ behavior. The only way we know to implement such a selection is
by means of a restricted use of static class variables: for each instance e of a required
interface r , we introduce a static class variable r .e.

Static class variables are variables associated with a class and shared by all its in-
stances only. In languages like Java, static class variables introduce another form of
communication besides message passing. Here this means that we associate to each
class c a special object with identity c containing the class variables of c. This means
that the state transformations associated with primitive operations are not allowed to
read and modify the instance variables of the object associated with the class of the
instance executing the primitive operation call. In general we want static variables to
have no influence on the knowledge of an object (so that two instances of the same
class need not necessarily to know each other). This can be enforced by requiring that
information stored in static class variables cannot be used in communications between
objects, but can only be written and read for private purposes by any instance of a class.
More syntactically, we can obtain this by allowing static class variables to appear only
in guards (recall that guard evaluation has no side effect) and as parameters of a trig-
ger (so to get assigned to a value). Static variables, however, cannot be communicated,
and hence cannot appear neither as parameters of operation calls nor used by a state
transformation associated by a primitive operation.

Let e1, . . . el be the instantiations of r appearing in σ in that order. The following
state machine with l0 as initial location allows each instance ei to select the right lo-
cation σ�ei where to continue the behavior of the e instance of r by means of a guard
preceding the constructor trigger newr :

l0

〈

[o1
.
=o′

1 and r .e2=nil and ··· and r .el=nil]newr (o1,r .e1)/−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ σ�e1

[o2
.
=o′

2 and r .e1 �=nil and r .e3=nil and ··· and r .el=nil]newr (o2,r .e2)/−−−→−−−→ σ�e1

...
[ol

.
=o′

l and r .e1 �=nil and ··· and r .el−1 �=nil]newr (ol ,r .el)/−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ σ�el

Note that static class variables are assigned to the identities of the instances of the
class r . Further they do not introduce shared variable concurrency because in the above
transitions guard evaluation and trigger (and hence the corresponding test and assign-
ment of static variables) are executed atomically.

May Testing: It still remain to implement the class realizing the provided interfaces
ICluster The following state machine is associated to the class realizing the interface
ICluster so to ensures that only the last instance of ICluster will create an instance
of the interface ISuccess , thus indicating that all clusters of external objects have ter-
minated successfully. Again, we use static class variables for the instances of ICluster
to ’count’ how many instances have already been created (i.e. how many clusters have
successfully terminated).

A Fully Abstract Semantics for UML Components 67

Assuming that the initial trace t contains m clusters of external objects, let succi ,
i = 1, . . . ,m − 1 be m − 1 static class variables of ICluster (writing for simplicity
succi instead of ICluster .succi) in the following state machine associated to it:

l0

〈

[o1
.
=o′

1 and succ2=nil and ··· and succm−1=nil]new(o1 ,succ1)/−−→−−→ l1
[o2

.
=o′

2 and succ1 �=nil and succ3=nil and ··· and succm−1=nil]new(o2,succ2)/−−→−−→ l2
...
[om

.
=o′

m and succ1 �=nil and ··· and succm−1 �=nil]/ISuccess.new(self ,x)−−−→−−−→ lm
lm

/x .success(self ,x)−−−−−−−−−−−→−−−−−−−−−−−→ lend

By construction, an instance of ISuccess will be created only after all events of each
cluster in the trace t have occurred. Its identity is stored in x and the creator moves in
a location from where it calls the operation success of x . Since ISuccess is the only
required interface of C ⊕ C2, the latter call will generate the only observable event
e.sucess(i , e), where e ∈ Obj (ISuccess) and i ∈ Obj (ICluster).

Full Abstraction: By construction it follows that (C ⊕ C1)↓↓. Furthermore, by construc-
tion (C ⊕ C2)↓↓ implies t ∈ Ta (C2). The latter follows basically because the context C
forces C2 to behave as t up-to the closure conditions.

7 Conclusion and Future Work

We have presented a semantics specification of the behavior of UML-based components
that is fully abstract with respect to may equivalence. To focus on the semantic issues in-
volved we have chosen for simplified version of UML class diagrams, object diagrams,
state machines and components. However the concepts used are first step towards a
semantic approach integrating the several diagrams present in UML. We have applied
similar techniques to an extension of the concurrent object calculus with classes [3] and
to a sequential object calculus with classes [4]. Both calculi do not consider class inher-
itance. In fact, and contrary to [16], we do not believe that our result can be applied to
an object calculus with inheritance because of the fragile base class problem [21].

Our full abstraction result relies on the static class variables for the construction of
the behavior to be associated with a class. The are the key mechanism that allows an
object to select its own predestined behavior among those of all instances of a class.
Without them we do not know how to construct the behavioral specification of a class
from the set of behavior of all its instances. One possibility that we have explored [4] in
the context of the object calculus with classes [2], is to restrict it to sequential objects.

The results introduced in this paper are robust enough to support an extension of
the state-machine with class name passing, allowing processes to create instances of
classes known only at run-time, a form of very late binding typical of component-based
systems [22]. Further work is needed for extensions of our result to support more ad-
vanced features like inheritance hierarchies, and dynamic class allocation. The first will
introduce another way to cross the component borderline, whereas dynamic allocation
of behavior to classes (e.g., as studied in [13]) will make this borderline dynamic.

68 F.S. de Boer et al.

Our fully abstractness result is relevant for and applicable to the generation of test
suites for systems of objects. It shows first of all which tests, as sequences of messages,
are in fact the same (so it is relevant for defining a effective test suite). Moreover, it
shows that to what extent we can abstract from the identities of the test objects. It is
future work to apply our result to the theory of testing systems of objects in class based
language.

Acknowledgements. Thanks to the anonymous referees and Rocco De Nicola for their
comments and suggestions that have improved the paper. This work benefited from
discussion with Willem-Paul de Roever and other members of the NWO/DFG bilateral
project MobiJ.

References

1. M. Abadi and L. Cardelli. A Theory of Objects. Springer-Verlag, 1996.
2. E. Ábrahám, M.M. Bonsangue, F.S. de Boer, and M. Steffen. A Structural Operational Se-

mantics for a Concurrent Class Calculus. Tech. rep. 0307 of the Univ. of Kiel, 2003.
3. M. Steffen, E. Ábrahám, M.M. Bonsangue, F.S. de Boer. Object Connectivity and Full Ab-

straction for a Concurrent Calculus of Classes In Proc. ICTAC 2004, vol 3704 of LNCS, pp.
38-52. Springer, 2005.

4. E. Ábrahám, M.M. Bonsangue, F.S. de Boer, A. Grüner, and M.Steffen. Observability, con-
nectivity, and replay in a sequential calculus of classes. In Proc. FMCO 2004, vol. 3657 of
LNCS, Springer, 2005.

5. F.S. de Boer, M.M. Bonsangue, and J. Guillen-Scholten. Components: From object to mobile
channels. In H. Jifeng and Z. Liu (eds.), Mathematical Frameworks for Component Software
– Models for Analysis and Synthesis, The World Scientific, 2005.

6. M. Boreale, R. De Nicola, and R. Pugliese. Trace and Testing Equivalence on Asynchronous
Processes. Information and Computation, 172(2):139-164, 2002.

7. F.S. de Boer and M.M. Bonsangue. A compositional model for confluent dynamic data-flow
networks. In Proc. MFCS, vol. 1893 of LNCS, Springer 2000.

8. M. Boreale and R. de Nicola. Testing equivalence for mobile processes. Information and
Computation, 120:279–303, 1995.

9. S.D. Brookes, C.A.R. Hoare, and A.W. Roscoe. A theory of communicating sequential pro-
cesses. Journal of the ACM, 31(3):560–599, 1984.

10. K. Bruce. Foundations of Object-Oriented Languages: Types and Semantics. The MIT Press,
2002.

11. T. Clark, A. Evans, and E. Kent. The metamodelling language calculus: foundation semantics
for UML. In Proc. FASE 2001, vol.2029 of LNCS pp. 17–31, Springer 2001.

12. W. Damm, B. Josko, A. Pnueli, and A. Votintseva. Understanding UML: A formal semantics
of concurrency and communication in Real-Time UML In Proc. FMCO 2002, vol. 2582 of
LNCS, Springer 2003.

13. S. Drossopoulou, F. Damiani, M. Dezani-Ciancaglini, and P. Giannini. More dynamic object
re-classification: Fickle II. ACM ToPLaS 24(2):153–191, 2002.

14. M. Hennessy. A fully abstract denotational semantics for the π-calculus. Theoretical Com-
puter Science, 278(2):53-89, 2002.

15. M. Hennessy and R. de Nicola. Testing equivalence for processes. Theoretical Computer
Science, 34:83-133, 1984.

16. A. Jeffrey and J. Rathke. A Fully Abstract May Testing Semantics for Concurrent Objects.
In Proc. of the 17th LICS, pp. 101-112. IEEE Computer Society Press, 2002.

A Fully Abstract Semantics for UML Components 69

17. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes. Information and
Computation, 100(1):1–77, 1992.

18. Object Management Group, UML 2.0 Superstructure (Final Adopted specification). Docu-
ment – ptc/03-08-02, August 2004.

19. G. Övergaard Formal Specification of Object-Oriented Meta-Modelling. In Proc. FASE
2000, vol. 1783 of LNCS, Springer 2000.

20. B. Pierce. Types and Programming Languages. The MIT Press, 2002.
21. A. Snyder. Encapsulation and inheritance in object-oriented programming. In Proc. OOP-

SLA, pp. 38–45, SIGPLAN Notices 21:11, 1986.
22. C. Szyperski, D. Gruntz and S. Murer Component Software: Beyond Object-Oriented Pro-

gramming. Addison-Wesley, second edition, 2002.

	Introduction
	Contribution of This Paper
	Related Work

	UML Classes, State-Machines and Components
	Abstract State-Machines
	Components
	Operational Semantics

	Testing Semantics
	Trace Semantics
	Trace Definability

	Trace Abstractions
	Full Abstraction
	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

