Question 1: [1.5 points]

a) Give a regular expression for the language L of alternating 0’s and 1’s.

\[(0+\Lambda)(10)^*(1+\Lambda)\]

b) Give a deterministic finite automaton M for the complement of language L above.

\[\text{We remove state } q_3;\]

\[\text{Next we remove state } q_1;\]

\[\text{We remove state } q_2;\]
We finish by removing state q_0:

Question 2:
Use the subset construction to convert the following nondeterministic automaton to a deterministic one.

Question 3:
Consider the language $L = \{ w \in \{a,b\}^* \mid abw = wba \}$. Is the language empty? Is it regular? Motivate your answers.

It is not the empty set since, for instance, $w = a$ and $w = aba$ satisfies $abw = wba$. Further, the condition $abw = wba$ says that w has to start with ab since this is the prefix on the left hand side. In the same way, the string has to end in ba since that is the postfix on the right hand side. The only exception is $w = a$ because it satisfies the condition $aba = aba$. In other words, the string w begins with an a followed by zero or more ba’s, that is $L = L(a(ba)*)$. Since there exists a regular expression describing L, it is regular.

Question 4:
Given the following context free grammar

\[S \rightarrow AB \mid aaB \]
\[A \rightarrow a \mid Aa \]
\[B \rightarrow b \]

a) Give a string generated by the grammar that has two leftmost derivations.

\[S \Rightarrow aaB \Rightarrow aab \] and \[S \Rightarrow AB \Rightarrow AaB \Rightarrow aaB \Rightarrow aab \]

b) Give an equivalent unambiguous regular grammar.

\[S \rightarrow aS \mid b \]
It is not ambiguous because at any derivation step there is only one choice to make. This grammar is equivalent to the previous one, because both grammars generate the same language: all the strings that start with one or more \(a \) and end with a single \(b \).

c) Transform the grammar into an equivalent non-deterministic finite automaton.

\[
\begin{align*}
\text{S} & \rightarrow a\text{S}b & \text{if there are at least as many b as a}\n\text{S} & \rightarrow a\text{S}bb & \text{if there cannot be more than twice as many b as a}.
\end{align*}
\]

Question 5: [2.5 points]

a) Consider the language \(L = \{ a^n b^m \mid 0 \leq n \leq m \leq 2n \} \). Use the pumping lemma to show that it is not regular.

Let \(k \) be the number from the pumping lemma, and consider the string \(x = a^k b^{2k} \in L \). Note that \(|a^k b^{2k}| \geq k \). For every decomposition \(x = uvw \) with \(|uv| \leq k \) and \(v \neq \Lambda \), it holds that both \(u \) and \(v \) consist of only \(a \)'s. Thus \(uv^3w \) will add at least \(3k \) \(a \)'s, and it is of the form \(a^{i+3k} b^{2k} \) for some \(0 \leq i \leq k \). Thus \(2k < 3k+i \), implying that \(uv^3w \) is not in \(L \). This contradicts the pumping lemma for regular languages and thus \(L \) cannot be regular.

b) Find a context-free grammar \(G \) generating the language \(L \).

\[
S \rightarrow aSb \mid aSbb \mid \Lambda
\]

Because of the first production there are at least as many \(b \) as \(a \), while the second production says that there cannot be more than twice as many \(b \) as \(a \).

c) Transform your grammar \(G \) into an equivalent pushdown automaton using the top-down construction.

Apply definition 5.17 from the textbook to obtain the desired automaton:

Question 6: [2 points]

a) Construct a pushdown automaton with two states that recognizes the set of binary strings containing an equal number of 1’s and 0’s.
b) Give a computation showing that 010 is not recognized by your pushdown automaton.

\[(p, 010, Z_0) \Rightarrow (q, 10, 0Z_0) \Rightarrow (q, 0, Z_0)\]

Since \(q\) is not an accepting state and there are no other moves the string is not accepted.

c) Give a computation showing that 0011 is recognized by your pushdown automaton.

\[(p, 0011, Z_0) \Rightarrow (q, 011, 0Z_0) \Rightarrow (q, 11, 00Z_0) \Rightarrow (q, 1, 0Z_0) \Rightarrow (p, \Lambda, Z_0)\]

Since \(p\) is an accepting state and there is no more input the string is accepted.

The final score is given by the sum of the points obtained.