Parallel Sparse Matrix
Computations



Parallel Sparse BLAS 2 Matrix Multiplication

Like dense matrix multiplications, sparse matrix time
vector multiplication can be blocked:

DOALLII=1, M1
DOALLM =1, M2
DOI=Il, 11+ N/M1-1
DOJ=JJ,JJ+N/M2-1
C(1) = C(I) + A(l1,J) * B(J)
ENDDO
ENDDO
ENDDO
ENDDO






This can (partly) be prevented by only row slicing/partitioning:

DOALLII =1, M1
DO =1l 11+ N/M1—1
DOJ=1,N
C(l) = (1) + A(LJ) * B(J)
ENDDO
ENDDO
ENDDO

Mostly the number of NNZ per row/column is rather constant.

Each processor needs a full copy of the B vector!!



Column slicing/partitioning:

DOALLJ =1, M1
DOJ=1JJ,JJ+N/M1-1
DOI=1,N
C(1) = C(l) + A(1,J) * B(J)
ENDDO
ENDDO
ENDDO

Each processor just has a part of the B vector.

But every processor needs a full copy of the C vector plus the
processors need to communicate their changes to C!!



Solution:

Let NNZ be the number of non-zero elements of the
sparse matrix. Assume we want to compute in parallel
on PxQ processors.

=» Divide the rows into P partitions: R,R,...R, ;R;,
such that for all k: NNZ (R,) = NNZ/P then
partition every row partition R, into Q partitions:
Ck, C,...C¥,.,C*,columns, such that for every m:

NNZ (C¥,) = NNZ (R} / Q.

By doing so, we have for all k, m:
NNZ (Ck )= NNZ/PQ



In a picture:




Parallel Sparse (Upper) Triangular Solver
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the nodes within each group are not connected, i.e. will not have an edge in
common

some nnz’s might be introduced in the lower triangle, which will be
corrected by simple permutations

in other words each group will form a diagonal, diagonal block

in fact the associated digraph of a triangular matrix can be seen as a

“partially ordered” set (poset) and a diagonal block as an incomparable
subset of elements




So, not only do we have easily invertible U,, blocks,
this operation can be executed in parallel or as a
vector operation.



In fact not only do we have parallelism on a
block level but also on column/row level
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Orderings to Special Form

An ordering of a sparse matrix 4 to a sparse matrix B is called
asymmetric if

B = PAQ/,
with P and O permutation matrices
If P = (0, then the ordering is symmetric.

Note that the minimum degree ordering is a symmetric

ordering. Also the levelization ordering is symmetric. Partial
Pivoting is asymmetric!!

=2 With a symmetric ordering the associated digraphs of 4 and
B are isomorphic.

=>» Properties like diagonal dominant and eigenvalues do not
changes with symmetric orderings
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Block Triangular Form for Parallel LU

->

»Based on finding strongly connected components O(n+m)
» Symmetric ordering

» Unique decomposition

» Every diagonal block can be factured in parallel



Banded Structure

» Better Storage Opportunities (Diagonal Storage)

» Minimization of fill-in in LU factorization

» Better exploitation of spatial locality (stride 1 accesses)

» In some cases convergence of iterative methods are
enhanced if nnz’s are located near the diagonal



Banded structure through Cuthill-McKee

P 7 S
I ©
T -
©
S S
1 2 S
S 3 S4 >

 Start with an arbitrary node a. LetS; ={ a }.

* LetS, ={nodes, which are not contained in any S with j<i}. The
nodes in S, are ordered such that first nodes are the nodes which are
neighbors of the first node in S, ;, the following nodes are neighbors
of the second node in S, ,, etc.

(Basically a BFS tree is constructed of A + AT)



This results in:

BTW As a side effect: Reversing Cuthill-McKee leads in
many cases to minimization of fill-in



Banded Structure through
One-Way/ Nested Dissection

One way dissection is based on Cuthill-KcKee:

> Let S, S, ... S, be the levelization sets obtained by Cuthill-
McKee on the associated graph of a (symmetric) matrix 4

» Compute
m = I_(2i=1,2..,kSz‘) /kJ,
the average number of elements per set.
> Let
o=V((3m+13)/2)
» Take all the nodes from sets S, with j = |_i5 + 0.5J, i =1,2,..
» Number these nodes last

The choice of 0 is based on experiments run on regular grid
matrices.



This results in the following matrix

g




The same result can be obtained by nested dissection

N/
Seperator

And recursively computing separator sets for B and
C, and so on, and so on....

Number the nodes of these separator sets last

=>» As a result we have a more general method, not
only suited for grid matrices.



Tearing Techniques
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A large grain decomposition for computing LU factorization in parallel

The desired form is bordered upper block triangular form



Hellerman-Rarick
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» Unsymmetric Ordering
» Diagonal elements are assigned pivots
» The q columns are called spikes and will form the border



The algorithm

p=0, g=0 and the whole matrix is active

N~

m is the minimum NNZ entries in any row of the active (sub)matrix.
Choose m columns, by choosing first the column with most NNZ’s
in rows with NNZ-count of m, then the column is chosen with most
NNZ’s in rows with NNZ-count of m-/, and so on.

3. If the last column has s rows with a singleton NNZ then these rows
are permuted to the beginning of the active (sub) matrix and these
rows are assigned pivot rows

4. The last s columns chosen are also permuted to the front of the
active (sub) matrix and these columns are assigned pivot columns

5. The remaining m-s columns are permuted to the border
6. p=pt+tsandg=qg+m-—s
7. If p + g = nthen stop else goto 2



Example
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Column 1 is chosen first: it has most entries in rows of count 3.
Then column 4 is chosen, because it has most entries in rows with
new count 2.

Then column 6 is chosen because it has singletons in rows 2 and 4 .
=>» Rows 2 and 4 are permuted to the front
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Now columns 6 and 4 are permuted
to the front and column 1 is
permuted to the back

As a results we have:
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Tearing based on nested dissection

Remark: Separator sets were constructed on A + AT

Edges from the separators can go both directions to B and C



For nodes u in S with only incoming edges from B, move u to C
s R |
For nodes v in S with only outgoing edges to C, move vto B

=>» As a result the size of the separator sets (border) is reduced, -
while there are NNZ introduced in the upper triangular part




A Hybrid Reordering H*

HO: Through an asymmetric ordering A’ = PAQ! permute
“large values to the diagonal”, i.e. for each & find the largest
a,,suchthat |a, |>=]a;|,foralla;e A, . Permute row &
and row m, permute column k£ and column #.

H1: Find strongly connected components using Tarjan’s
algorithm, and permute the matrix with a symmetric ordering
into block upper triangular form: 47 = VA'VT

H2: Use tearing based on nested dissection on each diagonal
block, and number all nodes of the separator sets last. As a
results the (block upper triangular) matrix is transformed into
a bordered block upper triangular matrix: 4= WA” WT

So A" = WVPAQ'V'W'" and the L and U factors can be
computed in parallel using the diagonal elements as pivots



