
Parallel	Sparse	Matrix	
Computa2ons	



Parallel	Sparse	BLAS	2	Matrix	Mul2plica2on	

Like	dense	matrix	mul2plica2ons,	sparse	matrix	2me	
vector	mul2plica2on	can	be	blocked:	
	

	 	DOALL	II	=	1,	M1	
	 	 	DOALL	JJ	=	1,	M2	
	 	 	 	DO	I	=	II,	II	+	N/M1	-	1	
	 	 	 	 	DO	J	=	JJ,	JJ	+	N/M2	-	1	
	 	 	 	 	 	C(I)	=	C(I)	+	A(I,J)	*	B(J)	
	 	 	 	 	ENDDO	
	 	 	 	ENDDO	
	 	 	ENDDO	
	 	ENDDO	

	

However,	this	can	lead	to	uneven	load	balance!!!!!!!	
	



• 		



This	can	(partly)	be	prevented	by	only	row	slicing/par22oning:	
	
	 	DOALL	II	=	1,	M1	
	 	 	DO	I	=	II,	II	+	N/M1	–	1	
	 	 	 	DO	J	=	1,	N	
	 	 	 	 	C(I)	=	C(I)	+	A(I,J)	*	B(J)	
	 	 	 	ENDDO	
	 	 	ENDDO	
	 	ENDDO	

	
Mostly	the	number	of	NNZ	per	row/column	is	rather	constant.		
	
Each	processor	needs	a	full	copy	of	the	B	vector!!	



Column	slicing/par22oning:	
	
	 	DOALL	JJ	=	1,	M1	
	 	 	DO	J	=	JJ,	JJ	+	N/M1	–	1	
	 	 	 	DO	I	=	1,	N	
	 	 	 	 	C(I)	=	C(I)	+	A(I,J)	*	B(J)	
	 	 	 	ENDDO	
	 	 	ENDDO	
	 	ENDDO	

	
Each	processor	just	has	a	part	of	the	B	vector.	
But	every	processor	needs	a	full	copy	of	the	C	vector	plus	the	
processors	need	to	communicate	their	changes	to	C!!	



Solu2on:	
	
Let	NNZ	be	the	number	of	non-zero	elements	of	the	
sparse	matrix.	Assume	we	want	to	compute	in	parallel	
on	PxQ	processors.	
	
è	Divide	the	rows	into	P	par22ons:	R1R2…RP-1RP	
	such	that	for	all	k:	NNZ	(Rk)	≈	NNZ/P,	then	
	par22on	every	row	par22on	Rk	into	Q	par22ons:	
	Ck1Ck2…CkQ-1CkQcolumns,	such	that	for	every	m:	
	NNZ	(Ckm)	≈	NNZ	(Rk)	/	Q.	

	
By	doing	so,	we	have	for	all	k,	m:	
	 	 	 	NNZ	(Ckm)	≈	NNZ	/	PQ	



In	a	picture:	



Parallel	Sparse	(Upper)	Triangular	Solver	

	 	 	 	 	 	 	Ux	=	c	
Leveliza2on:	
	Take	a	DFS	spanning	tree	of	
	the	associated	symmetric	
	graph	of	U+UT,		and	group	
	all	nodes	at	the	same	level	
	of	the	tree	together	

è  the	nodes	within	each	group	are	not	connected,	i.e.	will	not	have	an	edge	in	
common	

è  some	nnz’s	might	be	introduced	in	the	lower	triangle,	which	will	be	
corrected	by	simple	permuta2ons	

è  in	other	words	each	group	will	form	a	diagonal,	diagonal	block	
è  in	fact	the	associated	digraph	of	a	triangular	matrix	can	be	seen	as	a	

“par2ally	ordered”	set	(poset)	and	a	diagonal	block	as	an	incomparable	
subset	of	elements	



So,	not	only	do	we	have	easily	inver2ble	Ukk	blocks,	
this	opera2on	can	be	executed	in	parallel	or	as	a	
vector	opera2on.	



		

In	fact	not	only	do	we	have	parallelism	on	a	
block	level	but	also	on	column/row	level	



Orderings	to	Special	Form	
An	ordering	of	a	sparse	matrix	A	to	a	sparse	matrix	B	is	called	
asymmetric	if		

	 	 	 	 	 	B = PAQT,		
with	P	and	Q	permuta2on	matrices	
If	P = Q,	then	the	ordering	is	symmetric.	
	
Note	that	the	minimum	degree	ordering	is	a	symmetric	
ordering.	Also	the	leveliza2on	ordering	is	symmetric.	Par2al	
Pivo2ng	is	asymmetric!!	
	
è With	a	symmetric	ordering	the	associated	digraphs	of	A	and	

B	are	isomorphic.	
è Proper2es	like	diagonal	dominant	and	eigenvalues	do	not	

changes	with	symmetric	orderings	
	



Example	
• 			



Block	Triangular	Form	for	Parallel	LU	

•  		

è	

è	

Ø Based	on	finding	strongly	connected	components	O(n+m)	
Ø Symmetric	ordering	
Ø Unique	decomposi2on	
Ø Every	diagonal	block	can	be	factured	in	parallel	



Banded	Structure	

•  		

Ø Befer	Storage	Opportuni2es	(Diagonal	Storage)	
Ø Minimiza2on	of	fill-in	in	LU	factoriza2on	
Ø Befer	exploita2on	of	spa2al	locality	(stride	1	accesses)	
Ø In	some	cases	convergence	of	itera2ve	methods	are	
enhanced	if	nnz’s	are	located	near	the	diagonal	



Banded	structure	through	Cuthill-McKee	
• 		

•  Start	with	an	arbitrary	node	α.	Let	S1	=	{	α	}.	
•  Let	Si	=	{	nodes,	which	are	not	contained	in	any	Sj	with	j	<	i	}.	The	

nodes	in	Si		are	ordered	such	that	first	nodes	are	the	nodes	which	are	
neighbors	of	the	first	node	in	Si-1,		the	following	nodes	are	neighbors	
of	the	second	node	in	Si-1,	etc.	

(Basically	a	BFS	tree	is	constructed	of	A	+	AT	)	



•  		

This	results	in:	

BTW	As	a	side	effect:	Reversing	Cuthill-McKee	leads	in	
many	cases	to	minimiza2on	of	fill-in	



Banded	Structure	through		
One-Way/	Nested	Dissec2on	

One	way	dissec2on	is	based	on	Cuthill-KcKee:	
	
Ø  Let	S1 S2 … Sk be	the	leveliza2on	sets	obtained	by	Cuthill-

McKee	on	the	associated	graph	of	a	(symmetric)	matrix	A 
Ø Compute	

	 	m =  ( Σi=1,2..,k Si ) / k 	,		
				the	average	number	of	elements	per	set.	
Ø  Let	

	 	δ = √ ( ( 3m + 13 ) / 2 ) 
Ø  Take	all	the	nodes	from	sets	Sj	with	j =  iδ + 0.5  , i = 1,2,… 
Ø Number	these	nodes	last	
	
The	choice	of	δ	is	based	on	experiments	run	on	regular	grid	
matrices.	



This	results	in	the	following	matrix	



The	same	result	can	be	obtained	by	nested	dissec2on	

And	recursively	compu2ng	separator	sets	for	B	and	
C,	and	so	on,	and	so	on….	
	
Number	the	nodes	of	these	separator	sets	last	
	
è	As	a	result	we	have	a	more	general	method,	not	

	only	suited	for	grid	matrices.	



Tearing	Techniques	
• 		

OR	

A	large	grain	decomposi2on	for	compu2ng	LU	factoriza2on	in	parallel	
	
The	desired	form	is	bordered	upper	block	triangular	form	



Hellerman-Rarick	
• 		

Ø Unsymmetric	Ordering	
Ø Diagonal	elements	are	assigned	pivots	
Ø The	q	columns	are	called	spikes	and	will	form	the	border	



The	algorithm	
1.   p=0,	q=0	and	the	whole	matrix	is	ac2ve	
2.   m	is	the	minimum	NNZ	entries	in	any	row	of	the	ac2ve	(sub)matrix.	

Choose	m	columns,	by	choosing	first	the	column	with	most	NNZ’s	
in	rows	with	NNZ-count	of	m,	then	the	column	is	chosen	with	most	
NNZ’s	in	rows	with	NNZ-count	of	m-1,	and	so	on.	

3.  If	the	last	column	has	s	rows	with	a	singleton	NNZ	then	these	rows	
are	permuted	to	the	beginning	of	the	ac2ve	(sub)	matrix	and	these	
rows	are	assigned	pivot	rows	

4.  The	last	s	columns	chosen	are	also	permuted	to	the	front	of	the	
ac2ve	(sub)	matrix	and	these	columns	are	assigned	pivot	columns	

5.  The	remaining	m-s	columns	are	permuted	to	the	border	
6.   p = p + s and	q = q + m – s 
7.  If	p + q = n then	stop	else	goto	2	



Example	
• 		

Column	1	is	chosen	first:	it	has	most	entries	in	rows	of	count	3.		
Then	column	4	is	chosen,	because	it	has	most	entries	in	rows	with	
new	count	2.	
Then	column	6	is	chosen	because	it	has	singletons	in	rows	2	and	4	
è	Rows	2	and	4	are	permuted	to	the	front	



Example	2	
• 		

Now	columns	6	and	4	are	permuted	
to	the	front	and	column	1	is	
permuted	to	the	back		
As	a	results	we	have:	

DENSE	 DENSE	



Tearing	based	on	nested	dissec2on	
• 		

Remark:	Separator	sets	were	constructed	on	A	+	AT	

Edges	from	the	separators	can	go	both	direc2ons	to	B	and	C	



•  		

For	nodes	u	in	S	with	only	incoming	edges	from	B,	move	u	to	C	

è	

For	nodes	v	in	S	with	only	outgoing	edges	to	C,	move	v	to	B	

è	

è 		As	a	result	the	size	of	the	separator	sets	(border)	is	reduced,	
	while	there	are	NNZ	introduced	in	the	upper	triangular	part	



A	Hybrid	Reordering	H*	
•  H0:	Through	an	asymmetric	ordering	A’ = PAQT permute	

“large	values	to	the	diagonal”,	i.e.	for	each	k	find	the	largest	
amn	such	that	|amn	|	>=	|	aij	|,	for	all	aij ε Akk .	Permute	row	k 
and	row	m,	permute	column	k	and	column	n.	

•  H1:	Find	strongly	connected	components	using	Tarjan’s	
algorithm,	and	permute	the	matrix	with	a	symmetric	ordering	
into	block	upper	triangular	form:	A’’ = VA’VT		

•  H2:	Use	tearing	based	on	nested	dissec2on	on	each	diagonal	
block,	and	number	all	nodes	of	the	separator	sets	last.	As	a	
results	the	(block	upper	triangular)	matrix	is	transformed	into	
a	bordered	block	upper	triangular	matrix:	A’’’ = WA’’ WT 

•  So	A’’’	=	WVPAQTVTWT	and	the	L	and	U	factors	can	be	
computed	in	parallel	using	the	diagonal	elements	as	pivots	


