Parallel Numerical Algorithms

Need for standardization

With the advent of parallel (high performance)
computers came the disillusion of bad
performance

The peak rates advertised with the introduction
of new machines were mostly not attainable for
real life applications

A need arised to standardize primitives of
computations

This effort also was based on already developed
numerical software libraries: LINPACK, EISPACK,
FISHPACK, Harwell

Basic Linear Algebra Subroutines (BLAS)

Three levels
— BLAS 1: vector/vector operations

SAXPY ¢+ y+ax x,y= vector, o = scalar
DOTPR « « (z,y)

SUM Yy+—y+x
— BLAS 2: matrix/vector operations

y + By + aAx
1y Atz
(= scalar, A= matrix, z= vector)

— BLAS 3: matrix/matrix operations

C+ (3.B+aAB
C+ C+ A.B.

Input/Output Data Reuse

BLAS 1 Example: Dotproduct (x, y)

Input Size: 2n
Operation Count: 2n-1
Output Size: 1

=» 1 operation per input element and 2n per output element
BLAS 2 Example: y = Ax

Input Size: nZ+n
Operation Count: 2n?-n
Output Size: n

=» 2 operations per input element and 2n per output element
BLAS 3 Example: C=A.B

Input Size: 2n?
Operation Count: 2n3-n?
Output Size: n2

=>» n operations per input element and 2n per output element

More data reuse leads to

» Better Cache/Register Utilization
e Less Communication Overhead

 More effective input, output, or intermediate
data decomposition

Example Dotproduct (BLAS 1)

DOI=1, N
C=C+A(l) * B(l)
ENDDO

Parallel execution on P processors:

DOALLII =1, P
DO I =1, I+N/P — 1
C(I1) = C(I1) + A(1) * B(1)
ENDDO
C=C+C(l)
ENDDOALL

DOALLII=1, N, N/P # N/P is the stride, so Il =1, 1+N/P, 1+2*N/P, ...
RECEIVE (A(I1:11+N/P-1), B(lI:1I+N/P-1))
DOI=IlI, II+N/P -1
C(I) = C(I1) + A(l) * B(1)
ENDDO
C=C+C(ll) <€synchronization, i.e. SEND C(J) TO PROCESS 100
ENDDOALL

So, on a total of 2N-1 computations: 2N continuous data transmissions and P
separate communications are needed. With t.+mt, communication costs for m
words (cut through routing), this gives:

P(t,+(2N/P)t,)+P(t+t,) =
(P+P) t+(2N+P)t, = 2Pt + (2N+P)t,,

communication costs, which is significant! For instance if t,, is comparable to the
cost of a computational step, then the communication overhead is greater than
the computational costs.

=» BLAS 1 routines were mainly used for VECTOR computing (pipelining)
vadd, vdotpr, vmultadd, etc.

Example MatVec (BLAS 2)

DOI=1,N
DOJ=1,N
C(1) = C(1) + A(1,J) * B(J)
ENDDO
ENDDO

Parallel execution on P processors:

DOI=1,N
DOALLJJ =1, N, N/P
DO J=1J, JJ+N/P -1
C(J) = C(JJ) + A(LJ) * B(J)
ENDDO
C(l) = (1) + C(J))
ENDDOALL
ENDDO

But this is essentially is a repetition of BLAS 1 (dotproduct)

MatVec can also be computed as:

DOJ=1,N
DOALLII =1, N, N/P
DO I=1l, lI+N/P-1
C(1) = C(I)+A(1,J)*B(J)
ENDDO
ENDDOALL
ENDDO

In this computation the basic (inner) loop does not execute a
dotproduct, but a BLAS 1 SAXPY operation:y =y + a.x

More importantly, the vector C(ll:II+N/P-1) can be stored in
registers in each processor, and reused N times

Also the fan-in computations are for each C(l) are not needed
anymore!! So only initial distribution costs are paid for. So,
overhead is reduced to

Pt.+(2N)t,,

Example MatMat (BLAS 3)

DOI=1, N
DOJ=1, N
DOK=1,N
C(1,K) = C(1,K) + A(1,J) * B(J,K)
ENDO
ENDDO
ENDDO

Then because of the multi dimensionality we have
different ways of executing this loop in parallel.

Middle product form (K-loop outer loop):

DOK=1,N
DOALL Il =1,N, N/VP
DOALL JJ = 1,N, N/VP
DO I =1, lI+N/VP-1
DO J =], JJ+N/VP-1
C(1,K) = C(I,K) + A(l,J) * B(J,K)
ENDO
ENDDO
ENDDOALL
ENDOALL
ENDDO

In this implementation the inner loop is a BLAS 2 MatVec
routine.

Inner product form (lI-loop outer loop):

DOI=1,N
DOJ=1,N
DOALLKK =1, N, N/P
DO K = KK, KK+N/P-1
C(1,K) = C(1,K) + A(1,J) * B(J,K)
ENDO
ENDDOALL
ENDDO
ENDDO
=>» In this implementation the inner loop is a BLAS 1 SAXPY routine.

The inner product form has a second variant:
DOK=1,N
DOI=1,N
DOALLJJ =1,N, N/P
DO J=1J, JJ+N/P-1
C(1,K) = C(1,K) + A(1,)) * B(J,K)
ENDO
ENDDOALL
ENDDO
ENDDO

In this implementation the inner loop executes a BLAS 1 DOTPRODUCT

Outer product form (J-loop outer loop):

DOJ=1,N
DOK=1,N
DOALL 1 =1, N, N/P
DO I = II, I1+N/P-1
C(1,K) = C(L,K) + A(L,J) * B(J,K)
ENDO
ENDDOALL
ENDDO
ENDDO

Another look at MatMat

The original loop can be written as follows:

DOIl=1, N, M1
DO JJ =1 ,N, M2
DOKK =1, N, M3
DOI=II, 1l +M1-1
DOJ=1J,)+ M2-1
DO K = KK, KK + M3 - 1
C(1,K) = C(1,K) + A(1,) * B(J,K)
ENDO
ENDDO
ENDDO
ENDDO
ENDDO
ENDDO

=>» Any of these loops can be executed in parallel!!
=>» These loops can be permuted in any order as long as || becomes before |, etc.
=>» So many different implementations possible

= M1, M2, and M3 can be used to control the degree of parallelism but also the size of cache
usage.

In fact
DOI=IL1l+M1-1
DOJ=JJ,lJl+M2-1
DOK=KK, KK+ M3 -1
C(1,K) = C(1,K) + A(l,J) * B(J,K)
ENDO
ENDDO
ENDDO

Corresponds to a sub matrix multiply of size M1xM?2
times M2xM3

By choosing M1, M2 and M3 carefully, this triple nested
loop can each time run out of cache

s ~N Schematic:

m [L —

- ~ N
~ | .

- AN

Embeddings of BLAS routines

Many scientific computations involve the
solution of a system of linear equations

an oo + apg1aq + -+ app-1Tn-1 = bo,
11 .00 + a1.111 + o+ A1 1T —1 - bl,
A —1,070 + Ap-1,1T1 + -+ Ap—1n—1Tp—-1 - bn.—l'

This is written as Ax = b where Aisannxn
matrix with A[i, j] = a;, bis an nx I vector [b,
b, ..., b 1", and x is the solution.

LU Factorization

Find

Such that A=L.U
Then solving Ax = b corresponds to solving
L (U x) =b
This can be done in 2 steps, triangular solves:
L ¢ = b (forward substitution)
U x = ¢ (backward substitution)

Backward substitution U x =y

rg + ugi1xr1+ ugoxrot+ - +
r1 + uioxrot+ - +

UDn—1Tn-1
Ul n—-1Tn-1

Tr—1

The factors L and U can be obtained through Gaussian Elimination

(2y 4+ 3z9 + x3 =1
1y + T + 313 =2
\ 3z + 219 + T3 =3

B

I
W= N
b - O

DOI=1,N
PIVOT = A(l, 1)
DOJ=1+1, N
MULT = A(J, I)/PIVOT
A(J, 1) = MULT
DOK=1I+1, N
A(J, K) = A(J, K) - MULT * A(l, K)
ENDDO
ENDDO
ENDDO

This yields:

—
Il
T~
- -
l’\.«|'—'lvl— b
o I -~
o | —
| wo
el 1 L s
(W
~——
w0
o
Il
[
DO —
O == O

)| —

0| 2 3 1
0| and U = () —% 2% .
1 0 0 —13

After L and U are computed the system is solved by:

forward substitution:

back substitution:
DOI=1,N DOI=N,1
C(1) = B(1) X(1) = C(1)
DOJ=1,I-1 DOJ=1I1+1, N
C(1) = C(1) - A(l, J) * C(J) X(1) = X(1) - A(l, J) * X(J)
ENDDO ENDDO
ENDDO

X(1) = X()/A(, 1)
ENDDO

Block LU decomposition

Write A as follows

A — A“ A[z _ I () AU :’112
‘ /\-3 | A 29 I 21 / 0 B

So
A_(Ay Apo)

LoyyAyy LyAyp+ B

Let k be the dimension of A,; and N-k the dimension of A,
Then the algorithm becomes:

i 1—1
.‘1]1 ‘(_ 4‘11 |
A9y Loy = Ag1 Ay (Ap A A=A

| Ay B = Ay — Ly Ay

And proceed recursively on B

In a picture

A A 1p
By B

A

L

21 || g C
L
21

Note that the
I diagonal blocks

do not need to
be kept.

As a results

=» This algorithm only has only to compute the
inverse of A,,, otherwise only matrix
multiplies are performed

The only complication is that back substitution is
a bit more tedious.

1itution
ard Substitu
Backw

U, U, -
- Us | Us
3 -

)

Iy
L2
L3
€Iy

|
C2
c3
Cq

_ Uy
1 =€l
. C

— C4
Solve U4.'I?4
0 ~
| - U3 +Iq
= 3
C3 —

= ¢3
I3 —
e Us
Solv
_0,.
c2

= ¢
Iy =
e U2
Solv

= ¢
Solve Uyx| =

I3
L4

)
T3
Ty

|

C1

C2
C3
C4q

lon
itut

rd Substi

a

Forw

_b'l
JR— B
.] —L2 C
Co =
Lj-
—b3—
C3 — -
Ly-
—b4— |
Cq —

(&
C2

C]
C2
C3

